Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = unsaturated aliphatic polyesters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1326 KiB  
Review
Soil Organic Carbon Sequestration Mechanisms and the Chemical Nature of Soil Organic Matter—A Review
by Gonzalo Almendros and José A. González-Pérez
Sustainability 2025, 17(15), 6689; https://doi.org/10.3390/su17156689 - 22 Jul 2025
Viewed by 329
Abstract
This article presents a review of several non-exclusive pathways for the sequestration of soil organic carbon, which can be classified into two large classical groups: the modification of plant and microbial macromolecules and the abiotic and microbial neoformation of humic substances. Classical studies [...] Read more.
This article presents a review of several non-exclusive pathways for the sequestration of soil organic carbon, which can be classified into two large classical groups: the modification of plant and microbial macromolecules and the abiotic and microbial neoformation of humic substances. Classical studies have established a causal relationship between aromatic structures and the stability of soil humus (traditional hypotheses regarding lignin and aromatic microbial metabolites as primary precursors for soil organic matter). However, further evidence has emerged that underscores the significance of humification mechanisms based solely on aliphatics. The precursors may be carbohydrates, which may be transformed by the effects of fire or catalytic dehydration reactions in soil. Furthermore, humic-type structures may be formed through the condensation of unsaturated fatty acids or the alteration of aliphatic biomacromolecules, such as cutins, suberins, and non-hydrolysable plant polyesters. In addition to the intrinsic value of understanding the potential for carbon sequestration in diverse soil types, biogeochemical models of the carbon cycle necessitate the assessment of the total quantity, nature, provenance, and resilience of the sequestered organic matter. This emphasises the necessity of applying specific techniques to gain insights into their molecular structures. The application of appropriate analytical techniques to soil organic matter, including sequential chemolysis or thermal degradation combined with isotopic analysis and high-resolution mass spectrometry, derivative spectroscopy (visible and infrared), or 13C magnetic resonance after selective degradation, enables the simultaneous assessment of the concurrent biophysicochemical stabilisation mechanisms of C in soils. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

14 pages, 2744 KiB  
Article
Synthesis and Properties of Photocurable Polymers Derived from the Polyesters of Glycerol and Aliphatic Dicarboxylic Acids
by Rui Hu, Weipeng Yao, Yingjuan Fu, Fuyuan Lu and Xiaoqian Chen
Polymers 2024, 16(9), 1278; https://doi.org/10.3390/polym16091278 - 2 May 2024
Viewed by 1966
Abstract
The rapid development of 3D printing technology and the emerging applications of shape memory elastomer have greatly stimulated the research of photocurable polymers. In this work, glycerol (Gly) was polycondensed with sebacic, dodecanedioic, or tetradecanedioic acids to provide precursor polyesters with hydroxyl or [...] Read more.
The rapid development of 3D printing technology and the emerging applications of shape memory elastomer have greatly stimulated the research of photocurable polymers. In this work, glycerol (Gly) was polycondensed with sebacic, dodecanedioic, or tetradecanedioic acids to provide precursor polyesters with hydroxyl or carboxyl terminal groups, which were further chemically functionalized by acryloyl chloride to introduce sufficient, photocurable, and unsaturated double bonds. The chemical structures of the acrylated polyesters were characterized by FT IR and NMR spectroscopies. The photoinitiated crosslinking behavior of the acrylated polyesters under ultraviolet irradiation without the addition of any photoinitiator was investigated. The results showed that the precursor polyesters that had a greater number of terminated hydroxyls and a less branched structure obtained a relatively high acetylation degree. A longer chain of aliphatic dicarboxylic acids (ADCAs) and higher ADCA proportion lead to a relatively lower photopolymerization rate of acrylated polyesters. However, the photocured elastomers with a higher ADCA proportion or longer-chain ADCAs resulted in better mechanical properties and a lower degradation rate. The glass transition temperature (Tg) of the elastomer increased with the alkyl chain length of the ADCAs, and a higher Gly proportion resulted in a lower Tg of the elastomer due to its higher crosslinking density. Thermal gravimetric analysis (TGA) showed that the chain length of the ADCAs and the molar ratio of Gly to ADCAs had less of an effect on the thermal stability of the elastomer. As the physicochemical properties can be adjusted by choosing the alkyl chain length of the ADCAs, as well as changing the ratio of Gly:ADCA, the photocurable polyesters are expected to be applied in multiple fields. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

