Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = universal adversarial perturbation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2789 KiB  
Article
BIM-Based Adversarial Attacks Against Speech Deepfake Detectors
by Wendy Edda Wang, Davide Salvi, Viola Negroni, Daniele Ugo Leonzio, Paolo Bestagini and Stefano Tubaro
Electronics 2025, 14(15), 2967; https://doi.org/10.3390/electronics14152967 - 24 Jul 2025
Viewed by 216
Abstract
Automatic Speaker Verification (ASV) systems are increasingly employed to secure access to services and facilities. However, recent advances in speech deepfake generation pose serious threats to their reliability. Modern speech synthesis models can convincingly imitate a target speaker’s voice and generate realistic synthetic [...] Read more.
Automatic Speaker Verification (ASV) systems are increasingly employed to secure access to services and facilities. However, recent advances in speech deepfake generation pose serious threats to their reliability. Modern speech synthesis models can convincingly imitate a target speaker’s voice and generate realistic synthetic audio, potentially enabling unauthorized access through ASV systems. To counter these threats, forensic detectors have been developed to distinguish between real and fake speech. Although these models achieve strong performance, their deep learning nature makes them susceptible to adversarial attacks, i.e., carefully crafted, imperceptible perturbations in the audio signal that make the model unable to classify correctly. In this paper, we explore adversarial attacks targeting speech deepfake detectors. Specifically, we analyze the effectiveness of Basic Iterative Method (BIM) attacks applied in both time and frequency domains under white- and black-box conditions. Additionally, we propose an ensemble-based attack strategy designed to simultaneously target multiple detection models. This approach generates adversarial examples with balanced effectiveness across the ensemble, enhancing transferability to unseen models. Our experimental results show that, although crafting universally transferable attacks remains challenging, it is possible to fool state-of-the-art detectors using minimal, imperceptible perturbations, highlighting the need for more robust defenses in speech deepfake detection. Full article
Show Figures

Figure 1

20 pages, 2221 KiB  
Article
An Adversarial Example Generation Algorithm Based on DE-C&W
by Ran Zhang, Qianru Wu and Yifan Wang
Electronics 2025, 14(7), 1274; https://doi.org/10.3390/electronics14071274 - 24 Mar 2025
Cited by 2 | Viewed by 560
Abstract
Security issues surrounding deep learning models weaken their application effectiveness in various fields. Studying attacks against deep learning models contributes to evaluating their security and improving it in a targeted manner. Among the methods used for this purpose, adversarial example generation methods for [...] Read more.
Security issues surrounding deep learning models weaken their application effectiveness in various fields. Studying attacks against deep learning models contributes to evaluating their security and improving it in a targeted manner. Among the methods used for this purpose, adversarial example generation methods for deep learning models have become a hot topic in academic research. To overcome problems such as extensive network access, high attack costs, and limited universality in generating adversarial examples, this paper proposes a generic algorithm for adversarial example generation based on improved DE-C&W. The algorithm employs an improved differential evolution (DE) algorithm to conduct a global search of the original examples, searching for vulnerable sensitive points susceptible to being attacked. Then, random perturbations are added to these sensitive points to obtain adversarial examples, which are used as the initial input of C&W attack. The loss functions of the C&W attack algorithm are constructed based on these initial input examples, and the loss function is further optimized using the Adaptive Moment Estimation (Adam) algorithm to obtain the optimal perturbation vector. The experimental results demonstrate that the algorithm not only ensures that the generated adversarial examples achieve a higher success rate of attacks, but also exhibits better transferability while reducing the average number of queries and lowering attack costs. Full article
Show Figures

