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Abstract: In synthetic aperture radar (SAR) imaging, intelligent object detection methods are facing
significant challenges in terms of model robustness and application security, which are posed by
adversarial examples. The existing adversarial example generation methods for SAR object detection
can be divided into two main types: global perturbation attacks and local perturbation attacks. Due
to the dynamic changes and irregular spatial distribution of SAR coherent speckle backgrounds, the
attack effectiveness of global perturbation attacks is significantly reduced by coherent speckle. In
contrast, by focusing on the image objects, local perturbation attacks achieve targeted and effective
advantages over global perturbations by minimizing interference from the SAR coherent speckle
background. However, the adaptability of conventional local perturbations is limited because
they employ a fixed size without considering the diverse sizes and shapes of SAR objects under
various conditions. This paper presents a framework for region-adaptive local perturbations (RaLP)
specifically designed for SAR object detection tasks. The framework consists of two modules.
To address the issue of coherent speckle noise interference in SAR imagery, we develop a local
perturbation generator (LPG) module. By filtering the original image, this module reduces the speckle
features introduced during perturbation generation. It then superimposes adversarial perturbations
in the form of local perturbations on areas of the object with weaker speckles, thereby reducing the
mutual interference between coherent speckles and adversarial perturbation. To address the issue of
insufficient adaptability in terms of the size variation in local adversarial perturbations, we propose
an adaptive perturbation optimizer (APO) module. This optimizer adapts the size of the adversarial
perturbations based on the size and shape of the object, effectively solving the problem of adaptive
perturbation size and enhancing the universality of the attack. The experimental results show that
RaLP reduces the detection accuracy of the YOLOv3 detector by 29.0%, 29.9%, and 32.3% on the SSDD,
SAR-Ship, and AIR-SARShip datasets, respectively, and the model-to-model and dataset-to-dataset
transferability of RaLP attacks are verified.

Keywords: synthetic aperture radar; object detection; deep neural network; adversarial example;
local perturbation attack

1. Introduction

SAR technology can provide clear images of ground or maritime targets under all
weather conditions and times, playing a crucial role in modern remote sensing. As an
important application of SAR image object detection, ship detection is utilized mainly
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in maritime surveillance, fishery management, and vessel traffic monitoring [1,2]. Tra-
ditional object detection techniques filter SAR images to distinguish between ships and
sea backgrounds for object area localization via radar signal processing [3,4]. With the
introduction of deep learning, object detection in SAR imagery has achieved significant
breakthroughs, substantially improving detection accuracy and efficiency [5]. Additionally,
the vulnerability of deep learning-based SAR imagery object detection models has become
increasingly prominent. Research on adversarial examples [6,7] has become important for
ensuring the security and robustness of SAR imagery object detection models.

The existing adversarial example generation methods aimed at SAR object detection
can be divided into two main types: global perturbation attacks and local perturbation
attacks. Global perturbation attacks [8–10] aim to deceive object detection systems by
uniformly introducing minor perturbations across the entire image without significantly
altering its visual appearance. These methods are easily influenced by coherent speckle
backgrounds. On the one hand, global perturbation attacks do not distinguish between
targets and backgrounds during generation, and the widespread distribution of SAR
coherent speckle backgrounds [11–13] means that background information plays a more
significant role in the generation of perturbations. The global nature of perturbations leads
to the introduction of redundant coherent speckle features, which are not critical factors in
model decision-making. Therefore, global perturbation attacks in SAR imagery are more
likely to be disregarded by models as noise, thereby weakening their effectiveness. On the
other hand, since global perturbation attacks indiscriminately cover the entire image, they
can be confused with coherent speckle backgrounds. This causes deep learning models
to classify the perturbations as regular scene variables during the recognition process,
reducing the specificity and efficacy of the attack.

Local perturbation attacks [14–18] focus on pixel modifications in specific areas of
an image, providing a method for precise perturbation of important object areas in object
detection. The objective is to subtly disrupt key areas to mislead detection systems without
significantly altering the overall image, which can somewhat alleviate the interference
of coherent speckle backgrounds in SAR imagery. Although local perturbation attacks
enhance the effectiveness of attacks by concentrating perturbations around the object area
to reduce interference from the SAR coherent speckle background, this approach still faces
challenges in terms of the adaptability of the perturbation size. Particularly when dealing
with dynamic changes in speckle backgrounds in SAR imagery, fixed or preset perturbation
sizes often fail to effectively adapt to changes in the object area under various conditions.
Therefore, designing a method that can adaptively adjust the size of the perturbation to
suit the object and background characteristics is crucial for enhancing the effectiveness of
local perturbation attacks.

In summary, this paper presents a new solution framework to address interference
from coherent speckle backgrounds and adaptability issues related to perturbation size:
the region-adaptive local perturbations (RaLP) framework. This framework aims to resolve
these challenges through two important modules: (1) the local perturbation generator
(LPG), which reduces interference from coherent speckle backgrounds through image
filtering preprocessing and concentrates perturbations in the object area to generate precise
local adversarial perturbations; and (2) the adaptive perturbation optimizer (APO), which
adjusts the size of adversarial perturbations using an adaptive strategy and enhances
the visual naturalness of the perturbations by controlling the extent of variation. This
approach not only improves the effectiveness of adversarial attacks, but is also applicable
to objects of different sizes in SAR imagery, thereby achieving more accurate and efficient
object interference. The main contributions of the RaLP framework can be summarized in
three points:

1. We propose the region-adaptive local perturbation attack framework (RaLP), which
innovatively addresses the key challenges of adversarial examples for SAR object detection:
interference from a coherent speckle background and the adaptability of the perturbation
size. By comprehensively considering the characteristics of SAR imagery and the require-
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ments of the object detection task, this framework implements a novel adversarial attack
strategy. It not only enhances the effectiveness and naturalness of adversarial perturbations,
but also ensures the universality of the attack.

