Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (660)

Search Parameters:
Keywords = unmanned aerial vehicles navigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2933 KiB  
Article
Comparative Analysis of Object Detection Models for Edge Devices in UAV Swarms
by Dimitrios Meimetis, Ioannis Daramouskas, Niki Patrinopoulou, Vaios Lappas and Vassilis Kostopoulos
Machines 2025, 13(8), 684; https://doi.org/10.3390/machines13080684 - 4 Aug 2025
Abstract
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within [...] Read more.
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within UAV swarms, where computing resources are constrained by the onboard low-cost computers. Initially, a thorough review of the existing literature was conducted to identify state-of-the-art object detection models suitable for deployment on edge devices. These models are evaluated based on their speed, accuracy, and efficiency, with a focus on real-time inference capabilities crucial for Unmanned Aerial Vehicle applications. Following the literature review, selected models undergo empirical validation through custom training using the Vision Meets Drone dataset, a widely recognized dataset for Unmanned Aerial Vehicle-based object detection tasks. Performance metrics such as mean average precision, inference speed, and resource utilization were measured and compared across different models. Lastly, the study extended its analysis beyond traditional object detection to explore the efficacy of instance segmentation and proposed an optimization to an object tracking technique within the context of unmanned Aerial Vehicles. Instance segmentation offers finer-grained object delineation, enabling more precise target or landmark identification and tracking, albeit at higher resource usage and higher inference time. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

32 pages, 6588 KiB  
Article
Path Planning for Unmanned Aerial Vehicle: A-Star-Guided Potential Field Method
by Jaewan Choi and Younghoon Choi
Drones 2025, 9(8), 545; https://doi.org/10.3390/drones9080545 - 1 Aug 2025
Viewed by 340
Abstract
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due [...] Read more.
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due to its ability to generate optimal routes; however, its high computational cost makes it unsuitable for real-time applications, particularly in unknown or dynamic environments. For local path planning, the Artificial Potential Field (APF) algorithm enables real-time navigation by attracting the UAV toward the target while repelling it from obstacles. Despite its efficiency, APF suffers from local minima and limited performance in dynamic settings. To address these challenges, this paper proposes the A-star-Guided Potential Field (AGPF) algorithm, which integrates the strengths of A-star and APF to achieve robust performance in both global and local path planning. The AGPF algorithm was validated through simulations conducted in the Robot Operating System (ROS) environment. Simulation results demonstrate that AGPF produces smoother and more optimal paths than A-star, while avoiding the local minima issues inherent in APF. Furthermore, AGPF effectively handles moving and previously unknown obstacles by generating real-time avoidance trajectories, demonstrating strong adaptability in dynamic and uncertain environments. Full article
Show Figures

Figure 1

27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 - 1 Aug 2025
Viewed by 239
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

22 pages, 8105 KiB  
Article
Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing
by Jie Han, Jinlei Zhu, Xiaoming Cao, Lei Xi, Zhao Qi, Yongxin Li, Xingyu Wang and Jiaxiu Zou
Remote Sens. 2025, 17(15), 2665; https://doi.org/10.3390/rs17152665 - 1 Aug 2025
Viewed by 200
Abstract
The unique characteristics of desert vegetation, such as different leaf morphology, discrete canopy structures, sparse and uneven distribution, etc., pose significant challenges for remote sensing-based estimation of fractional vegetation cover (FVC). The Unmanned Aerial Vehicle (UAV) system can accurately distinguish vegetation patches, extract [...] Read more.
The unique characteristics of desert vegetation, such as different leaf morphology, discrete canopy structures, sparse and uneven distribution, etc., pose significant challenges for remote sensing-based estimation of fractional vegetation cover (FVC). The Unmanned Aerial Vehicle (UAV) system can accurately distinguish vegetation patches, extract weak vegetation signals, and navigate through complex terrain, making it suitable for applications in small-scale FVC extraction. In this study, we selected the floodplain fan with Caragana korshinskii Kom as the constructive species in Hatengtaohai National Nature Reserve, Bayannur, Inner Mongolia, China, as our study area. We investigated the remote sensing extraction method of desert sparse vegetation cover by placing samples across three gradients: the top, middle, and edge of the fan. We then acquired UAV multispectral images; evaluated the applicability of various vegetation indices (VIs) using methods such as supervised classification, linear regression models, and machine learning; and explored the feasibility and stability of multiple machine learning models in this region. Our results indicate the following: (1) We discovered that the multispectral vegetation index is superior to the visible vegetation index and more suitable for FVC extraction in vegetation-sparse desert regions. (2) By comparing five machine learning regression models, it was found that the XGBoost and KNN models exhibited relatively lower estimation performance in the study area. The spatial distribution of plots appeared to influence the stability of the SVM model when estimating fractional vegetation cover (FVC). In contrast, the RF and LASSO models demonstrated robust stability across both training and testing datasets. Notably, the RF model achieved the best inversion performance (R2 = 0.876, RMSE = 0.020, MAE = 0.016), indicating that RF is one of the most suitable models for retrieving FVC in naturally sparse desert vegetation. This study provides a valuable contribution to the limited existing research on remote sensing-based estimation of FVC and characterization of spatial heterogeneity in small-scale desert sparse vegetation ecosystems dominated by a single species. Full article
Show Figures