Graphical abstract

22 pages, 7677 KiB  
Article
Universal Low-Frequency Noise Black-Box Attack on Visual Object Tracking
by Hanting Hou, Huan Bao, Kaimin Wei and Yongdong Wu
Symmetry 2025, 17(3), 462; https://doi.org/10.3390/sym17030462 - 19 Mar 2025
Viewed by 491
Abstract
Adversarial attacks on visual object tracking aim to degrade tracking accuracy by introducing imperceptible perturbations into video frames, exploiting vulnerabilities in neural networks. In real-world symmetrical double-blind engagements, both attackers and defenders operate with mutual unawareness of strategic parameters or initiation timing. Black-box [...] Read more.
Adversarial attacks on visual object tracking aim to degrade tracking accuracy by introducing imperceptible perturbations into video frames, exploiting vulnerabilities in neural networks. In real-world symmetrical double-blind engagements, both attackers and defenders operate with mutual unawareness of strategic parameters or initiation timing. Black-box attacks based on iterative optimization show excellent applicability in this scenario. However, existing state-of-the-art adversarial attacks based on iterative optimization suffer from high computational costs and limited effectiveness. To address these challenges, this paper proposes the Universal Low-frequency Noise black-box attack method (ULN), which generates perturbations through discrete cosine transform to disrupt structural features critical for tracking while mimicking compression artifacts. Extensive experimentation on four state-of-the-art trackers, including transformer-based models, demonstrates the method’s severe degradation effects. GRM’s expected average overlap drops by 97.77% on VOT2018, while SiamRPN++’s AUC and Precision on OTB100 decline by 76.55% and 78.9%, respectively. The attack achieves real-time performance with a computational cost reduction of over 50% compared to iterative methods, operating efficiently on embedded devices such as Raspberry Pi 4B. By maintaining a structural similarity index measure above 0.84, the perturbations blend seamlessly with common compression artifacts, evading traditional spatial filtering defenses. Cross-platform experiments validate its consistent threat across diverse hardware environments, with attack success rates exceeding 40% even under resource constraints. These results underscore the dual capability of ULN as both a stealthy and practical attack vector, and emphasize the urgent need for robust defenses in safety-critical applications such as autonomous driving and aerial surveillance. The efficiency of the method, when combined with its ability to exploit low-frequency vulnerabilities across architectures, establishes a new benchmark for adversarial robustness in visual tracking systems. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

15 pages, 1315 KiB  
Article
Leveraging Universal Adversarial Perturbation and Frequency Band Filters Against Face Recognition
by Limengnan Zhou, Bufan He, Xi Jin and Guangling Sun
Mathematics 2024, 12(20), 3287; https://doi.org/10.3390/math12203287 - 20 Oct 2024
Cited by 1 | Viewed by 1121
Abstract
Universal adversarial perturbation (UAP) exhibits universality as it is independent of specific images. Although previous investigations have shown that the classification of natural images is susceptible to universal adversarial attacks, the impact of UAP on face recognition has not been fully investigated. Thus, [...] Read more.
Universal adversarial perturbation (UAP) exhibits universality as it is independent of specific images. Although previous investigations have shown that the classification of natural images is susceptible to universal adversarial attacks, the impact of UAP on face recognition has not been fully investigated. Thus, in this paper we assess the vulnerability of face recognition for UAP. We propose FaUAP-FBF, which exploits the frequency domain by learning high, middle, and low band filters as an additional dimension of refining facial UAP. The facial UAP and filters are alternately and repeatedly learned from a training set. Furthermore, we convert non-target attacks to target attacks by customizing a target example, which is an out-of-distribution sample for a training set. Accordingly, non-target and target attacks form a uniform target attack. Finally, the variance of cosine similarity is incorporated into the adversarial loss, thereby enhancing the attacking capability. Extensive experiments on LFW and CASIA-WebFace datasets show that FaUAP-FBF has a higher fooling rate and better objective stealthiness metrics across the evaluated network structures compared to existing universal adversarial attacks, which confirms the effectiveness of the proposed FaUAP-FBF. Our results also imply that UAP poses a real threat for face recognition systems and should be taken seriously when face recognition systems are being designed. Full article
(This article belongs to the Special Issue New Solutions for Multimedia and Artificial Intelligence Security)
Show Figures