2. To overcome the interference of coherent speckle backgrounds and the issue of
perturbation size adaptability in SAR imagery, we design two innovative modules: the local
perturbation generator (LPG) and the adaptive perturbation optimizer (APO). The LPG
module, by filtering the original image, effectively mitigates the interference of coherent
speckle backgrounds and precisely superimposes adversarial perturbations within the object
area, enhancing the specificity and effectiveness of the attack. The APO module introduces a
size-adaptive strategy to adjust the size of perturbations, effectively solving the adaptability
of perturbation size. It also uses a multiloss function to control the extent of changes in
perturbation pixels, thereby increasing the naturalness of the adversarial perturbations.

3. We conducted experiments on multiple datasets, including SSDD, the SAR-Ship-
Dataset, and AIR-SARShip-1.0 [19–21], to validate the offensive capabilities of the RaLP
adversarial perturbations. The results of these experiments demonstrate the significant
impact of RaLP’s attack, which reduces the accuracy of the object detection models on
these datasets by 29.0%, 29.9%, and 32.3%, respectively, markedly outperforming existing
adversarial attack methods. Furthermore, in transferability experiments across multiple
datasets and models, RaLP exhibited strong adversarial transferability, achieving the best
attack effects at 21.8% and 24.7%, respectively. These results not only verify the effectiveness
of the RaLP method in various SAR environments but also demonstrate its powerful ability
to adapt to diverse targets and background conditions.

2. Related Work

Recent studies have shown that deep neural networks are susceptible to adversarial
examples, posing significant challenges in terms of model robustness and application secu-
rity for deep learning models. To explore and understand the potential vulnerabilities of
deep learning models, Szegedy et al. [6] first proposed the concept of adversarial examples
in 2013 and developed an optimization-based method for generating adversarial examples:
L-BFGS. This approach introduces meticulously designed minor perturbations into the
input data, causing the model to make incorrect predictions, although these perturbations
are imperceptible to humans. Over time, the study of adversarial examples has gradually
shifted from theoretical exploration to practical application, such as improving the robust-
ness and security of deep learning models. Extending from computer vision to other areas,
such as speech and natural language processing [22–26], research on adversarial examples
now not only focuses on the effectiveness of attacks, but also includes exploring more covert
and practically valuable attack methods [27–31]. These studies offer valuable insights and
guidance for improving the security of deep learning models. The existing adversarial
example generation algorithms can be categorized from multiple perspectives: according
to the attack objective, they can be classified as targeted attacks or nontargeted attacks;
based on the attacker’s knowledge of the deep neural network, they can be categorized
as white-box attacks, black-box attacks, or grey-box attacks. In this paper, adversarial
example generation algorithms can also be classified based on the degree of perturbation
to the input, such as global perturbation attacks and local perturbation attacks. This section
introduces two types of attack methods based on the degree of input perturbation during
the adversarial example generation process.

2.1. Global Perturbation Attack

A global perturbation attack is a type of method for adversarial example generation
that is designed to mislead a model’s prediction by applying subtle yet comprehensive
changes to all the input data. The essence of this attack method is to influence the model’s
understanding of the entire dataset rather than targeting specific areas or features. Research
on global perturbation attacks not only exposes the vulnerabilities of deep learning models,
but also promotes continuous improvement in model robustness. The strategies for global
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perturbation attacks can be broadly divided into several categories based on the principles
and techniques used to execute the attack.

