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Abstract: This paper presents a new parameterized nonlinear least squares (PNLS) algorithm for
unsupervised nonlinear spectral unmixing (UNSU). The PNLS-based algorithms transform the
original optimization problem with respect to the endmembers, abundances, and nonlinearity
coefficients estimation into separate alternate parameterized nonlinear least squares problems.
Owing to the Sigmoid parameterization, the PNLS-based algorithms are able to thoroughly relax
the additional nonnegative constraint and the nonnegative constraint in the original optimization
problems, which facilitates finding a solution to the optimization problems . Subsequently, we propose
to solve the PNLS problems based on the Gauss–Newton method. Compared to the existing
nonnegative matrix factorization (NMF)-based algorithms for UNSU, the well-designed PNLS-based
algorithms have faster convergence speed and better unmixing accuracy. To verify the performance of
the proposed algorithms, the PNLS-based algorithms and other state-of-the-art algorithms are applied
to synthetic data generated by the Fan model and the generalized bilinear model (GBM), as well as
real hyperspectral data. The results demonstrate the superiority of the PNLS-based algorithms.

Keywords: unsupervised nonlinear spectral unmixing; parameterized nonlinear least squares;
Sigmoid parameterization; Gauss–Newton optimization

1. Introduction

Due to the spatial resolution limitation of hyperspectral remote sensors as well as the diversity of
surface features, mixed pixels are a common occurrence in hyperspectral images. Spectral unmixing is
an essential technique for analyzing mixed pixels which extracts a collection of spectral signatures
or endmembers and their corresponding fractions (abundances) contained in the mixed pixels.
A large number of unmixing algorithms have been proposed based on the linear mixture model
(LMM), which assumes that the spectrum of the mixed pixels is a linear combination of several
endmembers. The linear unmixing process involves extracting the endmembers [1] and estimating
their abundances [2] or obtaining endmembers and abundances simultaneously [3–5].

Nevertheless, the LMM cannot necessarily reflect the true composition of real-world scenarios
such as planetary remote sensing, intimate mineral mixtures, vegetation canopies, or urban scenes [6].
Therefore, kernels are popularly adopted to introduce nonlinearities in unmixing [7–9], which is
independent of specific mixing models. However, the kernel-based methods largely depend on the
choice of the kernel functions and parameters [6]. On the other hand, physical models based on the
the nature of environment have been proposed to overcome the limitation of the LMM, including
the Hapke model proposed in [10] and the bilinear mixture models (BMMs) [6]. In BMMs, the light
probably undergoes secondary reflections or bilinear interactions before reaching the sensor. Different
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assumptions on the abundance constraints or bilinear parameters result in different expressions of
the BMMs, such as the polynomial post-nonlinear model [11], the Nascimento model [12], the Fan
model [13], and the generalized bilinear model (GBM) [14]. Several supervised nonlinear unmixing
algorithms based on BMMs has been developed [14–16]. However, due to the lack of an endmember
updating process, the unmixing performance of these supervised nonlinear unmixing algorithms is
limited and greatly influenced by the accuracy of the endmember extraction methods [16], e.g., vertex
component analysis (VCA) [1], pixel purity index (PPI) [17], simplex growing algorithm (SGA) [18]
or N-FINDR algorithm [19]. To alleviate the limitations of supervised nonlinear unmixing, the
unsupervised nonlinear spectral unmixing (UNSU) provides a viable option and some attempts have
been made to estimate simultaneously the endmembers and abundances (or nonlinearity coefficients)
for nonlinear mixing models. For example, the polynomial post-nonlinear mixing model (PPNMM)
has been solved with an unsupervised method using a Hamiltonian Monte Carlo Algorithm [20]
and has been shown to result in a better unmixing performance than the supervised method [15].
In [21], the authors provide an UNSU method for the Fan model using the NMF (Fan-NMF), which is
proved to obtain better performance than the supervised or unsupervised LMM-based methods or the
supervised GBM-based methods. In [22], we have also proposed an NMF-based UNSU method for the
GBM (GBM-NMF).

In NMF-based methods, the physical constraints on the endmembers (nonnegativity) and
abundances (nonnegativity and sum-to-one) are taken into consideration by means of a projected
gradient (PG) update algorithm. The PG method is originally proposed by Lin [23] and provides a
faster convergence than the multiplicative update rules designed by Lee and Seung [24]. However,
NMF-based UNSU methods suffer from two problems. First, the simple projection step in the PG of
setting negative values to zero or small positive values to impose non-negativity makes it difficult
to provide a theoretical analysis of its convergence [25]. The projection step is likely to increase
the objective function and may cause non-monotonic changes in the objective function, resulting in
inaccurate factorization [26]. Second, only the first derivatives are used for updating in the NMF-based
UNSU methods, which is inefficient for solving nonlinear mixing models since the endmembers to be
estimated have strong interactions due to the existence of virtual endmembers, which are generated by
the Hadamard product mathematically.

To further alleviate the problems of the NMF-based UNSU methods, in this study, we propose
two well-designed UNSU methods based on parameterized nonlinear least squares (PNLS) for the
widely used GBM and Fan model. In the proposed methods, the optimization problem for the UNSU
is transformed into two (for Fan model) or three (for GBM) alternate linear/nonlinear least squares
(LS/NLS) problems. To avoid the simple projection step which ensures nonnegativity, the unknown
endmembers, abundances, and nonlinearity coefficients (only for the GBM) are parameterized by a
Sigmoid function. In this way, the LS/NLS problems with additional constraints are transformed
into PNLS problems free of constraints. The Gauss–Newton method is then utilized to alternately
solve the unconstrained PNLS problems rather than the PG method used in the NMF-based UNSU
methods. The proposed PNLS-based UNSU algorithms can obtain the endmembers, abundances, and
nonlinearity coefficients (only for the GBM) simultaneously. The experimental results of synthetic and
real data have verified that the proposed algorithms achieve better unmixing performance than the
NMF-based UNSU algorithms for the GBM and the Fan model.