Figure 1

18 pages, 1387 KiB  
Article
KRT-FUAP: Key Regions Tuned via Flow Field for Facial Universal Adversarial Perturbation
by Xi Jin, Yong Liu, Guangling Sun, Yanli Chen, Zhicheng Dong and Hanzhou Wu
Appl. Sci. 2024, 14(12), 4973; https://doi.org/10.3390/app14124973 - 7 Jun 2024
Viewed by 1135
Abstract
It has been established that convolutional neural networks are susceptible to elaborate tiny universal adversarial perturbations (UAPs) in natural image classification tasks. However, UAP attacks against face recognition systems have not been fully explored. This paper proposes a spatial perturbation method that generates [...] Read more.
It has been established that convolutional neural networks are susceptible to elaborate tiny universal adversarial perturbations (UAPs) in natural image classification tasks. However, UAP attacks against face recognition systems have not been fully explored. This paper proposes a spatial perturbation method that generates UAPs with local stealthiness by learning variable flow field to fine-tune facial key regions (KRT-FUAP). We ensure that the generated adversarial perturbations are positioned within reasonable regions of the face by designing a mask specifically tailored to facial key regions. In addition, we pay special attention to improving the effectiveness of the attack while maintaining the stealthiness of the perturbation and achieve the dual optimization of aggressiveness and stealthiness by accurately controlling the balance between adversarial loss and stealthiness loss. Experiments conducted on the frameworks of IResNet50 and MobileFaceNet demonstrate that our proposed method achieves an attack performance comparable to existing natural image universal attack methods, but with significantly improved stealthiness. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 17001 KiB  
Article
A Region-Adaptive Local Perturbation-Based Method for Generating Adversarial Examples in Synthetic Aperture Radar Object Detection
by Jiale Duan, Linyao Qiu, Guangjun He, Ling Zhao, Zhenshi Zhang and Haifeng Li
Remote Sens. 2024, 16(6), 997; https://doi.org/10.3390/rs16060997 - 12 Mar 2024
Cited by 3 | Viewed by 2516
Abstract
In synthetic aperture radar (SAR) imaging, intelligent object detection methods are facing significant challenges in terms of model robustness and application security, which are posed by adversarial examples. The existing adversarial example generation methods for SAR object detection can be divided into two [...] Read more.
In synthetic aperture radar (SAR) imaging, intelligent object detection methods are facing significant challenges in terms of model robustness and application security, which are posed by adversarial examples. The existing adversarial example generation methods for SAR object detection can be divided into two main types: global perturbation attacks and local perturbation attacks. Due to the dynamic changes and irregular spatial distribution of SAR coherent speckle backgrounds, the attack effectiveness of global perturbation attacks is significantly reduced by coherent speckle. In contrast, by focusing on the image objects, local perturbation attacks achieve targeted and effective advantages over global perturbations by minimizing interference from the SAR coherent speckle background. However, the adaptability of conventional local perturbations is limited because they employ a fixed size without considering the diverse sizes and shapes of SAR objects under various conditions. This paper presents a framework for region-adaptive local perturbations (RaLP) specifically designed for SAR object detection tasks. The framework consists of two modules. To address the issue of coherent speckle noise interference in SAR imagery, we develop a local perturbation generator (LPG) module. By filtering the original image, this module reduces the speckle features introduced during perturbation generation. It then superimposes adversarial perturbations in the form of local perturbations on areas of the object with weaker speckles, thereby reducing the mutual interference between coherent speckles and adversarial perturbation. To address the issue of insufficient adaptability in terms of the size variation in local adversarial perturbations, we propose an adaptive perturbation optimizer (APO) module. This optimizer adapts the size of the adversarial perturbations based on the size and shape of the object, effectively solving the problem of adaptive perturbation size and enhancing the universality of the attack. The experimental results show that RaLP reduces the detection accuracy of the YOLOv3 detector by 29.0%, 29.9%, and 32.3% on the SSDD, SAR-Ship, and AIR-SARShip datasets, respectively, and the model-to-model and dataset-to-dataset transferability of RaLP attacks are verified. Full article
Show Figures