Gradient-based attack methods: This type of method generates adversarial pertur-
bations by computing the gradient of the model’s loss function with respect to the input,
and then adds these adversarial perturbations to the original samples to create adversarial
examples. In 2014, Goodfellow et al. proposed the fast gradient sign method (FGSM)
algorithm [7], which was the first global perturbation attack method based on gradient
attacks. It generates adversarial examples by modifying the image according to the gradient
through the backwards propagation of the loss function. Soon after, the FGSM was intro-
duced into adversarial attacks on SAR image samples [32–36] by adding perturbations in
the direction of the greatest gradient change within the network model to rapidly increase
the loss function, ultimately leading to incorrect classification by the model. The original
FGSM algorithm required only a single gradient update to produce adversarial examples;
however, as a single-step attack with relatively high perturbation intensity that is only
applicable to linear target functions, this approach results in a lower attack success rate.
To address this issue, Kurakin et al. extended the FGSM algorithm and proposed the
basic iterative method (BIM) [37] algorithm, which perturbs the image through multiple
iterations and adjusts the calculation direction after each iteration, solving the problem of
the low attack success rate of the FGSM algorithm. Huang et al. [38] designed a variant
of BIM that moved from untargeted to targeted attacks by replacing the ground-truth
label in the loss function with a target label. However, adversarial examples generated
by BIM-like methods can easily become trapped in local maxima due to the limitation of
the learning rate step size, thereby affecting the transferability of adversarial examples.
To address this, Yin et al. improved upon the BIM algorithm and proposed the momentum
iterative fast gradient sign method (MIFGSM) [39] algorithm, which uses momentum to
make the direction of the gradient updates more stable, solving the problem of the BIM
algorithm becoming trapped in local minima during the generation of adversarial examples.
Furthermore, to increase the success rate of attacks, Madry et al. extended the BIM ap-
proach and proposed a variant of BIM, the projected gradient descent (PGD) algorithm [40].
This method generates adversarial examples by performing multiple perturbations on the
input samples along the sign direction of the gradient using projected gradient descent.
The PGD method has been widely applied in adversarial attacks in SAR imagery [33,36,41],
enhancing the attack effectiveness by increasing the number of iterations and incorporating
a layer of randomization. As an alternative to the aforementioned FGSM method and its
variants, Dong et al. proposed a translation-invariant attack method (TIM) [42], in which
the recognition areas of the attacked white-box model are less sensitive and the generated
adversarial examples have better transferability. This algorithm can be extended to any
gradient-based attack method. It uses a convolution operation before applying the gradi-
ent to the original image. Compared to those of the FGSM algorithm, the perturbations
generated by TIM are smoother.

Optimization-based attack methods: The process of generating adversarial examples
can be viewed as finding the optimal perturbation to produce effective adversarial exam-
ples. Therefore, adversarial example generation algorithms can be described as solving
constrained optimization problems to implement adversarial attacks. The C&W [43] al-
gorithm is a classic optimization-based global perturbation attack method. It is based on
iterative optimization strategies using infinity, the 0-norm, and the 2-norm. By adjusting
the parameters of the objective function, the algorithm significantly increases the solution
space, thereby greatly enhancing the success rate of the adversarial examples. The C&W
algorithm has been widely applied in adversarial attacks on SAR imagery [32,33]. However,
this approach is limited by drawbacks such as slow training speed and poor transferability.
Since the adversarial perturbation for each test sample must be optimized iteratively over
a long period, this approach is not suitable for adversarial attack tasks that require an
immediate response. Chen et al. proposed the elastic-net attacks to DNNs (EAD) [44]
method for generating attack perturbations, which can be viewed as an extension of the
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C&W method to the L1 distance norm. By applying elastic-net regularization, the approach
addresses the issue of high-dimensional feature selection in the L1 norm, thereby finding
more effective adversarial perturbations and significantly improving the transferability of
global adversarial perturbations. In the SAR domain, to address the slow training speed
of SAR image adversarial example generation by the C&W algorithm, Du et al. proposed
the fast C&W [45] adversarial example generation algorithm. This algorithm builds a deep
encoder network to learn the forwards mapping from the original SAR image space to
the adversarial example space. Through this method, adversarial perturbations can be
generated more quickly during an attack through fast forwards mapping.

Decision-based attack methods: These methods utilize the principle of hyperplane
classification, determining the size of perturbations by calculating the minimum distance
between the decision boundary of the original sample and its adversarial counterpart.
After obtaining the perturbation vector, it is added to the original sample to generate the
adversarial example. The DeepFool [46] algorithm and the HSJA [47] algorithm are classic
decision-based global adversarial attack methods. The DeepFool algorithm iteratively gen-
erates a perturbation vector pointing towards the nearest decision boundary by iterating
over the loss function until the generated adversarial example crosses the decision bound-
ary. In contrast, the HSJA algorithm repeatedly performs gradient direction estimation,
geometric series search steps, and binary searches of the estimated decision boundary
to generate global adversarial examples. To improve the global generalization ability of
the adversarial examples, Moosavi et al. proposed a method called universal adversarial
perturbations (UAP) [48], which creates widely applicable adversarial perturbations by
computing the shortest distance from the original sample to the classification boundaries
of multiple target models.

2.2. Local Perturbation Attacks

Local perturbation attacks are mainly those in which the attacker perturbs only spe-
cific areas or parts of the input sample to generate adversarial examples. Unlike global
perturbation attacks, they focus on making minor modifications to specific areas of the
input data, reducing the overall interference of background speckles while maintaining the
effectiveness of the attack. The key to local perturbation attack methods lies in precisely
controlling the perturbation area to effectively deceive the model while maintaining the
naturalness of the adversarial perturbation. Local perturbation attacks can be categorized
into several types based on the perturbation optimization strategy, with each method
employing different principles and techniques to execute the attack.