The remainder of this paper is organized as follows: Section 2 provides a brief review of the GBM
and Fan model; Section 3 details the proposed PNLS-based UNSU algorithms; Section 4 presents and
analyses a series of experiments using both synthetic and real hyperspectral data; Section 5 concludes
this paper.

2. Bilinear Mixing Models

This section provides a brief introduction to the general form of two widely used bilinear models
including the GBM and the Fan model.
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2.1. GBM

The GBM is derived from the combination of an LMM and an additional nonlinear effect term,
which emphasizes the second-order scattering effect. Let X ∈ <L×N be any hyperspectral image with
L bands and N pixels, then the nth pixel xn in X can be represented using the GBM as follows [16]:

xn =
P

∑
p=1

mpAp,n +
P−1

∑
p=1

P

∑
q=p+1

B(p,q),nmp �mq + ffl, (1)

with constraints
P

∑
p=1

Ap,n = 1, Ap,n ≥ 0, 0 ≤ B(p,q),n ≤ Ap,nAq,n, mp ≥ 0, (2)

where the first term on the right side of the Equation (1) indicates the linear mixing effect and the
second term indicates the nonlinear mixing effect. mp denotes the pth endmember in the endmember
matrix M ∈ <L×P and Ap,n denotes the corresponding abundance of mp in the pixel xn. � denotes
the Hadamard product between two vectors. B(p,q),n is the nonlinearity coefficient controlling the
significance of the nonlinear effect. The subscript (p, q) means that the item is derived from or
associated with Ap,n and Aq,n. ffl represents the additional noise. It is noticed that apart from the
nonnegative constraint, an upper bound constraint is also imposed on B. They are collectively called
the boundary constraint hereinafter unless otherwise specified.

2.2. Fan Model

The Fan model can be regarded as a special case of the GBM where B(p,q),n = Ap,nAq,n instead of
the constraint 0 ≤ B(p,q),n ≤ Ap,nAq,n, i.e., the Fan model has the following expression:

xn =
P

∑
p=1

Ap,nmp +
P−1

∑
p=1

P

∑
q=p+1

Ap,nAq,nmp �mq + ffl (3)

with constraints:
P

∑
p=1

Ap,n = 1, Ap,n ≥ 0, mq ≥ 0. (4)

3. Proposed PNLS

In this section, we present the proposed PNLS for the GBM and the Fan model. As the derivations
of the PNLS for both models are quite similar, we only show the detailed derivation of the PNLS for
the GBM and the PNLS for the Fan model will be given directly.

3.1. Definition of the Alternate LS/NLS Problems

Based on the GBM in (1), the UNSU problem can be defined as three alternate LS/NLS
optimization problems for the local optimal solution of the endmembers, abundances, and nonlinearity
coefficients.

3.1.1. Constrained NLS for Endmembers Estimation

To define the endmembers estimation as an NLS problem, the pixel-wise or column-wise form
defined in Equation (1) should be transformed into the band-wise or row-wise form as follows:

xl = mlA + zlB + ffl (5)
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with constraints:
P

∑
p=1

Ap,n = 1, Ap,n ≥ 0, 0 ≤ B(p,q),n ≤ Ap,nAq,n, ml ≥ 0, (6)

where xl , ml , zl are row vectors denote the lth row of X, M, Z respectively and Z = [m1 �m2, m1 �
m3, ..., mP−1 �mP] is the virtual endmember matrix. For the endmembers estimation, the abundances
and nonlinearity coefficients are assumed to be fixed. Thus the constraints with respect to the
abundances and nonlinearity coefficients can be neglected and the following constrained NLS problem
is obtained:

ml = arg min
ml

‖xl −mlA− zlB‖2, s.t. ml ≥ 0. (7)

3.1.2. Constrained LS for Abundances Estimation

The endmembers M, virtual endmembers Z, and nonlinearity coefficients B are supposed to be
fixed when updating the abundances A. To relax the abundances sum-to-one constraint (ASC), we use
the method in [2] and add a pseudo-band into X, M, and Z, resulting in

X̃ =

 X
[1, 1, ..., 1]︸ ︷︷ ︸

N

× δ

 , (8)

M̃ =

 M
[1, 1, ..., 1]︸ ︷︷ ︸

P

× δ

 , (9)

Z̃ =

 Z
[0, 0, ..., 0]︸ ︷︷ ︸
P(P−1)/2

 , (10)

where δ is a parameter controlling the weight of the sum-to-one constraint. Therefore, the pixel-wise
constrained LS problem for the abundances estimation can be expressed as

an = arg min
an

‖x̃n − Z̃bn − M̃an‖2, s.t. an ≥ 0. (11)

where an, bn, x̃n are column vectors denote the nth column of A, B, X̃ respectively.

3.1.3. Constrained LS for Nonlinearity Coefficients Estimation

The expression of the LS for the nonlinearity coefficients B estimation is similar to that for the
abundances estimation. By fixing M, Z, and A and neglecting their constraints, we obtain the following
constrained LS problem:

bn = arg min
bn

‖(xn −Man)− Zbn‖2, s.t. 0 ≤ B(p,q),n ≤ Ap,nAq,n. (12)

3.2. Sigmoid Parameterization

Due to the existence of a nonnegative constraint and a boundary constraint, there is no analytical
solution for the NLS problem in Equation (7) or LS problems in Equations (11) and (12). A conventional
method to deal with this alternate optimization problem is the PG descent method, which has been
used in some studies [21,22]. However, as discussed above, the simple projection step in the PG method
may prevent the convergence. Therefore, if the nonnegative constraint and boundary constraint can
be naturally enforced or relaxed rather than using a rough projection, a better convergence can be
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expected. In this study, we propose to introduce the Sigmoid function [27] to parameterize the
unknown variables in the alternate optimization procedures. Through the Sigmoid parameterization,
the nonnegative constraint and boundary constraint are totally relaxed and the optimization problems
shown in Equations (7), (11) and (12) are totally free of constraints, which facilitates the solution of
those problems.