Graphical abstract

17 pages, 3666 KiB  
Article
Integrating UAV and USV for Elaboration of High-Resolution Coastal Elevation Models
by Isabel López, Luis Bañón and José I. Pagán
J. Mar. Sci. Eng. 2025, 13(8), 1464; https://doi.org/10.3390/jmse13081464 - 30 Jul 2025
Viewed by 223
Abstract
Coastal erosion, exacerbated by climate change, poses a critical global threat to both the environment and human livelihoods. Acquiring accurate, high-resolution topo-bathymetric data is vital for understanding these dynamic environments, without underestimating the hydrodynamic and meteo-oceanographic conditions. However, traditional methods often present significant [...] Read more.
Coastal erosion, exacerbated by climate change, poses a critical global threat to both the environment and human livelihoods. Acquiring accurate, high-resolution topo-bathymetric data is vital for understanding these dynamic environments, without underestimating the hydrodynamic and meteo-oceanographic conditions. However, traditional methods often present significant challenges in achieving comprehensive, high-resolution topo-bathymetric coverage efficiently in shallow coastal zones, leading to a notable ”white ribbon” data gap. This study introduces a novel, integrated methodology combining unmanned aerial vehicles (UAVs) for terrestrial surveys, unmanned surface vehicles (USVs) for bathymetry, and the Global Navigation Satellite System (GNSS) for ground control and intertidal gap-filling. Through this technologically rigorous approach, a seamless Bathymetry-Topography Digital Surface Model for the Guardamar del Segura dune system (Spain) was successfully elaborated using a DJI Mini 2 UAV, Leica Zeno FLX100 GNSS, and Apache 3 USV. The method demonstrated a substantial time reduction of at least 50–75% for comparable high-resolution coverage, efficiently completing the 86.4 ha field campaign in approximately 4 h. This integrated approach offers an accessible and highly efficient solution for generating detailed coastal elevation models crucial for coastal management and research. Full article
(This article belongs to the Special Issue Monitoring Coastal Systems and Improving Climate Change Resilience)
Show Figures

Figure 1

14 pages, 2797 KiB  
Article
Adaptive Integrated Navigation Algorithm Based on Interactive Filter
by Bin Zhao, Chunlei Gao, Hui Xia, Jinxia Han and Ying Zhu
Sensors 2025, 25(15), 4562; https://doi.org/10.3390/s25154562 - 23 Jul 2025
Viewed by 225
Abstract
To address the diverse requirements of accuracy and robustness in integrated navigation for unmanned aerial vehicles, an interactive robust filter algorithm that integrates the interactive multiple model concept and leverages the complementary applicability of the strong tracking filter and the smooth variable structure [...] Read more.
To address the diverse requirements of accuracy and robustness in integrated navigation for unmanned aerial vehicles, an interactive robust filter algorithm that integrates the interactive multiple model concept and leverages the complementary applicability of the strong tracking filter and the smooth variable structure filter is proposed. The algorithm operates as follows: the strong tracking filter, along with the smooth variable structure filter, operates side by side with distinct models. During the filter process, the likelihood function is utilized to update the filter probabilities and determine the weights for each one of the filters. Input interaction, coupled with output fusion, is then carried out. The results of the experiments validate that the presented interactive filter algorithm significantly reduces estimation errors. When confronted with complex, dynamic noise environments and system uncertainties, it retains high-precision state estimation while demonstrating markedly improved robustness. The proposed interactive robust filter algorithm is compared against the strong tracking filter, smooth variable structure filter, and strong tracking smooth filter. Taking the strong tracking smooth filter, which has the highest accuracy among the three, as the reference baseline, the presented interactive robust filter algorithm achieves over 16% improvement in velocity accuracy and over 40% improvement in position accuracy. Full article
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
Optimization of RIS-Assisted 6G NTN Architectures for High-Mobility UAV Communication Scenarios
by Muhammad Shoaib Ayub, Muhammad Saadi and Insoo Koo
Drones 2025, 9(7), 486; https://doi.org/10.3390/drones9070486 - 10 Jul 2025
Viewed by 495
Abstract
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, [...] Read more.
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, and rapid network reconfiguration, making them ideal candidates for RIS-based signal optimization. However, the high mobility of UAVs and their three-dimensional trajectory dynamics introduce unique challenges in maintaining robust, low-latency links and seamless handovers. This paper presents a comprehensive performance analysis of RIS-assisted UAV-based NTNs, focusing on optimizing RIS phase shifts to maximize the signal-to-interference-plus-noise ratio (SINR), throughput, energy efficiency, and reliability under UAV mobility constraints. A joint optimization framework is proposed that accounts for UAV path loss, aerial shadowing, interference, and user mobility patterns, tailored specifically for aerial communication networks. Extensive simulations are conducted across various UAV operation scenarios, including urban air corridors, rural surveillance routes, drone swarms, emergency response, and aerial delivery systems. The results reveal that RIS deployment significantly enhances the SINR and throughput while navigating energy and latency trade-offs in real time. These findings offer vital insights for deploying RIS-enhanced aerial networks in 6G, supporting mission-critical drone applications and next-generation autonomous systems. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