Gradient-based attack methods: Similar to global perturbation attacks, a series of
methods for local perturbation attacks exist that optimize perturbations based on gradient
strategies. Papernot et al. proposed the Jacobian-based saliency map attack (JSMA) [49]
algorithm for generating adversarial examples targeting specific objectives. This algorithm
utilizes the Jacobian matrix and saliency map matrix to identify the two pixels with the
most influence on the model’s classification results within the entire input area. It then
modifies those pixels to generate adversarial examples. Dong et al. proposed the superpixel-
guided attention (SGA) [50] algorithm, which adds perturbations to similar areas of an
image through superpixel segmentation and then converts the global problem into a local
problem using class activation mapping information. Additionally, Lu et al. introduced the
DFool method, which adds perturbations to ’stop’ signs and facial images to mislead the
corresponding detectors. This was the first paper to propose the generation of adversarial
examples in the field of object detection. DAG [10] is a classic method for adversarial
object detection attacks; it yields effective results in actual attacks but is time-consuming
due to the need for iterative attacks on each candidate box. Li et al. proposed the RAP
attack [51] for two-stage networks, designing a loss function that combines classification
and location losses. Compared to the DAG method, Li’s method utilizes the location box
information in object detection for the attack; however, its actual attack performance is
moderate, and its transferability to RPN attacks is poor. In the field of SAR, researchers
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have drawn inspiration from gradient-based attack concepts and designed a series of local
perturbation attack methods. For instance, the SAR sticker [52] creates perturbations in
specific areas of SAR images, maintaining the effectiveness of the attack while enhancing its
stealth. Peng et al. proposed the speckle variant attack (SVA) [53], a method for adversarial
attacks on SAR remote sensing images. This method consists of two main modules: a
gradient-based perturbation generator and an object area extractor. The perturbation
generator is used to implement transformations of the background SAR coherent speckle,
disrupting the original noise pattern and continuously reconstructing the speckle noise
during each iteration. This prevents the generated adversarial examples from overfitting
to noise features, which achieves robust transferability. The object area extractor ensures
the feasibility of adding adversarial perturbations in real-world scenarios by restricting the
area of the perturbations.

Optimization-based attack methods: Su et al. proposed the one-pixel attack algo-
rithm [54], which manipulates a single pixel that can alter the classification of the entire
image, thereby deceiving the classification model into mislabelling the image as a specified
tag, to some extent achieving a targeted attack. Xu et al. [32] drew inspiration from the
one-pixel algorithm to generate local perturbation attacks in SAR images, transforming the
creation of adversarial examples into a constrained optimization problem. This method
only needs to identify the pixel location to be modified and then use a differential evolution
optimization algorithm to perturb that pixel value for a successful attack. Compared to
gradient-based adversarial example generation methods, the perturbations created by
optimization-based methods are smaller in magnitude and more precise. Furthermore,
inspired by sparse adversarial perturbation methods, Meng et al. [55] proposed the TRPG
method for local adversarial perturbations when generating adversarial examples in SAR
remote sensing images. This method involves extracting the object mask position in SAR
images through segmentation, thereby aggregating the perturbations of the SAR adversar-
ial examples into the object area. Finally, adversarial examples that are more consistent
with SAR image characteristics are generated via the optimization-based C&W method.
Moreover, considering the practicality of local perturbations in the physical world, a cate-
gory of local perturbation attack methods known as ‘adversarial patches’ emerged. These
local perturbations are applied within a certain area of the input image to attack network
models and can be effectively applied in real-world scenarios. The earliest concept of
adversarial patches was proposed by Brown et al. [18] in 2017, and the locally generated
perturbations could achieve general and targeted attacks on real-world objects. Subse-
quently, Karmon et al. introduced the localized and visible adversarial noise (LaVAN) [56]
method, which focuses more on exploiting the model’s vulnerabilities to cause misclassifi-
cation, with perturbation sizes far smaller than those designed by Brown. Moreover, in the
field of object detection, a series of adversarial patch attack methods have been developed.
The Dpatch method [16] generates local perturbations and uses them as detection boxes to
interfere with detectors, while the Obj-hinder method [15] disrupts detectors by minimizing
their class loss. Wang et al. [57] proposed an object detection black-box attack based on
particle swarm optimization named EA, which guides the generation of perturbations
in appropriate positions using natural optimization algorithms; however, this method
is time-consuming.

By deeply exploring the diverse methods and techniques of global and local pertur-
bation attacks, we can more clearly see that adversarial examples have made significant
progress in multiple fields. However, when transitioning to SAR image processing, these
methods face significant limitations. First, the coherent speckle background in SAR images
dynamically changes, which makes maintaining the stability and effectiveness of adversar-
ial examples under different conditions more challenging. Second, the size adaptability of
local perturbations is a problem, especially when effective attacks on objects of different
sizes and shapes are needed. These challenges require further optimization and adjustment
of current adversarial example methods to suit the characteristics and diversity of the
scenarios in SAR imagery.
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3. Methods
3.1. Problem Formulation

To perform local adversarial attacks on SAR object detection, we first establish an
SAR detection dataset X, where each SAR image is denoted as x ∈ RC×H×W . F represents
the object detection network, which outputs a predicted label F(x) for each image x, C, H,
and W denote the number of channels, height, and width of the SAR image, respectively.
The specific expressions are as follows:

F(x∗) ̸= F(x) for most x ∈ X (1)

x∗ =
(
1 − Mp

)
⊙ x + Mp ⊙ p (2)

In Equation (1), x and x∗ represent the original sample and the adversarial sample,
respectively; p and ⊙ stand for the adversarial perturbation and the Hadamard product,
respectively. The matrix Mp serves as a mask matrix, which is used to limit the location,
size, and shape of adversarial perturbations, integrating the perturbations into the object
area to perform localized adversarial attacks. To ensure that the mathematical formulas
and experimental design presented in this paper can be accurately understood by read-
ers, Table 1 provides clear definitions for all the key symbols and their corresponding
terms. In the following sections, we explain in detail how to perform region-adaptive local
perturbation (RaLP) for SAR object detection.