The Sigmoid function of a scalar c can be expressed as follows:

g(c) =
1

1 + e−c . (13)

The Sigmoid function fits well with our problems for two reasons: (1) the Sigmoid function is
derivable with respect to any value of c, which makes the parameterization problems easy to solve.
More, its derivative has a simple form: dg(c)/dc = g(c)(1− g(c)). (2) The output of the Sigmoid
function varies in the range of 0–1, which means that the function is bounded and has upper and
lower bounds. This property agrees well with the constraints of our problems. Although some
other functions (e.g., the exponential function or quadratic function) also have the ability to relax the
nonnegative constraint, they have no upper bound, which may cause a ’numerical explosion’ that
affects the optimization process negatively. In fact, the pixel values are usually normalized to the
range of 0–1 before unmixing. The parameterization without an upper bound may cause its output to
increase continuously and even cause overflows during updating.

In this paper, the endmembers, abundances, and nonlinearity coefficients are parameterized by
the following forms:

M = g(E), A = g(D), B = Y � g(F), (14)

where g(E), g(D), and g(F) denote the element-wise sigmoid function of E, D, and F. In particular, B is
parameterized by the Hadamard product of Y and g(F), where Y(p,q),n = Ap,nAq,n. Given the fixed Y,
this parameterization ensures not only the nonnegative constraint but also the upper bound constraint.
In this manner, the nonnegativity of M and A, as well as the nonnegativity and upper bound of B are
essentially guaranteed. Therefore, the nonnegative constraint and boundary constraint can be totally
relaxed. As a result, the NLS problem in Equation (7) is transformed into the following unconstrained
PNLS problem:

el = arg min
el

‖xl − g(el)A− zlB‖2. (15)

where el is a row vector denotes the lth row of E.
As the virtual endmember Z = [m1 �m2, m1 �m3, ..., mP−1 �mP], it should be noted that Z is

also parameterized by E.
The LS problem in Equation (11) is transformed into the following unconstrained PNLS problem:

dn = arg min
dn

‖(x̃n − Z̃bn)− M̃g(dn)‖2. (16)

where dn is a column vector denotes the nth column of D.
Differ to the B in the LS problem in Equation (11), B in Equation (16) is also parameterized by D.
The LS problem in Equation (12) is transformed into the following unconstrained PNLS problem:

f n = arg min
f n

‖(xn −Man)− Z(yn � g(f n))‖2. (17)

where f n, yn are column vectors denote the nth column of F, Y respectively.

3.3. Gauss–Newton Based Optimization

The minimization problems in Equations (15)–(17) can be solved using the alternate gradient
descent method. But neither the second derivatives or its approximation is considered in this method.
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For the PNLS problems in Equations (15)–(17), there exist obvious nonlinearity caused by the bilinear
model itself and the sigmoid parameterization, which makes it inefficient to optimize these problems
by the gradient descent method. Furthermore, the convergence of the gradient descent method has to
be ensured by a suitable step size and the commonly used line search method is very time-consuming.
For above considerations, we propose to introduce the Gauss–Newton method [28] to solve the PNLS
problems in Equation (15)–(17) in an alternate manner.

3.3.1. Endmembers Updating Rule

Without loss of generality, we first denote r(e(t)l ) as the residual of the lth band with variable el at
the tth iteration with the following form:

r(e(t)l ) = xl − g(e(t)l )A− zlB. (18)

Based on the Taylor formula, the first order approximation of the Taylor expansion of the residual
of the variable el at the (t + 1)th iteration can be obtained:

r(e(t+1)
l ) = r(e(t)l ) + ∆JT

r (e
(t)
l ). (19)

where ∆ = e(t+1)
l − e(t)l and Jr(e

(t)
l ) is the Jacobian matrix of r(e(t)l ) whose entries are

(Jr(e
(t)
l ))ij =

∂ri(e
(t)
l )

∂E(t)
l,j

. (20)

The complete matrix expression of Jr(e
(t)
l )) has the following form:

Jr(e
(t)
l ) = −(AT +



g(e(t)l )V1

g(e(t)l )V2

g(e(t)l )V3
...

g(e(t)l )V N


)diag

(
g(e(t)l )� (1− g(e(t)l ))

)
, (21)

where diag(g(e(t)l )� (1− g(e(t)l ))) is a P× P diagonal matrix with the entries of vector g(e(t)l )� (1−
g(e(t)l )) aligned on the main diagonal, and Vn is a P× P symmetric matrix determined by entries in bn

with the following form:

Vn =


0 B1,n B2,n ... BP−1,n

B1,n 0 BP,n ... B2P−3,n
B2,n BP,n 0 ... ...