Figure 1

15 pages, 1419 KiB  
Article
IG-Based Method for Voiceprint Universal Adversarial Perturbation Generation
by Meng Bi, Xianyun Yu, Zhida Jin and Jian Xu
Appl. Sci. 2024, 14(3), 1322; https://doi.org/10.3390/app14031322 - 5 Feb 2024
Cited by 2 | Viewed by 1594
Abstract
In this paper, we propose an Iterative Greedy-Universal Adversarial Perturbations (IGUAP) approach based on an iterative greedy algorithm to create universal adversarial perturbations for acoustic prints. A thorough, objective account of the IG-UAP method is provided, outlining its framework and approach. The method [...] Read more.
In this paper, we propose an Iterative Greedy-Universal Adversarial Perturbations (IGUAP) approach based on an iterative greedy algorithm to create universal adversarial perturbations for acoustic prints. A thorough, objective account of the IG-UAP method is provided, outlining its framework and approach. The method leverages a greedy iteration approach to formulate an optimization problem for solving acoustic universal adversarial perturbations, with a new objective function designed to ensure that the attack has higher accuracy in terms of minimizing the perceptibility of adversarial perturbations and increasing the accuracy of successful attacks. The perturbation generation process is described in detail, and the resulting acoustic universal adversarial perturbation is evaluated in both target-attack and no-target-attack scenarios. Experimental analysis and testing were carried out using comparable techniques and dissimilar target models. The findings reveal that the acoustic generality adversarial perturbation produced by the IG-UAP method can obtain effective attack results even when the audio training data sample size is minimal, i.e., one for each category. Moreover, the human ear finds it difficult to detect the loss of original data information and the addition of adversarial perturbation (for the case of a target attack, the ASR values range from 82.4% to 90.2% for the small sample data set). The success rates for untargeted and targeted attacks average 85.8% and 84.9%, respectively. Full article
(This article belongs to the Special Issue Security, Privacy and Application in New Intelligence Techniques)
Show Figures

Figure 1

17 pages, 3708 KiB  
Article
Attacking Deep Learning AI Hardware with Universal Adversarial Perturbation
by Mehdi Sadi, Bashir Mohammad Sabquat Bahar Talukder, Kaniz Mishty and Md Tauhidur Rahman
Information 2023, 14(9), 516; https://doi.org/10.3390/info14090516 - 19 Sep 2023
Cited by 1 | Viewed by 3091
Abstract
Universal adversarial perturbations are image-agnostic and model-independent noise that, when added to any image, can mislead the trained deep convolutional neural networks into the wrong prediction. Since these universal adversarial perturbations can seriously jeopardize the security and integrity of practical deep learning applications, [...] Read more.
Universal adversarial perturbations are image-agnostic and model-independent noise that, when added to any image, can mislead the trained deep convolutional neural networks into the wrong prediction. Since these universal adversarial perturbations can seriously jeopardize the security and integrity of practical deep learning applications, the existing techniques use additional neural networks to detect the existence of these noises at the input image source. In this paper, we demonstrate an attack strategy that, when activated by rogue means (e.g., malware, trojan), can bypass these existing countermeasures by augmenting the adversarial noise at the AI hardware accelerator stage. We demonstrate the accelerator-level universal adversarial noise attack on several deep learning models using co-simulation of the software kernel of the Conv2D function and the Verilog RTL model of the hardware under the FuseSoC environment. Full article
(This article belongs to the Special Issue Hardware Security and Trust)
Show Figures