Table 1. Symbols and their corresponding terms.

Symbol Corresponding Term Symbol Corresponding Term

X Raw SAR detection dataset x Original Image

x∗ Adversarial Example F Object Detection Model

Mp Mask matrix p Adversarial perturbation

xnew Mask function Cp Centre coordinates

T(·) Transition function ⊙ Hadamard product

3.2. Region-Adaptive Local Perturbation (RaLP) Framework

Adversarial attacks for SAR object detection face a challenge due to interference from
the SAR coherent speckle background. Global adversarial perturbations add unnecessary
background information to the feature space and can be hidden by background speckles in
the image space. This approach significantly reduces the attack transferability effectiveness.
In comparison to global adversarial attacks, local adversarial attacks concentrate more
on altering the object area. This approach can reduce the interference from SAR coherent
speckle backgrounds to some extent. However, due to the variability in object size and
the dynamic changes in the SAR coherent speckle background, the attack effect of local
adversarial perturbations is unstable.

To enhance the effectiveness and transferability of perturbations in SAR object detec-
tion and achieve target invisibility in the detector’s field of view, we propose the region-
adaptive local adversarial perturbation (RaLP) framework. The framework consists of
two parts: the local perturbation generator (LPG) module and the adaptive perturbation
optimizer (APO) module. The overall structure of the framework is illustrated in Figure 1.
The LPG module processes the SAR coherent speckle background and adds local adversar-
ial perturbations to the object region. On the other hand, the APO module adjusts the local
perturbation size using label information, limits local perturbation pixel changes through a
multiloss function, and optimizes the attacking effect of the perturbations through iterative
processes. In summary, the LPG provides the RaLP with the necessary perturbations to be
optimized. Moreover, the APO ensures that the perturbations applied within these areas
are appropriately sized and maximize the attack effect. Together, these methods enable the
RaLP framework to effectively generate targeted adversarial examples in various SAR im-



Remote Sens. 2024, 16, 997 8 of 23

agery environments, significantly improving the adaptability of adversarial perturbations
to attacks.

Figure 1. Diagram of the region-adaptive local adversarial perturbation (RaLP) framework.

3.2.1. Local Perturbation Generator

Considering the dynamic changes and spatial irregularities of SAR coherent speckle
noise, indiscriminately using global SAR image pixels to generate adversarial perturba-
tions and adding these perturbations to the entire image can result in the perturbations
being interfered with and obscured by the coherent speckles, leading to a decrease in the
adversarial transferability of the adversarial examples. To address this issue, we introduce
the local perturbation generator (LPG) module, which is the first component of the RaLP
framework. The LPG module first applies a noise suppression function M(x) to reduce
coherent speckle noise in the image while preserving important structural details, aiming
to diminish the interference of speckle noise on the perturbations. Subsequently, using a
feature enhancement function E(x), the characteristics of the foreground object are enhanced
to make them more prominent. Ultimately, a new dataset xnew is constructed with reduced
background noise characteristics and enhanced foreground object features.

xnew = M(x)⊙ E(x) (3)

Once the image is preprocessed, the module proceeds with perturbation area localiza-
tion, which includes setting the perturbation size and position. By concentrating the local
perturbations on key areas rather than distributing them widely across the entire image,
the specificity and effectiveness of the attack are enhanced. To achieve this goal, we require
the object annotation information (x1, x2, y1, y2) to calculate the centre coordinate of the
adversarial perturbation, which is denoted as Cp:

Cp =

(
x1 + x2

2
,

y1 + y2

2

)
(4)

The specific expression for constructing the mask matrix Mp is shown in Equation (5),
where the transformation function is T(·). The goal is to input the existing object annota-
tions and local adversarial perturbation information to build a mask matrix for merging
the adversarial perturbations with the image.

Mp = T
(

p, Cp
)

(5)

Adversarial examples x∗ are generated as follows:

x∗ =
(
1 − Mp

)
⊙ xnew + Mp ⊙ p (6)

3.2.2. Adaptive Perturbation Optimizer

In the RaLP framework, we design an adaptive perturbation optimization module to
perform local adversarial perturbation attacks on multisized objects while controlling the
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magnitude of the change in the perturbation pixel. First, the perturbation optimization
module adaptively scales the local adversarial perturbations, enabling them to adapt
to objects of varying sizes. Considering the diversity of target sizes in SAR imagery,
we propose a scale-adaptive strategy to adjust the length and width of the adversarial
perturbations (patchw, patchh) so that they maintain a proper ratio (wp, hp) with the
length and width of the target box (sarw, sarh), where γ is the scaling factor. The specific
expressions are as follows:

wp =

(
sarw ∗ 1

4

)γ

patchw
(7)

hp =

(
sarh ∗ 1

4

)γ

patchh
(8)

Incorporating the adaptive sizing strategy makes it necessary to readjust the mask matrix
and recombine the perturbation with the imagery to generate new adversarial examples.