... ... ...
. . . BQ,n

BP−1,n B2P−3,n ... BQ,n 0

 . (22)

For example, when P = 4, Q = P(P− 1)/2 = 3, then

Vn =


0 B1,n B2,n B3,n

B1,n 0 B4,n B5,n
B2,n B4,n 0 B6,n
B3,n B5,n B6,n 0

 . (23)
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At the (t + 1)th iteration, the task is to minimize ‖r(e(t+1)
l )‖2. By substituting e(t+1)

l using
Equation (19), we can alternatively minimize the following function:

‖r(e(t)l ) + ∆JT
r (e

(t)
l )‖2. (24)

Given that the variable e(t)l is assumed to be fixed at the tth iteration, this is a typical linear least
squares problem with respect to ∆. By letting the derivation equal to 0, the analytical solution of ∆ can
be easily obtained:

∆ = −r(e(t)l )Jr(e
(t)
l )
(

JT
r (e

(t)
l )Jr(e

(t)
l )
)−1

(25)

As ∆ = e(t+1)
l − e(t)l , the endmember updating rule can be explicitly obtained:

e(t+1)
l = e(t)l − r(e(t)l )Jr(e

(t)
l )
(

JT
r (e

(t)
l )Jr(e

(t)
l )
)−1

(26)

3.3.2. Abundances Updating Rule

According to the analysis above, the derivation of the updating rule for the abundances can be
interpreted in a similar manner. Again, we denote r(d(t)

n ) as the residual of the nth pixel with variables
dn at the tth iteration with the following form:

r(d(t)
n ) = (x̃n − Z̃bn)− M̃g(d(t)

n ) (27)

Using a Taylor approximation and algebraic operation, the following updating rule is deduced:

d(t+1)
n = d(t)

n −
(

JT
r (d

(t)
n )Jr(d

(t)
n )
)−1

JT
r (d

(t)
n )r(d(t)

n ) (28)

where

Jr(d
(t)
n ) = −(M̃ +



gT(d(t)
n )(W1 �On)

gT(d(t)
n )(W2 �On)

gT(d(t)
n )(W3 �On)

...

gT(d(t)
n )(WL+1 �On)


)diag

(
g(d(t)

n )� (1− g(d(t)
n ))

)
. (29)

3.3.3. Nonlinearity Coefficients Updating Rule

Analogously, the residual of the nth pixel with variables fn at the tth iteration is denoted as r( f (t)n )

and has the following form:

r(f (t)n ) = (xn −Man)− Z(yn � g(f (t)n )) (30)

The updating rule can be deduced:

f (t+1)
n = f (t)n −

(
JT

r (f
(t)
n )Jr(f

(t)
n )
)−1

JT
r (f

(t)
n )r(f (t)n ) (31)

where the Jacobian matrix Jr(f
(t)
n ) is

Jr(f
(t)
n ) = −Zdiag

(
yn �

(
g(f (t)n )� (1− g(f (t)n ))

))
(32)
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3.4. Generalization to Fan Model

There is only a subtle difference between the GBM and the Fan model and only two variables
need to be updated in Fan model, i.e., the endmembers and the abundances. The parameterization
and derived updating rules are similar to those of the GBM. We reuse the expressions in Equations (26)
and (28) as the updating rules for consistency and clarity:

e(t+1)
l = e(t)l − r(e(t)l )Jr(e

(t)
l )(JT

r (e
(t)
l )Jr(e

(t)
l ))−1 (33)

d(t+1)
n = d(t)

n −
(

JT
r (d

(t)
n )Jr(d

(t)
n )
)−1

JT
r (d

(t)
n )r(d(t)

n ) (34)

It is worth noting that the expression of the Jacobian matrix Jr(d
(t)
n ) in (34) differs from the one in

Equation (28):

Jr(d
(t)
n ) = −(M̃ +



gT(d(t)
n )W1

gT(d(t)
n )W2

gT(d(t)
n )W3
...

gT(d(t)
n )WL+1


)diag(g(d(t)

n )� (1− g(d(t)
n ))). (35)

Table 1 summaries the different specific symbol meanings when the same form of the updating
rules are applied to different nonlinear mixing models. The specific forms of the variables Vn, Un and
W l in Table 1 are listed in Table 2.

Table 1. Specific symbol meanings for the GBM and Fan model in the updating rules.

GBM Fan Model

M(t) g(E(t)) g(E(t))

Jr(e
(t)
l ) −(AT +



g(e(t)l )V1

g(e(t)l )V2

g(e(t)l )V3
...

g(e(t)l )V N


)diag

(
g(e(t)l )� (1− g(e(t)l ))

)
−(AT +



g(e(t)l )U1

g(e(t)l )U2

g(e(t)l )U3
...

g(e(t)l )UN


)diag

(
g(e(t)l )� (1− g(e(t)l ))

)

r(e(t)l ) xl − g(e(t)l )A− zl(E(t))B xl − g(e(t)l )A− zl(E(t))Y

r(d(t)n ) x̃n − M̃g(d(t)n )− Z̃bn x̃n − M̃g(d(t)n )− Z̃yn

B(t) Y(t) � g(F(t))

y(t)
(p,q) a(t)p � a(t)q a(t)p � a(t)q

A(t) g(D(t)) g(D(t))

Jr(d
(t)
n ) −(M̃ +



gT(d(t)n )(W1 �On)

gT(d(t)n )(W2 �On)

gT(d(t)n )(W3 �On)

...

gT(d(t)n )(WL+1 �On)


)diag

(
g(d(t)n )� (1− g(d(t)

n ))
)

−(M̃ +



gT(d(t)n )W1

gT(d(t)n )W2

gT(d(t)n )W3
...

gT(d(t)n )WL+1


)diag

(
g(d(t)n )� (1− g(d(t)n ))

)

r(f (t)n ) (xn −Man)− Z(yn � g(f (t)n ))

Jr(f
(t)
n ) −Zdiag

(
yn � g(f (t)n )� (1− g(f (t)n ))

)
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Table 2. The specific forms of the variables Vn, Un and W l in Table 1.

Vn



0 B1,n B2,n ... BP−1,n

B1,n 0 BP,n ... B2P−3,n

B2,n BP,n 0 ... ...

... ... ...
. . . BQ,n

BP−1,n B2P−3,n ... BQ,n 0



Un



0 Y1,n Y2,n ... YP−1,n

Y1,n 0 YP,n ... Y2P−3,n

Y2,n YP,n 0 ... ...