Figure 1

27 pages, 34311 KiB  
Article
ULAN: A Universal Local Adversarial Network for SAR Target Recognition Based on Layer-Wise Relevance Propagation
by Meng Du, Daping Bi, Mingyang Du, Xinsong Xu and Zilong Wu
Remote Sens. 2023, 15(1), 21; https://doi.org/10.3390/rs15010021 - 21 Dec 2022
Cited by 8 | Viewed by 2282
Abstract
Recent studies have proven that synthetic aperture radar (SAR) automatic target recognition (ATR) models based on deep neural networks (DNN) are vulnerable to adversarial examples. However, existing attacks easily fail in the case where adversarial perturbations cannot be fully fed to victim models. [...] Read more.
Recent studies have proven that synthetic aperture radar (SAR) automatic target recognition (ATR) models based on deep neural networks (DNN) are vulnerable to adversarial examples. However, existing attacks easily fail in the case where adversarial perturbations cannot be fully fed to victim models. We call this situation perturbation offset. Moreover, since background clutter takes up most of the area in SAR images and has low relevance to recognition results, fooling models with global perturbations is quite inefficient. This paper proposes a semi-white-box attack network called Universal Local Adversarial Network (ULAN) to generate universal adversarial perturbations (UAP) for the target regions of SAR images. In the proposed method, we calculate the model’s attention heatmaps through layer-wise relevance propagation (LRP), which is used to locate the target regions of SAR images that have high relevance to recognition results. In particular, we utilize a generator based on U-Net to learn the mapping from noise to UAPs and craft adversarial examples by adding the generated local perturbations to target regions. Experiments indicate that the proposed method effectively prevents perturbation offset and achieves comparable attack performance to conventional global UAPs by perturbing only a quarter or less of SAR image areas. Full article
(This article belongs to the Special Issue Adversarial Attacks and Defenses for Remote Sensing Data)
Show Figures

Figure 1

23 pages, 5353 KiB  
Article
Adversarial Patch Attack on Multi-Scale Object Detection for UAV Remote Sensing Images
by Yichuang Zhang, Yu Zhang, Jiahao Qi, Kangcheng Bin, Hao Wen, Xunqian Tong and Ping Zhong
Remote Sens. 2022, 14(21), 5298; https://doi.org/10.3390/rs14215298 - 23 Oct 2022
Cited by 51 | Viewed by 7620
Abstract
Although deep learning has received extensive attention and achieved excellent performance in various scenarios, it suffers from adversarial examples to some extent. In particular, physical attack poses a greater threat than digital attack. However, existing research has paid less attention to the physical [...] Read more.
Although deep learning has received extensive attention and achieved excellent performance in various scenarios, it suffers from adversarial examples to some extent. In particular, physical attack poses a greater threat than digital attack. However, existing research has paid less attention to the physical attack of object detection in UAV remote sensing images (RSIs). In this work, we carefully analyze the universal adversarial patch attack for multi-scale objects in the field of remote sensing. There are two challenges faced by an adversarial attack in RSIs. On one hand, the number of objects in remote sensing images is more than that of natural images. Therefore, it is difficult for an adversarial patch to show an adversarial effect on all objects when attacking a detector of RSIs. On the other hand, the wide height range of the photography platform causes the size of objects to vary a great deal, which presents challenges for the generation of universal adversarial perturbation for multi-scale objects. To this end, we propose an adversarial attack method of object detection for remote sensing data. One of the key ideas of the proposed method is the novel optimization of the adversarial patch. We aim to attack as many objects as possible by formulating a joint optimization problem. Furthermore, we raise the scale factor to generate a universal adversarial patch that adapts to multi-scale objects, which ensures that the adversarial patch is valid for multi-scale objects in the real world. Extensive experiments demonstrate the superiority of our method against state-of-the-art methods on YOLO-v3 and YOLO-v5. In addition, we also validate the effectiveness of our method in real-world applications. Full article
Show Figures