Mp = T
(

p, Cp, wp, hp
)

(9)

x∗ =
(
1 − T

(
p, Cp, wp, hp

))
⊙ xnew + T

(
p, Cp, wp, hp

)
⊙ p (10)

Subsequently, local perturbation attacks are implemented, and pixel variations in the
perturbations are controlled through the constraints of multiple loss functions. The specific
objective function has two parts:

1. Adversarial Loss-LAdv: The object confidence is a crucial metric in the object
detector, as it indicates the presence or absence of an object in the detection box. Therefore,
to perform disappearance attacks on object detectors through local perturbations, we aim
to minimize the object confidence of the detection boxes by setting it as the optimization
objective. LAdv has two components. The first is the loss of confidence in the detection box
containing the object. The second component is the loss of confidence in the detection box
where the object is absent. The specific expression is as follows:

Lobj =
s2

∑
i=0

B

∑
j=0

Iobj
ij

[
Ĉj

i log
(

Cj
i

)
+
(

1 − Ĉj
i

)
log
(

1 − Cj
i

)]
−

λnoobj

s2

∑
i=0

B

∑
j=0

Inoobj
ij

[
Ĉj

i log
(

Cj
i

)
+
(

1 − Ĉj
i

)
log
(

1 − Cj
i

)] (11)

In Equation (11), lobj
ij , Inoobj

ij , and Ĉj
i are constructed based on the object label informa-

tion, where lobj
ij represents whether the j-th bounding box predictor in the i-th grid contains

an object; 1 is the output if it contains a target, and 0 is the output otherwise. Inoobj
ij gives

the opposite outputs. Ĉj
i represents the ground truth, which is closely related to the value

of lobj
ij . It outputs 1 if the bounding box contains an object and outputs 0 otherwise. Cj

i
represents the probability that the model predicts whether the j-th bounding box in the i-th
grid contains an object. λnoobj is a weighting factor used to control the impact of negative
samples on the loss function. In summary, to optimize the local adversarial perturbation
with LAdv and thereby reduce the confidence of detection boxes containing objects, we
intuitively consider converting lobj

ij to Inoobj
ij , which causes the original object detector to

lose its ability to detect objects of a specified category. To achieve this, we need to process
the input object labels, filter out the label information of the specified category, and only
input the label information of the other categories for the loss calculation.

2. Variation Loss-Lvara: We incorporate variation loss into the objective loss function
to control the pixel changes in perturbations and ensure that adversarial perturbations have
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smooth patterns and colour transitions. This loss function calculates the difference between
the pixels of adversarial perturbations. The formula for the variation loss is as follows:

Lvara = ∑
i,j

√(
pi+1,j − pi,j

)2
+
(

pi,j+1 − pi,j
)2 (12)

pi,j refers to the pixel value of the ith row and jth column of the adversarial per-
turbation. To summarize, our objective loss function can be divided into two parts: the
confidence loss and the variation loss. The expression for the total loss function is as follows,
which includes a hyperparameter α that adjusts the weight between the two loss values.

L = Lobj + α · Lvara (13)

4. Experimental Results and Analysis
4.1. Datasets

The SSDD dataset [19], SAR-Ship-Dataset [21], and AIR-SARShip-1.0 dataset [20]
were used to validate the experiments on high-resolution SAR imagery. The images in
the SSDD dataset were captured by the RadarSat-2, TerraSAR-X, and Sentinel-1 satellites
and included 1160 images with 2456 ship objects. These objects have different scales,
orientations, and shapes, and each image is approximately 500 × 500 in size. The SSDD
dataset contains four polarization modes, namely, HH, HV, VV, and VH, with a resolution
of 1-1-5 m.

The SAR-Ship-Dataset is created using Gaofen-3 and Sentinel-1 SAR data. The dataset
comprises a total of 102 views of Gaofen-3 and 108 views of Sentinel-1 SAR images, which
are used to construct the high-resolution SAR ship object dataset. The dataset consists of
43,819 images, each with a size of 256 × 256 pixels. It also contains 59,535 ship objects with
a resolution range of 3–25 m.

The AIR-SARShip-1.0 dataset was constructed based on Gaofen-3 satellite data. It
contains 31 images with dimensions of 3000 × 3000 pixels, featuring a single polarization
and resolutions of 1 m and 3 m. The scene types include ports, reefs, and sea surfaces under
different sea conditions. The objects cover more than ten types among thousands of ships,
including transport ships, oil tankers, and fishing boats. To facilitate the training of the
detectors, this paper divides the 3000 × 3000 pixel images in the AIR-SARShip-1.0 dataset
into 500 × 500 pixel slices. For the SSDD and SAR-Ship datasets, we directly use the images
at their original sizes. Figure 2 shows the diversity of ship objects in the three SAR datasets
mentioned in this paper. Finally, we divide the three SAR ship object detection datasets
into training and validation sets at a ratio of 8:2, which are used for model training and
performance validation, respectively.