... ... ...
. . . YQ,n

YP−1,n Y2P−3,n ... YQ,n 0



W l



0 Z̃l,1 Z̃l,2 ... Z̃l,P−1

Z̃l,1 0 Z̃l,P ... Z̃l,2P−3

Z̃l,2 Z̃l,P 0 ... ...

... ... ...
. . . . Z̃l,Q

Z̃l,P−1 Z̃l,2P−3 ... Z̃l,Q 0



On



0 g(F1,n) g(F2,n) ... g(FP−1,n)

g(F1,n) 0 g(FP,n) ... g(F2P−3,n)

g(F2,n) g(FP,n) 0 ... ...

... ... ...
. . . . g(FQ,n)

g(FP−1,n) g(F2P−3,n) ... g(FQ,n) 0



The proposed PNLS for the UNSU is summarized in Algorithm 1 (GBM version) and Algorithm 2
(Fan version). We denote the GBM version as GBM-PNLS and the Fan version as Fan-PNLS.

Algorithm 1 GBM-PNLS for unsupervised nonlinear unmixing

Input: hyperspectral data matrix X, parameter δ and iteration number T.
Output: endmember matrix M, abundance matrix A and nonlinearity coefficients matrix B.

1: Initialize M, A and B properly. Then E, D and F are initialized by the inverse parameterization
functions, respectively.

2: while total epochs are less than T do
3: Update Vn, (n = 1, 2, ..., N) according to Table 2.
4: for each row of E do
5: Update el according to (26).
6: end for
7: for each column of D do
8: Update dn according to (28).
9: end for

10: for each column of F do
11: Update f n according to (31).
12: end for
13: end while
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Algorithm 2 Fan-PNLS for unsupervised nonlinear unmixing

Input: hyperspectral data matrix X, parameter δ and iteration number T.
Output: endmember matrix M and abundance matrix A.

1: Initialize M and A properly. Then E and D are initialized by the inverse parameterization functions,
respectively.

2: while total epochs are less than T do
3: Update Un, (n = 1, 2, ..., N) according to Table 2.
4: for each row of E do
5: Update el according to (33).
6: end for
7: Update W l , (l = 1, 2, ..., L) according to Table 2.
8: for each column of D do
9: Update dn according to (34).

10: end for
11: end while

3.5. Implement Details

3.5.1. Initialization

The minimization problems for the GBM and Fan model are non-convex for all the variables.
In addition, the Gauss–Newton method can only obtain local minimum. To speed up the convergence,
the initialization for the proposed algorithm is crucial. We use the state-of-the-art simplex growing
algorithm (SGA) [18] and fully constrained least squares (FCLS) method to initialize the endmembers
M and abundances A respectively to increase the convergence speed. Comparison of different
initialization methods for endmembers is also presents in Section 4. For the GBM, the nonlinearity
coefficient matrix B is initialized with the Hadamard product operation of A.

3.5.2. Damping

One can observe that there exists an inversion operation of the square matrix, e.g., JT
r (e

(t)
l )Jr(e

(t)
l ),

in the updating rules. Once the square matrix is singular or close to singular, the updating results can
be inaccurate. Therefore, a damping term is added when implementing the updating rules as follows:

e(t+1)
l = e(t)l − r(e(t)l )Jr(e

(t)
l )
(

JT
r (e

(t)
l )Jr(e

(t)
l ) + γI

)−1
(36)

d(t+1)
n = d(t)

n − (JT
r (d

(t)
n )Jr(d

(t)
n ) + γI)−1JT

r (d
(t)
n )r(d(t)

n ), (37)

f (t+1)
n = f (t)n − (JT

r (f
(t)
n )Jr(f

(t)
n ) + γI)−1JT

r (f
(t)
n )r(f (t)n ), (38)

where I is the identity matrix and γ is the damping factor. In Levenberg’s algorithm [29], the damping
factor is adjusted at each iteration based on the reduction speed of the objective function. In this study,
we find it is sufficient to fix γ at 0.01 to obtain a good convergence speed.

3.5.3. ASC Factor

The sum-to-one constraint weight δ influences the unmixing results. A large enough δ guarantees
that the estimated abundances satisfy the physical meaning. However, a large δ will magnify the
final reconstruction error and degrade the unmixing performance. In this study, according to the
pre-experiment, δ is set to 1 to achieve a balance between the importance of the physical meaning and
a low reconstruction error.



Remote Sens. 2019, 11, 148 11 of 23

3.5.4. Stopping Criteria

We use two stopping criteria in the algorithm. One is the relative difference between two
successive iterations and the other is the maximum iteration number T. When the cost function
changes slowly enough as follows: ∥∥∥∥∥ f

′ − f
f

∥∥∥∥∥ ≤ 10−6 (39)

or the maximum iteration number T is reached at 400, the algorithm terminates.

4. Experimental Results and Analysis

The performance of the proposed algorithms were evaluated with experiments using synthetic
and real hyperspectral data. For comparison, some state-of-the-art algorithms were included.
The GBM-based GBM-GDA [30] estimates the abundances and nonlinearity coefficients of the GBM.
The LMM-based standard NMF [31], and the Fan model-based NMF via PG (Fan-NMF) [21] estimates
endmembers and abundances simultaneously. We also added the results of our previous work [22],
in which the GBM-NMF were developed to estimate all the variables in the GBM. All the tested
algorithms are unsupervised except the GBM-GDA. All the algorithms were initialized with the
SGA and FCLS and their combination SGA-FCLS was included in the experiment. The unmixing
performance was evaluated using three metrics, including estimation accuracy of single endmember,
global endmembers and global abundances.