20 pages, 4572 KiB  
Article
Nonlinear Output Feedback Control for Parrot Mambo UAV: Robust Complex Structure Design and Experimental Validation
by Asmaa Taame, Ibtissam Lachkar, Abdelmajid Abouloifa, Ismail Mouchrif and Abdelali El Aroudi
Appl. Syst. Innov. 2025, 8(4), 95; https://doi.org/10.3390/asi8040095 - 7 Jul 2025
Viewed by 455
Abstract
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an [...] Read more.
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an under-actuated and highly nonlinear model with coupling between several state variables. The main objective of this work is to achieve a trajectory by tracking desired altitude and attitude. The problem was tackled using a robust control approach with a multi-loop nonlinear controller combined with extended Kalman filtering (EKF). Specifically, the flight control system consists of two regulation loops. The first one is an outer loop based on the backstepping approach and allows for control of the elevation as well as the yaw of the quadcopter, while the second one is the inner loop, which allows the maintenance of the desired attitude by adjusting the roll and pitch, whose references are generated by the outer loop through a standard PID, to limit the 2D trajectory to a desired set path. The investigation integrates EKF technique for sensor signal processing to increase measurements accuracy, hence improving robustness of the flight. The proposed control system was formally developed and experimentally validated through indoor tests using the well-known Parrot Mambo unmanned aerial vehicle (UAV). The obtained results show that the proposed flight control system is efficient and robust, making it suitable for advanced UAV navigation in dynamic scenarios with disturbances. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

24 pages, 9035 KiB  
Article
MPN-RRT*: A New Method in 3D Urban Path Planning for UAV Integrating Deep Learning and Sampling Optimization
by Yue Zheng, Ang Li, Zihan Chen, Yapeng Wang, Xu Yang and Sio-Kei Im
Sensors 2025, 25(13), 4142; https://doi.org/10.3390/s25134142 - 2 Jul 2025
Viewed by 540
Abstract
The increasing deployment of unmanned aerial vehicles (UAVs) in complex urban environments necessitates efficient and reliable path planning algorithms. While traditional sampling-based methods such as Rapidly exploring Random Tree Star (RRT*) are widely adopted, their computational inefficiency and suboptimal path quality in intricate [...] Read more.
The increasing deployment of unmanned aerial vehicles (UAVs) in complex urban environments necessitates efficient and reliable path planning algorithms. While traditional sampling-based methods such as Rapidly exploring Random Tree Star (RRT*) are widely adopted, their computational inefficiency and suboptimal path quality in intricate 3D spaces remain significant challenges. This study proposes a novel framework (MPN-RRT*) that integrates Motion Planning Networks (MPNet) with RRT* to enhance UAV navigation in 3D urban maps. A key innovation lies in reducing computational complexity through dimensionality reduction, where 3D urban terrains are sliced into 2D maze representations while preserving critical obstacle information. Transfer learning is applied to adapt a pre-trained MPNet model to the simplified maps, enabling intelligent sampling that guides RRT* toward promising regions and reduces redundant exploration. Extensive MATLAB simulations validate the framework’s efficacy across two distinct 3D environments: a sparse 200 × 200 × 200 map and a dense 800 × 800 × 200 map with no-fly zones. Compared to conventional RRT*, the MPN-RRT* achieves a 47.8% reduction in planning time (from 89.58 s to 46.77 s) and a 19.8% shorter path length (from 476.23 m to 381.76 m) in simpler environments, alongside smoother trajectories quantified by a 91.2% reduction in average acceleration (from 14.67 m/s² to 1.29 m/s²). In complex scenarios, the hybrid method maintains superior performance, reducing flight time by 14.2% and path length by 13.9% compared to RRT*. These results demonstrate that the integration of deep learning with sampling-based planning significantly enhances computational efficiency, path optimality, and smoothness, addressing critical limitations in UAV navigation for urban applications. The study underscores the potential of data-driven approaches to augment classical algorithms, providing a scalable solution for real-time autonomous systems operating in high-dimensional dynamic environments. Full article
(This article belongs to the Special Issue Recent Advances in UAV Communications and Networks)
Show Figures