22 pages, 5295 KiB  
Article
Poly(glycerol itaconate) Crosslinking via the aza-Michael Reaction—A Preliminary Research
by Magdalena Miętus, Krzysztof Kolankowski, Tomasz Gołofit, Paweł Ruśkowski, Marcin Mąkosa-Szczygieł and Agnieszka Gadomska-Gajadhur
Materials 2023, 16(23), 7319; https://doi.org/10.3390/ma16237319 - 24 Nov 2023
Cited by 1 | Viewed by 2620
Abstract
In unsaturated glycerol polyesters, the C=C bond is present. It makes it possible to carry out post-polymerisation modification (PPM) reactions, such as aza-Michael addition. This reaction can conduct crosslinking under in-situ conditions for tissue engineering regeneration. Until now, no description of such use [...] Read more.
In unsaturated glycerol polyesters, the C=C bond is present. It makes it possible to carry out post-polymerisation modification (PPM) reactions, such as aza-Michael addition. This reaction can conduct crosslinking under in-situ conditions for tissue engineering regeneration. Until now, no description of such use of aza-Michael addition has been described. This work aims to crosslink the synthesised poly(glycerol itaconate) (PGItc; P3), polyester from itaconic acid (AcItc), and glycerol (G). The PGItc syntheses were performed in three ways: without a catalyst, in the presence of p-toluenesulfonic acid (PTSA), and in the presence of zinc acetate (Zn(OAc)2). PGItc obtained with Zn(OAc)2 (150 °C, 4 h, G:AcItc = 2:1) was used to carry out the aza-Michael additions. Crosslinking reactions were conducted with each of the five aliphatic diamines: 1,2-ethylenediamine (1,2-EDA; A1), 1,4-butanediamine (1,4-BDA; A2), 1,6-hexanediamine (1,6-HDA; A3), 1,8-octanediamine (1,8-ODA; A4), and 1,10-decanediamine (1,10-DDA; A5). Four ratios of the proton amine group: C=C bond were investigated. The maximum temperature and crosslinking time were measured to select the best amine for the addition product’s application. FTIR, 1H NMR, DSC, and TG analysis of the crosslinked products were also investigated. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

16 pages, 6581 KiB  
Article
Synthesis of Bio-Based Poly(Butylene Adipate-co-Butylene Itaconate) Copolyesters with Pentaerythritol: A Thermal, Mechanical, Rheological, and Molecular Dynamics Simulation Study
by Chin-Wen Chen, Hsu-I Mao, Zhi-Yu Yang, Kuan-Wei Huang, Hao-Chen Yan and Syang-Peng Rwei
Polymers 2020, 12(9), 2006; https://doi.org/10.3390/polym12092006 - 3 Sep 2020
Cited by 6 | Viewed by 3831
Abstract
Bio-based unsaturated poly(butylene adipate-co-butylene itaconate) (PBABI) aliphatic copolyesters were synthesized with pentaerythritol (PE) as a modifier, observing the melting point, crystallization, and glass transition temperatures were decreased from 59.5 to 19.5 °C and 28.2 to −9.1 °C as an increase of itaconate concentration, [...] Read more.
Bio-based unsaturated poly(butylene adipate-co-butylene itaconate) (PBABI) aliphatic copolyesters were synthesized with pentaerythritol (PE) as a modifier, observing the melting point, crystallization, and glass transition temperatures were decreased from 59.5 to 19.5 °C and 28.2 to −9.1 °C as an increase of itaconate concentration, and Tg ranged from −54.6 to −48.1 °C. PBABI copolyesters tend to the amorphous state by the existence of the BI unit above 40 mol%. The yield strength, elongation, and Young’s modulus at different BA/BI ratios were valued in a range of 13.2–13.8 MPa, 575.2–838.5%, and 65.1–83.8 MPa, respectively. Shear-thinning behavior was obtained in all BA/BI ratios of PBABI copolyesters around an angular frequency range of 20–30 rad s−1. Furthermore, the thermal and mechanical properties of PBABI copolyesters can be well regulated via controlling the itaconic acid contents and adding the modifier. PBABI copolyesters can be coated on a 3D air mesh polyester fabric to reinforce the mechanical property for replacing traditional plaster applications. Full article
(This article belongs to the Special Issue Applied Bio-Based Materials)
Show Figures