For a single estimated endmember, the estimation accuracy was evaluated by the spectral angle
distance (SAD) which measures the similarity between the true endmember m and its estimated
endmember m̃ as follows:

SAD < m, m̃ >= arccos <
mTm̃

‖mT‖ ‖m̃‖
> (40)

The mean spectral angle distance (MSAD) was used to measure the similarity between the true
endmember matrix M and its estimated endmember matrix M̃, which is defined as

MSAD < M, M̃ >=
1
P

P

∑
p=1

arccos <
mT

p m̃p∥∥∥mT
p

∥∥∥ ∥∥m̃p
∥∥ > (41)

where mp, m̃p denote the pth endmember in M, M̃ respectively.
The root mean square error (RMSE) is also included [32]. It evaluates the errors between all

the entries of the true abundance matrix and the estimated abundance matrix and which is defined
as follows:

RMSE < A, Ã >=

√√√√ 1
NP

N

∑
n=1

P

∑
p=1

(Anp − Ãnp)2 (42)

Generally, small values for the SAD, MSAD, and RMSE indicate a good performance.

4.1. Synthetic Experiments

The synthetic data used in the experiments are derived from several spectra (endmembers) in
the USGS [33] library. The used spectra contain 224 spectral bands covering wavelengths from 0.38
to 2.5 µm with a spectral resolution of 10 nm. Six sample spectra are shown in Figure 1. In general,
the distribution of the endmembers is generated involving these steps: (a) A hyperspectral image
with z2 × z2 pixels (z can vary in the experiments) is divided into z × z sub-domains, where each
sub-domain is initialized with one same material spectrum randomly selected from the given spectra.
(b) A (z + 1) × (z + 1) low-pass filter in the spatial domain is applied to generated mixed pixels
and make the abundance variation smooth. (c) Pixels whose abundances are larger than a preset
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maximum abundance are removed and replaced with pixels made up of all endmembers with
uniformly distributed abundance values. (d) The nonlinear component is calculated in the form
of the GBM model Equation (1) or the Fan model Equation (3). (e) Lastly, white Gaussian noise is also
added, resulting in synthetic data with different signal-to-noise ratios (SNRs). The SNR is defined as:

SNR = 10 log10
E(xTx)
E(eTe)

(43)

where E(·) is the expectation operator.

Figure 1. Spectra from the USGS library: (a) Carnallite NMNH98011 (b) Ammonioalunite
NMNH145596 (c) Biotite HS28.3B (d) Actinolite NMNHR16485 (e) Almandine WS478 (f)
Ammonio-jarosite SCR-NHJ.

Five synthetic experiments are conducted to evaluate the unmixing performance of the proposed
algorithms. The first experiment focuses on the convergence property of the proposed algorithms.
The second experiment evaluates the algorithms’ robustness to different levels of noise, while the third
experiment tests the algorithms on data with different endmember numbers. The fourth experiment
evaluates the algorithms’ robustness to data with various maximum abundances. The last experiment
studies the influence of data size.

4.1.1. Convergence Test

The test is performed on the synthetic data with five endmembers. The SNR and maximum
abundance are set to 30 dB and 0.8, respectively. The proposed GBM-PNLS and the NMF-based
GBM-NMF are compared on the GBM data while the proposed Fan-PNLS and the Fan-NMF are
compared on the Fan data. Figure 2 shows the convergence paths of the algorithms for the GBM
data and the Fan data. One can observe that all the algorithms gradually converge to smaller values
as the iteration number increases. However, the proposed PNLS-based algorithms provide faster
convergence speed than the other algorithms for both the GBM data and the Fan data. A similar
conclusion can be drawn from Figures 3 and 4. The PNLS-based algorithms converge quite quickly for
the GBM data and the Fan data and thus the corresponding MSAD and RMSE values decrease rapidly.
These results show that the proposed PNLS-based algorithms are more efficient than the NMF-based
UNSU algorithms.
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Figure 2. Objective function versus number of iteration: (a) GBM-PNLS and GBM-NMF for GBM data,
(b) Fan-PNLS and Fan-NMF for Fan data.
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Figure 3. MSAD versus number of iteration: (a) GBM-PNLS and GBM-NMF for GBM data,
(b) Fan-PNLS and Fan-NMF for Fan data.
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Figure 4. RMSE versus number of iteration: (a) GBM-PNLS and GBM-NMF for GBM data,
(b) Fan-PNLS and Fan-NMF for Fan data.
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4.1.2. Comparison of Different Initialization Methods

In this experiment, we investigate the influence of different initialization strategies. Three methods
for the endmember initialization, i.e., random initialization, VCA and SGA, are studied. Due to
the randomness of random initialization and VCA, the standard deviations for the results with
20 independent runs are reported. Figures 5 and 6 present the experimental results. One can observe
that the proposed PNLS-based algorithms obtain the best unmixing results for the GBM and Fan data
no matter which initialization method is used. As expected, the VCA initialization generates results
with smaller standard deviations compared with the random initialization. It also can be observed that
SGA leads to MSAD and RMSE results slightly better than the average results of VCA’s. In addition,
the result of SGA for the same data is deterministic. Therefore, SGA is adopted for the initialization of
endmemebers in the following experiments.
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Figure 5. MSAD results for different initialization methods for: (a) GBM data, (b) Fan data.
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Figure 6. MSAD results for different initialization methods for: (a) GBM data, (b) Fan data.