Figure 1

33 pages, 3235 KiB  
Article
Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions
by Serhii Semenov, Magdalena Krupska-Klimczak, Olga Wasiuta, Beata Krzaczek, Patryk Mieczkowski, Leszek Głowacki, Jian Yu, Jiang He and Olena Chernykh
Sustainability 2025, 17(13), 6030; https://doi.org/10.3390/su17136030 - 1 Jul 2025
Viewed by 396
Abstract
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based [...] Read more.
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based on the integration of geometric trajectory modeling, neural network-based sensor data filtering, and reinforcement learning. The geometric model, constructed using path coordinates, allows the trajectory tracking problem to be formalized as an affine control system, which ensures motion stability even in cases of partial data loss. To process noisy or fragmented GPS and IMU signals, an LSTM-based recurrent neural network filter is implemented. This significantly reduces positioning errors and maintains trajectory stability under environmental disturbances. In addition, the navigation system includes a reinforcement learning module that performs real-time obstacle prediction, path correction, and speed adaptation. The method has been tested in a simulated environment with limited sensor availability, variable velocity profiles, and dynamic obstacles. The results confirm the functionality and effectiveness of the proposed navigation system under sensor-deficient conditions. The approach is applicable to environmental monitoring, autonomous delivery, precision agriculture, and emergency response missions within smart regions. Its implementation contributes to achieving the Sustainable Development Goals (SDG 9, SDG 11, and SDG 13) by enhancing autonomy, energy efficiency, and the safety of flight operations. Full article
Show Figures

Figure 1

23 pages, 1913 KiB  
Article
UAVRM-A*: A Complex Network and 3D Radio Map-Based Algorithm for Optimizing Cellular-Connected UAV Path Planning
by Yanming Chai, Yapeng Wang, Xu Yang, Sio-Kei Im and Qibin He
Sensors 2025, 25(13), 4052; https://doi.org/10.3390/s25134052 - 29 Jun 2025
Viewed by 331
Abstract
In recent research on path planning for cellular-connected Unmanned Aerial Vehicles (UAVs), leveraging navigation models based on complex networks and applying the A* algorithm has emerged as a promising alternative to more computationally intensive methods, such as deep reinforcement learning (DRL). These approaches [...] Read more.
In recent research on path planning for cellular-connected Unmanned Aerial Vehicles (UAVs), leveraging navigation models based on complex networks and applying the A* algorithm has emerged as a promising alternative to more computationally intensive methods, such as deep reinforcement learning (DRL). These approaches offer performance that approaches that of DRL, while addressing key challenges like long training times and poor generalization. However, conventional A* algorithms fail to consider critical UAV flight characteristics and lack effective obstacle avoidance mechanisms. To address these limitations, this paper presents a novel solution for path planning of cellular-connected UAVs, utilizing a 3D radio map for enhanced situational awareness. We proposed an innovative path planning algorithm, UAVRM-A*, which builds upon the complex network navigation model and incorporates key improvements over traditional A*. Our experimental results demonstrate that the UAVRM-A* algorithm not only effectively avoids obstacles but also generates flight paths more consistent with UAV dynamics. Additionally, the proposed approach achieves performance comparable to DRL-based methods while significantly reducing radio outage duration and the computational time required for model training. This research contributes to the development of more efficient, reliable, and practical path planning solutions for UAVs, with potential applications in various fields, including autonomous delivery, surveillance, and emergency response operations. Full article
(This article belongs to the Special Issue Recent Advances in UAV Communications and Networks)
Show Figures