Graphical abstract

17 pages, 3224 KiB  
Article
Evading Logits-Based Detections to Audio Adversarial Examples by Logits-Traction Attack
by Songshen Han, Kaiyong Xu, Songhui Guo, Miao Yu and Bo Yang
Appl. Sci. 2022, 12(18), 9388; https://doi.org/10.3390/app12189388 - 19 Sep 2022
Cited by 2 | Viewed by 1942
Abstract
Automatic Speech Recognition (ASR) provides a new way of human-computer interaction. However, it is vulnerable to adversarial examples, which are obtained by deliberately adding perturbations to the original audios. Thorough studies on the universal feature of adversarial examples are essential to prevent potential [...] Read more.
Automatic Speech Recognition (ASR) provides a new way of human-computer interaction. However, it is vulnerable to adversarial examples, which are obtained by deliberately adding perturbations to the original audios. Thorough studies on the universal feature of adversarial examples are essential to prevent potential attacks. Previous research has shown classic adversarial examples have different logits distribution compared to normal speech. This paper proposes a logit-traction attack to eliminate this difference at the statistical level. Experiments on the LibriSpeech dataset show that the proposed attack reduces the accuracy of the LOGITS NOISE detection to 52.1%. To further verify the effectiveness of this approach in attacking detection based on logits, three different features quantifying the dispersion of logits are constructed in this paper. Furthermore, a richer target sentence is adopted for experiments. The results indicate that these features can detect baseline adversarial examples with an accuracy of about 90% but cannot effectively detect Logits-Traction adversarial examples, proving that Logits-Traction attack can evade the logits-based detection method. Full article
(This article belongs to the Special Issue AI, Machine Learning and Deep Learning in Signal Processing)
Show Figures

Figure 1

20 pages, 2336 KiB  
Article
An Empirical Study of Fully Black-Box and Universal Adversarial Attack for SAR Target Recognition
by Bowen Peng, Bo Peng, Shaowei Yong and Li Liu
Remote Sens. 2022, 14(16), 4017; https://doi.org/10.3390/rs14164017 - 18 Aug 2022
Cited by 17 | Viewed by 2929
Abstract
It has been demonstrated that deep neural network (DNN)-based synthetic aperture radar (SAR) automatic target recognition (ATR) techniques are extremely susceptible to adversarial intrusions, that is, malicious SAR images including deliberately generated perturbations that are imperceptible to the human eye but can deflect [...] Read more.
It has been demonstrated that deep neural network (DNN)-based synthetic aperture radar (SAR) automatic target recognition (ATR) techniques are extremely susceptible to adversarial intrusions, that is, malicious SAR images including deliberately generated perturbations that are imperceptible to the human eye but can deflect DNN inference. Attack algorithms in previous studies are based on direct access to a ATR model such as gradients or training data to generate adversarial examples for a target SAR image, which is against the non-cooperative nature of ATR applications. In this article, we establish a fully black-box universal attack (FBUA) framework to craft one single universal adversarial perturbation (UAP) against a wide range of DNN architectures as well as a large fraction of target images. It is of both high practical relevance for an attacker and a risk for ATR systems that the UAP can be designed by an FBUA in advance and without any access to the victim DNN. The proposed FBUA can be decomposed to three main phases: (1) SAR images simulation, (2) substitute model training, and (3) UAP generation. Comprehensive evaluations on the MSTAR and SARSIM datasets demonstrate the efficacy of the FBUA, i.e., can achieve an average fooling ratio of 64.6% on eight cutting-edge DNNs (when the magnitude of the UAP is set to 16/255). Furthermore, we empirically find that the black-box UAP mainly functions by activating spurious features which can effectively couple with clean features to force the ATR models to concentrate on several categories and exhibit a class-wise vulnerability. The proposed FBUA aligns with the non-cooperative nature and reveals the access-free adversarial vulnerability of DNN-based SAR ATR techniques, providing a foundation for future defense against black-box threats. Full article
Show Figures

Figure 1

11 pages, 2411 KiB  
Article
A Universal Detection Method for Adversarial Examples and Fake Images
by Jiewei Lai, Yantong Huo, Ruitao Hou and Xianmin Wang
Sensors 2022, 22(9), 3445; https://doi.org/10.3390/s22093445 - 30 Apr 2022
Cited by 1 | Viewed by 2956
Abstract
Deep-learning technologies have shown impressive performance on many tasks in recent years. However, there are multiple serious security risks when using deep-learning technologies. For examples, state-of-the-art deep-learning technologies are vulnerable to adversarial examples that make the model’s predictions wrong due to some specific [...] Read more.
Deep-learning technologies have shown impressive performance on many tasks in recent years. However, there are multiple serious security risks when using deep-learning technologies. For examples, state-of-the-art deep-learning technologies are vulnerable to adversarial examples that make the model’s predictions wrong due to some specific subtle perturbation, and these technologies can be abused for the tampering with and forgery of multimedia, i.e., deep forgery. In this paper, we propose a universal detection framework for adversarial examples and fake images. We observe some differences in the distribution of model outputs for normal and adversarial examples (fake images) and train the detector to learn the differences. We perform extensive experiments on the CIFAR10 and CIFAR100 datasets. Experimental results show that the proposed framework has good feasibility and effectiveness in detecting adversarial examples or fake images. Moreover, the proposed framework has good generalizability for the different datasets and model structures. Full article
(This article belongs to the Collection Cryptography and Security in IoT and Sensor Networks)
Show Figures