4.1.3. Robustness to Various Noise Levels

This experiment examines the algorithms’ robustness to different synthetic images with different
noise levels. The endmember number is fixed at 5 and the maximum abundance value is set to
0.8. By varying the SNRs from 20 dB to 40 dB and to infinity (noiseless), 6 synthetic images are
generated for the GBM and the Fan model. Figures 7 and 8 show the MSAD and RMSE results for
all the algorithms. As expected, the MSADs and RMSEs of all the algorithms degrade when the SNR
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increases. Over the entire range of the SNRs, the proposed PNLS-based algorithms always obtain the
best unmixing results for the GBM and Fan data with the lowest MSAD and RMSE values. For the
noise free case, Fan-PNLS performs even worse than other cases, which may be caused by the reason
that the proposed algorithm falls into an unsatisfactory local minimum. The two NMF-based nonlinear
unmixing methods appear to perform even worse than the standard NMF when it comes to the MSAD.
The supervised GBM-based unmixing algorithm (GBM-GDA) also shows a poor performance, even
worse than the standard NMF. One possible reason is that the inaccurate endmember estimation
provided by the SGA affected the interactions between the endmembers, thereby magnifying the
nonlinear mixing error [34]. Actually, a prior knowledge of true endmember is the bias of supervised
nonlinear unmixing [16]. From this point of view, the limitations of the supervised nonlinear unmixing
algorithms are obvious and the proposed algorithm can eliminate or at least mitigate this limitation.
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Figure 7. MSAD results for different SNRs for: (a) GBM data, (b) Fan data.
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Figure 8. RMSE results for different SNRs for: (a) GBM data, (b) Fan data.

4.1.4. Results for Different Endmember Numbers

The impact of different endmember numbers on the unmixing performance of the proposed
algorithm is investigated in this experiment. Six synthetic images are generated with endmember
numbers in the range of 3–8 for the GBM and the Fan model. The SNR is fixed to 30 dB and the
maximum abundance is set to 0.8. When generating a new image with more endmember number, the
spectra used in the previous image are preserved. A new spectrum selected from the USGS library is
then added to the endmember set. By this way, we try to eliminate the impact caused by the variation
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of the endmember class rather than the endmember number. The results are shown in Figures 9 and 10,
respectively. The former presents the MSAD results and the latter presents the RMSE results. We can
observe that the proposed PNLS-based algorithms are superior to the other methods in most cases
with low MSAD and RMSE values for the GBM and Fan data. In some cases, e.g., 8 endmembers, the
proposed PNLS achives worse result than the Fan-PNLS and the standard NMF. This may be because
the proposed algorithm falls into an unsatisfactory local minimum. It is interesting that the GBM-GDA
achives poor results slightly better than the initialization method SGA-FCLS’s. This suggests the
limitation of the supervised nonlinear unmixing method again.
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Figure 9. MSAD results for various numbers of endmembers for: (a) GBM data, (b) Fan data.
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Figure 10. RMSE results for various numbers of endmembers for: (a) GBM data, (b) Fan data.

4.1.5. Robustness to Different Mixing Degrees

We explore the impact of the mixing degree of the synthetic data in this experiment. The mixing
degree can be directly controlled by the maximum abundance value of the data, i.e., larger maximum
abundance values correspond to lower mixing degree and vice versa. In this test, the endmember
number is fixed to 5 and the SNR is set to 30 dB. The maximum abundance varies from 0.6 to 1 for the
evaluation. The experiment results in Figures 11 and 12 show that with the increasing of maximum
abundance, the MSAD and RMSE values of all the algorithms decrease generally. This phenomenon
mainly results from the fact that the initialization method SGA assumes the presence of pure pixels.
More specifically, with increasing maximum abundance, the mixing degree of the data decreases,
which leads to the performance improvement of the SGA. The proposed PNLS-based algorithm achives
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the smallest MSAD or RMSE values in all cases. Moreover, one can observe that the performance of the
PNLS is more stable and consistent. The RMSE and MSAD values are comparatively small, even for
the smallest maximum abundance value. In contrast, the performance of the GBM-NMF and Fan-NMF
is not very satisfactory and decreases obviously when the mixed level increases. The results indicate
that the proposed PNLS-based algorithms can handle data with different mixing degrees well, even
for the highly mixed data.
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Figure 11. MSAD results for different mixing degrees for: (a) GBM data, (b) Fan data.
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Figure 12. RMSE results for different mixing degrees for: (a) GBM data, (b) Fan data.

4.1.6. Robustness to Different Data Sizes

In this test, five synthetic images with different sizes are generated for the GBM and the Fan
model. The data size is set to 36 × 36, 64 × 64, 100 × 100, 144 × 144, and 196 × 196, respectively.
The endmember number is fixed to 5 and the SNR is set to 30 dB. The results in Figures 13 and 14 show
that the impact of the data size for all the algorithms. The proposed PNLS-based algorithms always
obtain the best estimation accuracy for the GBM data and the Fan data and the performance is quite
stable. Meanwhile, the proposed algorithms show more obvious advantage when applied to larger
scale of images. Additionly, the performance of the GBM-NMF is unexpectedly worse than that of the
standard NMF.



Remote Sens. 2019, 11, 148 18 of 23

36×36 64×64 100×100 144×144 196×196

Data size

0.02

0.04

0.06

0.08

0.1

0.12

M
S

A
D

SGA-FCLS
GBM-NMF
Standard NMF
GBM-PNLS

(a)

36×36 64×64 100×100 144×144 196×196

Data size

0

0.02

0.04

0.06

0.08

0.1

M
S

A
D

SGA-FCLS
Fan-NMF
Standard NMF
Fan-PNLS

(b)

Figure 13. MSAD results for different data sizes for: (a) GBM data, (b) Fan data.
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Figure 14. RMSE results for different data sizes for: (a) GBM data, (b) Fan data.

4.2. Real Data Experiments

Jasper Ridge is a dataset widely used in hyperspectral processing, which consists of 512 × 614
pixels. The data includes 224 spectral bands covering the wavelength ranging from 380 nm to 2500 nm
with about 10 nm spectral resolution. In this study, we only considered a cropped 100 × 100 sub-scene
for simplicity consulting the experiment setup in [35]. Figure 15 shows the 100th band of the scene.
After removing the water vapor and atmospheric effects bands, 198 bands remain. According to [35],
the endmember number of this sub-scence is set to four, including the substances Road, Soil, Water,
and Tree.