Figure 1

34 pages, 7507 KiB  
Article
Exploring Multi-Channel GPS Receivers for Detecting Spoofing Attacks on UAVs Using Machine Learning
by Mustapha Mouzai, Mohamed Amine Riahla, Amor Keziou and Hacène Fouchal
Sensors 2025, 25(13), 4045; https://doi.org/10.3390/s25134045 - 28 Jun 2025
Viewed by 653
Abstract
All current transportation systems (vehicles, trucks, planes, etc.) rely on the Global Positioning System (GPS) as their main navigation technology. GPS receivers collect signals from multiple satellites and are able to provide more or less accurate positioning. For civilian applications, GPS signals are [...] Read more.
All current transportation systems (vehicles, trucks, planes, etc.) rely on the Global Positioning System (GPS) as their main navigation technology. GPS receivers collect signals from multiple satellites and are able to provide more or less accurate positioning. For civilian applications, GPS signals are sent without any encryption system. For this reason, they are vulnerable to various attacks, and the most prevalent one is known as GPS spoofing. The main consequence is the loss of position monitoring, which may increase damage risks in terms of crashes or hijacking. In this study, we focus on UAV (unmanned aerial vehicle) positioning attacks. We first review numerous techniques for detecting and mitigating GPS spoofing attacks, finding that various types of attacks may occur. In the literature, many studies have focused on only one type of attack. We believe that targeting the study of many attacks is crucial for developing efficient mitigation mechanisms. Thus, we have explored a well-known datasetcontaining authentic UAV signals along with spoofed signals (with three types of attacked signals). As a main contribution, we propose a more interpretable approach to exploit the dataset by extracting individual mission sequences, handling non-stationary features, and converting the GPS raw data into a simplified structured format. Then, we design tree-based machine learning algorithms, namely decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost), for the purpose of classifying signal types and to recognize spoofing attacks. Our main findings are as follows: (a) random forest has significant capability in detecting and classifying GPS spoofing attacks, outperforming the other models. (b) We have been able to detect most types of attacks and distinguish them. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

19 pages, 55351 KiB  
Article
Improving UAV Remote Sensing Photogrammetry Accuracy Under Navigation Interference Using Anomaly Detection and Data Fusion
by Chen Meng, Haoyang Yang, Cuicui Jiang, Qinglei Hu and Dongyu Li
Remote Sens. 2025, 17(13), 2176; https://doi.org/10.3390/rs17132176 - 25 Jun 2025
Viewed by 396
Abstract
Accurate and robust navigation is fundamental to Unmanned Aerial Vehicle (UAV) remote sensing operations. However, the susceptibility of UAV navigation sensors to diverse interference and malicious attacks can severely degrade positioning accuracy and compromise mission integrity. Addressing these vulnerabilities, this paper presents an [...] Read more.
Accurate and robust navigation is fundamental to Unmanned Aerial Vehicle (UAV) remote sensing operations. However, the susceptibility of UAV navigation sensors to diverse interference and malicious attacks can severely degrade positioning accuracy and compromise mission integrity. Addressing these vulnerabilities, this paper presents an integrated framework combining sensor anomaly detection with a Dynamic Adaptive Extended Kalman Filter (DAEKF) and federated filtering algorithms to bolster navigation resilience and accuracy for UAV remote sensing. Specifically, mathematical models for prevalent UAV sensor attacks were established. The proposed framework employs adaptive thresholding and residual consistency checks for the real-time identification and isolation of anomalous sensor measurements. Based on these detection outcomes, the DAEKF dynamically adjusts its sensor fusion strategies and noise covariance matrices. To further enhance the fault tolerance, a federated filtering architecture was implemented, utilizing adaptively weighted sub-filters based on assessed trustworthiness to effectively isolate faults. The efficacy of this framework was validated through rigorous experiments that involved real-world flight data and software-defined radio (SDR)-based Global Positioning System (GPS) spoofing, alongside simulated attacks. The results demonstrate exceptional performance, where the average anomaly detection accuracy exceeded 99% and the precision surpassed 98%. Notably, when benchmarked against traditional methods, the proposed system reduced navigation errors by a factor of approximately 2-3 under attack scenarios, which substantially enhanced the operational stability of the UAVs in challenging environments. Full article
Show Figures