Graphical abstract

10 pages, 5700 KiB  
Article
Crosslinking of Electrospun Fibres from Unsaturated Polyesters by Bis-Triazolinediones (TAD)
by Viviane Chiaradia, Saltuk B. Hanay, Scott D. Kimmins, Débora de Oliveira, Pedro H. H. Araújo, Claudia Sayer and Andreas Heise
Polymers 2019, 11(11), 1808; https://doi.org/10.3390/polym11111808 - 4 Nov 2019
Cited by 10 | Viewed by 4568
Abstract
Crosslinking of an unsaturated aliphatic polyester poly(globalide) (PGl) by bistriazolinediones (bisTADs) is reported. First, a monofunctional model compound, phenyl–TAD (PTAD), was tested for PGl functionalisation. 1H-NMR showed that PTAD–ene reaction was highly efficient with conversions up to 97%. Subsequently, hexamethylene bisTAD (HM–bisTAD) [...] Read more.
Crosslinking of an unsaturated aliphatic polyester poly(globalide) (PGl) by bistriazolinediones (bisTADs) is reported. First, a monofunctional model compound, phenyl–TAD (PTAD), was tested for PGl functionalisation. 1H-NMR showed that PTAD–ene reaction was highly efficient with conversions up to 97%. Subsequently, hexamethylene bisTAD (HM–bisTAD) and methylene diphenyl bisTAD (MDP–bisTAD) were used to crosslink electrospun PGl fibres via one- and two-step approaches. In the one-step approach, PGl fibres were collected in a bisTAD solution for in situ crosslinking, which resulted in incomplete crosslinking. In the two-step approach, a light crosslinking of fibres was first achieved in a PGl non-solvent. Subsequent incubation in a fibre swelling bisTAD solution resulted in fully amorphous crosslinked fibres. SEM analysis revealed that the fibres’ morphology was uncompromised by the crosslinking. A significant increase of tensile strength from 0.3 ± 0.08 MPa to 2.7 ± 0.8 MPa and 3.9 ± 0.5 MPa was observed when PGI fibres were crosslinked by HM–bisTAD and MDP–bisTAD, respectively. The reported methodology allows the design of electrospun fibres from biocompatible polyesters and the modulation of their mechanical and thermal properties. It also opens future opportunities for drug delivery applications by selected drug loading. Full article
Show Figures

Graphical abstract

11 pages, 3613 KiB  
Article
Catalyst Influence on Undesired Side Reactions in the Polycondensation of Fully Bio-Based Polyester Itaconates
by Ina Schoon, Marcel Kluge, Steven Eschig and Tobias Robert
Polymers 2017, 9(12), 693; https://doi.org/10.3390/polym9120693 - 9 Dec 2017
Cited by 27 | Viewed by 9241
Abstract
Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation [...] Read more.
Bio-based unsaturated polyester resins derived from itaconic acid can be an alternative to established resins of this type in the field of radical-curing resins. However, one of the challenges of these polyester itaconates is the somewhat more elaborate synthetic process, especially under polycondensation conditions used on an industrial scale. The α,β-unsaturated double bond of the itaconic acid is prone to side reactions that can lead to the gelation of the polyester resin under standard conditions. This is especially true when bio-based diols such as 1,3-propanediol or 1,4-butanediol are used to obtain resins that are 100% derived from renewable resources. It was observed in earlier studies that high amounts of these aliphatic diols in the polyester lead to low conversion and gelation of the resins. In this work, a catalytic study using different diols was performed in order to elucidate the reasons for this behavior. It was shown that the choice of catalyst has a crucial influence on the side reactions occurring during the polycondensation reactions. In addition, the side reactions taking place were identified and suppressed. These results will allow for the synthesis of polyester itaconates on a larger scale, setting the stage for their industrial application. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polyesters)
Show Figures

Graphical abstract

20 pages, 1232 KiB  
Article
Enzyme-Catalyzed Synthesis of Unsaturated Aliphatic Polyesters Based on Green Monomers from Renewable Resources
by Yi Jiang, Albert J.J. Woortman, Gert O.R. Alberda Van Ekenstein and Katja Loos
Biomolecules 2013, 3(3), 461-480; https://doi.org/10.3390/biom3030461 - 12 Aug 2013
Cited by 93 | Viewed by 16610
Abstract
Bio-based commercially available succinate, itaconate and 1,4-butanediol are enzymatically co-polymerized in solution via a two-stage method, using Candida antarctica Lipase B (CALB, in immobilized form as Novozyme® 435) as the biocatalyst. The chemical structures of the obtained products, poly(butylene succinate) (PBS) and poly(butylene [...] Read more.
Bio-based commercially available succinate, itaconate and 1,4-butanediol are enzymatically co-polymerized in solution via a two-stage method, using Candida antarctica Lipase B (CALB, in immobilized form as Novozyme® 435) as the biocatalyst. The chemical structures of the obtained products, poly(butylene succinate) (PBS) and poly(butylene succinate-co-itaconate) (PBSI), are confirmed by 1H- and 13C-NMR. The effects of the reaction conditions on the CALB-catalyzed synthesis of PBSI are fully investigated, and the optimal polymerization conditions are obtained. With the established method, PBSI with tunable compositions and satisfying reaction yields is produced. The 1H-NMR results confirm that carbon-carbon double bonds are well preserved in PBSI. The differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results indicate that the amount of itaconate in the co-polyesters has no obvious effects on the glass-transition temperature and the thermal stability of PBS and PBSI, but has significant effects on the melting temperature. Full article
(This article belongs to the Special Issue Enzymes and Their Biotechnological Applications)
Show Figures

Graphical abstract

Back to TopTop