Figure 2. Example image for SAR dataset comparison. Different types of ships show distinct
differences in the imagery; transport ships and oil tankers have much larger pixel sizes in the images
than fishing boats and other types of ships. The arrangement of ship objects in coastal areas is denser.
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4.2. Metrics

1. Quantitative standards: To quantitatively evaluate the effectiveness of the local
perturbation attack algorithm, this paper utilizes the mean average precision (mAP) as
the performance metric. The methods for calculating the precision and recall are outlined
in Equation (14). In these formulas, true positives (TP) refer to detection boxes that have
an overlap with the ground truth greater than a certain threshold. False positives (FP)
represent two types of detection boxes: those that have an overlap with the ground truth
less than the threshold and redundant detection boxes that have an overlap above the
threshold but with low category confidence. False negatives (FN) refer to ground-truth
boxes that are not successfully detected; the sum of FNand TP equals the total number
of real ground-truth labels. Finally, we analyse the results using the precision-recall (PR)
curve. The average precision (AP) is the area under the PR curve. The mean average
precision (mAP) is calculated by averaging the APs across all categories.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(14)

2. Qualitative standards: After generating the adversarial examples, we utilize the
interpretable method Grad-CAM [58] for visual analysis, which intuitively demonstrates
the effectiveness of the region-adaptive local adversarial perturbation (RaLP) attack method.
Grad-CAM calculates the importance weights of each channel’s features for target recog-
nition at the last convolutional layer. These importance weights are subsequently used
to perform a weighted summation of the feature maps at the last convolutional layer to
produce a heatmap. Finally, the heatmap is upscaled through upsampling to the size of the
original image and is fused with the original image for display. Equation (15) presents the
calculation method for the importance weights in Grad-CAM, where Z denotes the number
of pixels in the feature map. yc represents the predicted score for class c; Ak

ij represents the
data at position (i, j) in feature layer A for channel k. Wc

k represents the weight correspond-
ing to Ak. Since the probability scores for each point on the heatmap need to be positive,
those with negative scores are adjusted using the ReLU function, as shown in Equation (16).

wc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(15)

Lc
Grad-CAM = ReLU

(
∑
k

wc
k Ak

)
(16)

4.3. Experimental Setting
4.3.1. Detectors

In this study, YOLOv3 [59] is chosen as the primary detector for SAR object detection
tasks, mainly due to its efficiency and wide application in the field of real-time object
detection. YOLOv3 not only excels in speed and accuracy, but also has gained widespread
recognition in both academic and industrial circles. Moreover, a large number of studies
have used YOLOv3 as a benchmark to evaluate the effectiveness of their attack methods,
which facilitates comparison with the results of other related research. In addition, we se-
lected the FCOS [60] and Faster RCNN [61] models as experimental models. Faster RCNN,
a classic two-stage detection method, is known for its accuracy and robustness; FCOS,
as another single-stage detection method, simplifies the model architecture because it is
anchor free. By comparing these three models, we comprehensively evaluate the effective-
ness of the RaLP attack method on different object detection architectures, demonstrating
the broad applicability and effectiveness of the RaLP attack method.
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4.3.2. Experimental Setup and Baseline Model Evaluation

To verify the effectiveness of the RaLP method, this study establishes an experimental
baseline that includes YOLOv3, FCOS, and Faster R-CNN and covers both single-stage
and two-stage object detection methods. Moreover, two approaches, Obj-hinder [15] and
DPatch [16], were adopted to conduct a comprehensive test on the robustness of these
detection models against the characteristics of SAR images and to compare them with our
designed RaLP method. Obj-hinder focuses on assessing the model’s sensitivity to real
labels through local occlusions, while DPatch explores how to mislead the model by adding
local perturbations to the image without changing the characteristics of the target itself.

During the experiment, we trained the YOLOv3, FCOS, and Faster Rcnn detectors
on the SSDD dataset, SAR-Ship-Dataset, and AIR-SARShip-1.0 dataset. Subsequently,
we used the RaLP, Obj-hinder, and DPatch methods to attack the detectors trained on
the above three types of datasets and compared the effectiveness of these three attack
methods. Next, we conduct transfer experiments from dataset to dataset, model to model,
and across dataset-model combinations to verify the transferability of the RaLP method’s
attacks. Moreover, we use an adaptive mechanism to adjust the size of the adversarial
perturbations and validate the optimization effect of this mechanism by comparing different
sizes of adversarial perturbations. Finally, we use deep learning interpretability methods to
visualize the detection results and analyse the reasons why the RaLP method is effective.

4.3.3. Parameter Settings

In terms of the experimental details, we first processed the dataset with a background
noise treatment, setting a module size of 3 for median filtering of the original images to
construct a dataset with more pronounced target features. Subsequently, a series of data
augmentation methods were used to transform the adversarial perturbations, including
flipping, cropping, warping, brightness transformations, and adding noise. Regarding
the hyperparameter training, we set the batch size to 5, the number of epochs to 100,
and the initial learning rate to 0.03; the learning rate was adjusted every 50 epochs using a
monitor. All the experiments were implemented in PyTorch with Nvidia Tesla V100 GPUs
as the computing devices. For fairness, all the experiments were conducted under the
same conditions.

4.4. Attack Results

Table 2 presents the experimental results. The YOLOv3 mAP accuracies when trained
on the SSDD dataset, SAR-Ship-Dataset, and AIR-SARShip-1.0 dataset were 89.9%, 87.8%,
and 88.9%, respectively. After applying the RaLP attack algorithm proposed in this paper,
the YOLOv3 mAP detection accuracies decreased to 60.9%, 57.9%, and 56.6%, with de-
creases of 29.0% for SSDD, 29.9% for the SAR-Ship-Dataset, and 32.3% for AIR-SARShip-1.0,
respectively. In a horizontal comparison with other attack algorithms, the RaLP algorithm
showed greater reductions—17.3%, 17.8%, and 15.2%—on the three datasets compared to
the Dpatch algorithm and reductions of 2.4%, 2.9%, and 1.6% compared to the Obj-hinder al-
gorithm, demonstrating a more effective attack performance than the other two algorithms.
Furthermore, we quantitatively assessed the training time for the RaLP perturbations,
and the required number of floating-point operations (FLOPs) reached 48.3 G.