Figure 1

11 pages, 7023 KiB  
Proceeding Paper
Reinforcement Learning for UAV Path Planning Under Complicated Constraints with GNSS Quality Awareness
by Abdulla Alyammahi, Zhengjia Xu, Ivan Petrunin, Bo Peng and Raphael Grech
Eng. Proc. 2025, 88(1), 66; https://doi.org/10.3390/engproc2025088066 - 25 Jun 2025
Viewed by 368
Abstract
Requirements for Unmanned Aerial Vehicle (UAV) applications in low-altitude operations are escalating, which demands resilient Position, Navigation and Timing (PNT) solutions incorporating global navigation satellite system (GNSS) services. However, UAVs often operate in stringent environments with degraded GNSS performance. Practical challenges often arise [...] Read more.
Requirements for Unmanned Aerial Vehicle (UAV) applications in low-altitude operations are escalating, which demands resilient Position, Navigation and Timing (PNT) solutions incorporating global navigation satellite system (GNSS) services. However, UAVs often operate in stringent environments with degraded GNSS performance. Practical challenges often arise from dense, dynamic, complex, and uncertain obstacles. When flying in complex environments, it is important to consider signal degradation caused by reflections (multipath) and obscuration (Non-Line of Sight (NLOS)), which can lead to positioning errors that must be minimized to ensure mission reliability. Recent works integrate GNSS reliability maps derived from pseudorange error estimations into path planning to reduce loss-of-GNSS risks with PNT degradations. To accommodate multiple constraint conditions attempting to improve flight resilience against GNSS-degraded environments, this paper proposes a reinforcement learning (RL) approach to feature GNSS signal quality awareness during path planning. The non-linear relations between GNSS signal quality in the form of dilution of precision (DoP), geographic locations, and the policy of searching sub-minima points are learned by the clipped Proximal Policy Optimization (PPO) method. Other constraints considered include static obstacle occurrence, altitude boundary, forbidden flying regions, and operational volumes. The reward and punishment functions and the training method are designed to maximize the success criteria of approaching destinations. The proposed RL approach is demonstrated using a real 3D map of Indianapolis, USA, in the Godot engine, incorporating forecasted DoP data generated by a Geospatial Augmentation system named GNSS Foresight from Spirent. Results indicate a 36% enhancement in mission success rates when GNSS performance is included in the path planning training. Additionally, the varying tensor size, representing the UAV’s DoP perception range, exhibits a positive proportion relation to a higher mission rate, despite an increment in computational complexity. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

24 pages, 5266 KiB  
Article
Continuously Variable Geometry Quadrotor: Robust Control via PSO-Optimized Sliding Mode Control
by Foad Hamzeh, Siavash Fathollahi Dehkordi, Alireza Naeimifard and Afshin Abyaz
Actuators 2025, 14(7), 308; https://doi.org/10.3390/act14070308 - 23 Jun 2025
Cited by 1 | Viewed by 366
Abstract
This paper tackles the challenge of achieving robust and precise control for a novel quadrotor featuring continuously variable arm lengths (15 cm to 19 cm), enabling enhanced adaptability in complex environments. Unlike conventional fixed-geometry or discretely morphing unmanned aerial vehicles, this design’s continuous [...] Read more.
This paper tackles the challenge of achieving robust and precise control for a novel quadrotor featuring continuously variable arm lengths (15 cm to 19 cm), enabling enhanced adaptability in complex environments. Unlike conventional fixed-geometry or discretely morphing unmanned aerial vehicles, this design’s continuous structural changes introduce significant complexities in modeling its time-varying moment of inertia. To address this, we propose a control strategy that decouples dynamic motion from the evolving geometry, allowing for the development of a robust control model. A sliding mode control algorithm, optimized using particle swarm optimization, is implemented to ensure stability and high performance in the presence of uncertainties and noise. Extensive MATLAB 2016 simulations validate the proposed approach, demonstrating superior tracking accuracy in both fixed and variable arm-length configurations, achieving root mean square error values of 0.05 m (fixed arms), 0.06 m (variable arms, path 1), and 0.03 m (variable arms, path 2). Notably, the PSO-tuned SMC controller reduces tracking error by 30% (0.07 m vs. 0.10 m for PID) and achieves a 40% faster settling time during structural transitions. This improvement is attributed to the PSO-optimized SMC parameters that effectively adapt to the continuously changing inertia, concurrently minimizing chattering by 10%. This research advances the field of morphing UAVs by integrating continuous geometric adaptability with precise and robust control, offering significant potential for energy-efficient flight and navigation in confined spaces, as well as applications in autonomous navigation and industrial inspection. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

Back to TopTop