Figure 1

12 pages, 2376 KiB  
Article
Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification
by Kazuki Koga and Kazuhiro Takemoto
Algorithms 2022, 15(5), 144; https://doi.org/10.3390/a15050144 - 22 Apr 2022
Cited by 11 | Viewed by 4147
Abstract
Universal adversarial attacks, which hinder most deep neural network (DNN) tasks using only a single perturbation called universal adversarial perturbation (UAP), are a realistic security threat to the practical application of a DNN for medical imaging. Given that computer-based systems are generally operated [...] Read more.
Universal adversarial attacks, which hinder most deep neural network (DNN) tasks using only a single perturbation called universal adversarial perturbation (UAP), are a realistic security threat to the practical application of a DNN for medical imaging. Given that computer-based systems are generally operated under a black-box condition in which only input queries are allowed and outputs are accessible, the impact of UAPs seems to be limited because well-used algorithms for generating UAPs are limited to white-box conditions in which adversaries can access model parameters. Nevertheless, we propose a method for generating UAPs using a simple hill-climbing search based only on DNN outputs to demonstrate that UAPs are easily generatable using a relatively small dataset under black-box conditions with representative DNN-based medical image classifications. Black-box UAPs can be used to conduct both nontargeted and targeted attacks. Overall, the black-box UAPs showed high attack success rates (40–90%). The vulnerability of the black-box UAPs was observed in several model architectures. The results indicate that adversaries can also generate UAPs through a simple procedure under the black-box condition to foil or control diagnostic medical imaging systems based on DNNs, and that UAPs are a more serious security threat. Full article
(This article belongs to the Special Issue Black-Box Algorithms and Their Applications)
Show Figures

Figure 1

15 pages, 7871 KiB  
Article
Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning
by Akinori Minagi, Hokuto Hirano and Kauzhiro Takemoto
J. Imaging 2022, 8(2), 38; https://doi.org/10.3390/jimaging8020038 - 4 Feb 2022
Cited by 19 | Viewed by 3958
Abstract
Transfer learning from natural images is used in deep neural networks (DNNs) for medical image classification to achieve a computer-aided clinical diagnosis. Although the adversarial vulnerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial attacks are expected to [...] Read more.
Transfer learning from natural images is used in deep neural networks (DNNs) for medical image classification to achieve a computer-aided clinical diagnosis. Although the adversarial vulnerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial attacks are expected to be limited because training datasets (medical images), which are often required for adversarial attacks, are generally unavailable in terms of security and privacy preservation. Nevertheless, in this study, we demonstrated that adversarial attacks are also possible using natural images for medical DNN models with transfer learning, even if such medical images are unavailable; in particular, we showed that universal adversarial perturbations (UAPs) can also be generated from natural images. UAPs from natural images are useful for both non-targeted and targeted attacks. The performance of UAPs from natural images was significantly higher than that of random controls. The use of transfer learning causes a security hole, which decreases the reliability and safety of computer-based disease diagnosis. Model training from random initialization reduced the performance of UAPs from natural images; however, it did not completely avoid vulnerability to UAPs. The vulnerability of UAPs to natural images is expected to become a significant security threat. Full article
(This article belongs to the Special Issue Transfer Learning Applications for Real-World Imaging Problems)
Show Figures

Figure 1

Back to TopTop