Table 3 quantitatively presents the SAD results for the algorithms involving the endmember
estimation for various substances. Compared to the other algorithms, GBM-PNLS and Fan-PNLS
obtain better results since all four endmembers are well extracted and the smallest MSAD results are
achieved. Figures 16 and 17 show the obtained endmember spectra for the GBM-PNLS and Fan-PNLS
algorithms, as well as the reference spectra. The extracted endmembers and the reference endmembers
are nearly identical. Since the ground truth of abundance map is not available, reference data have
been often used as the benchmark to evaluate the accuracy of algorithms. It’s worth noting that the
accuracy of reference data is unknown actually [36]. In this paper, we use the reference abundance
maps obtained from [37] to further evaluate the algorithms’ performance. The reference data have
been commonly used in [35,38]. Table 4 presents the RMSE performance of different algorithms.
We can also find that the proposed metohds’ results are generally better than those yielded by the
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other algorithms. It is interesting that the two PNLS-based algorithms perform quite similarly. This
reflects the similar modeling capability of the GBM and Fan model. Figure 18 shows the corresponding
abundance maps achieved by different algorithms, as well as the reference maps. Through visual
comparison, we can find that the proposed proposed GBM-PNLS and Fan-PNLS achieve abundance
maps that are more consistent with the reference maps compared with other methods. To further
investigate the nonlinear behavior of proposed method, the maps of nonlinearity coefficients obtained
by the proposed GBM-PNLS are provided in Figure 19. As shown in the figure, the bilinear mixing
effect mainly exists in the transition regions of different substances, which accords with the physical
truth well. Figure 19b shows that a large bilinear spectral mixing effect exists in the mixing regions
of tree and soil since there exist 3-D multilayered structures and multiple scattering is a common
phenomenon in these regions. It can also be observed that the bilinear mixing effect appears in the
boundary of water and soil, as well as the boundary of road and soil, which is also consistent with
physical model of GBM-based unmixing. The above results demonstrate that the proposed methods
have potential in exploring underlying nonlinear effects and handling BMM-based spectral unmixing.

Figure 15. The 100th band of the Jasper Ridge data.
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Figure 16. Comparison of the USGS library spectra (solid green line) with the endmembers extracted
by GBM-PNLS (red dotted line) on the Jasper Ridge data: (a) Tree, (b) Water, (c) Soil, (d) Road.
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Figure 17. Comparison of the USGS library spectra (solid green line) with the endmembers extracted
by Fan-PNLS (red dotted line) on the Jasper Ridge data: (a) Tree, (b) Water, (c) Soil, (d) Road.



Remote Sens. 2019, 11, 148 20 of 23

R
ef

er
en

ce

Tree Water Soil Road

SG
A

-F
C

LS
St

an
da

rd
N

M
F

G
BM

-G
D

A
G

BM
-N

M
F

Fa
n-

N
M

F
G

BM
-P

N
LS

Fa
n-

FC
LS

Figure 18. Abundance maps of the Jasper Ridge data by the reference data, SGA-FCLS, Standard NMF,
GBM-GDA, GBM-NMF, Fan-NMF, GBM-PNLS and Fan-PNLS, respectively, from top to bottom. Each
column shows the corresponding abundance maps of a same endmember.



Remote Sens. 2019, 11, 148 21 of 23

Table 3. SADs (×10−2) of all the algorithms for the Jasper Ridge data.

Substances SGA-FCLS Standard NMF GBM-NMF Fan-NMF GBM-PNLS Fan-PNLS

Tree 15.59 6.08 16.02 15.88 6.17 5.64
Water 25.40 12.54 26.66 22.73 6.74 7.13
Dirt 13.36 11.51 16.50 49.31 11.84 12.67
Road 10.69 8.71 26.64 23.58 3.31 3.38

Average 16.26 9.71 21.45 27.87 7.02 7.21

Table 4. RMSEs (×10−2) of all the algorithms for the Jasper Ridge data.

SGA-FCLS Standard NMF GBM-GDA GBM-NMF Fan-NMF GBM-PNLS Fan-PNLS

RMSE 38.38 15.51 37.54 21.80 24.70 14.78 14.65
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Figure 19. Nonlinearity coefficients maps of B obtained by the proposed GBM-PNLS for the Jasper
Ridge data: (a) Tree-Water, (b) Tree-Soil, (c) Tree-Road, (d) Water-Soil, (e) Water-Road, (f) Soil-Road.

5. Conclusions

In this study, two PNLS-based UNSU algorithms are proposed for the GBM and Fan model.
They are able to obtain the endmembers, abundances and nonlinearity coefficients simultaneously
in a complete iteration. To better achieve the unsupervised unmixing task, the proposed algorithms
integrate a Sigmoid parameterization so that the nonnegative constraint and nonlinearity coefficients
boundary constraint can be relaxed. The optimization problem of the UNSU is then transformed into
two or three alternate PNLS problems which can be solved by the Gauss–Newton method. Compared
to existing NMF-based UNSU methods, the PNLS-based UNSU algorithms converge faster and the
performance is improved to a certain extent. We evaluate the performance of the proposed algorithms
on both synthetic and real data. The experimental results show that the proposed algorithms possess
better unmixing performance than the other reference algorithms.

There are still some issues to resolve. For example, the computational complexity is still high,
especially when the dataset is large. Considering the proposed algorithms are actually highly parallel,
hopefully, the computational complexity can be reduced using high-performance computing such as
graphic processing unit (GPU) acceleration, which will be explored in a further study.
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