Table 2 shows the superiority of the RaLP attack algorithm through the experimental
results, and we analyse them from multiple perspectives: 1. The Dpatch algorithm places
perturbations in the corners of the image, making the success of adversarial examples in
attacking the object detector highly dependent on the size of the perturbations. Moreover,
this method does not apply filtering to SAR coherent speckle backgrounds; thus, it is unable
to effectively adapt to dynamic changes in SAR coherent speckle backgrounds, making it
challenging to maintain the effectiveness of the attack perturbations. 2. The main limitation
of the Obj-hinder attack algorithm is the fixed size of its perturbations, which makes it
unable to adapt to the diversity and complexity of SAR targets, impacting the effectiveness
of adversarial examples. 3. The RaLP algorithm incorporates speckle filtering and size
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adaptability mechanisms to mitigate the impact of the SAR coherent speckle background
and perturbation size, demonstrating a more significant attack advantage.

Table 2. Comparison of RaLP attack with other attack algorithms.RaLP demonstrates superior attack
performance, which is indicated through the use of bold data representation.

Datasets Method
mAP

Reduce (↓)
Clean Adversarial

SSDD
Dpatch

89.9%
78.2% 11.7%

Obj-hinder 63.3% 26.6%
RaLP 60.9% 29.0%

SAR-Ship-Dataset
Dpatch

87.8%
75.7% 12.1%

Obj-hinder 60.8% 27.0%
RaLP 57.9% 29.9%

AIR-SARShip-1.0
Dpatch

88.9%
71.8% 17.1%3

Obj-hinder 58.2% 30.7%
RaLP 56.6% 32.3%

In Figure 3a–c, we visualize the adversarial perturbations generated by the three
types of attack algorithms on different datasets, organized as one attack algorithm per row,
and display the detection results before and after the integration of adversarial perturba-
tions. As shown in Figure 3, regardless of the dataset, the incorporation of our designed
RaLP perturbation into the images significantly impacts the object detector, leading to
a substantial decrease in the number of detected ship objects. An analysis of the RaLP
perturbation compared with the other two types reveals that although the perturbations
generated by the three algorithms have similar shapes and sizes, the RaLP perturbation
is smoother than the other perturbations. In contrast, the Dpatch perturbation closely
resembles random noise.

(a) SSDD

Figure 3. Cont.
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(b) SAR-Ship-Dataset

(c) AIR-SARShip-1.0

Figure 3. The visualization of adversarial perturbations across multiple datasets and their corre-
sponding attack effects. Each subplot corresponds to a specific dataset, and each row within the
figure shows the adversarial perturbations generated by a single attack method, as well as the actual
images resulting from these perturbations during the attack process.

4.5. Attack Transferability

To conduct a more comprehensive evaluation of the RaLP attack algorithm, we de-
signed experiments in three scenarios to verify the transferability of region-adaptive pertur-
bations: from dataset to dataset (Scenario 1), from model to model (Scenario 2), and across
datasets and models (Scenario 3). First, for Scenario 1, we chose YOLOv3 as the sole
object detector, using RaLP adversarial perturbations generated on one dataset to attack
YOLOv3 detectors trained on two other datasets. Next, for Scenario 2, we trained YOLOv3,
FCOS, and FasterRcnn detectors on the same dataset and then used RaLP adversarial
perturbations generated on YOLOv3 to attack the FCOS and FasterRcnn detectors. Fi-
nally, for Scenario 3, we trained the YOLOv3 detector on one dataset and generated RaLP
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adversarial perturbations to attack the FCOS and FasterRcnn detectors trained on two
other datasets.

In the experiments, we evaluated the transferability of the RaLP attack algorithm
across different datasets using the mAP as the primary metric. For specific scenarios,
we meticulously designed three sets of experiments, and the results are comprehensively
presented in Tables 3–5. In Scenario 1, the experimental results are subdivided into three
categories based on the target dataset. Within each category, when the source dataset
is consistent with the target dataset, the results reflect the initial efficacy of the attack;
in other cases, these results reveal the transferability of RaLP adversarial perturbations
across different datasets. As shown in Table 3, the adversarial perturbations generated
by the RaLP method demonstrated good attack transferability among the three datasets.
When the RaLP adversarial perturbations generated on the SAR-Ship-Dataset and AIR-
SARShip-1.0 datasets were transferred to the SSDD dataset, the mAP accuracy of the
YOLOv3 detector decreased to 70.4% and 68.1%, respectively, which is a decrease of
19.5% and 21.8% from the original detection results and a reduction of 9.5% and 7.2%
compared to the direct attack on the SSDD dataset. Similarly, when transferring the RaLP
adversarial perturbations generated on the SSDD and AIR-SARShip-1.0 datasets to the SAR-
Ship-Dataset, the mAP accuracy of the YOLOv3 detector decreased to 68.1% and 68.2%,
respectively, which is a decrease of 19.7% and 19.6% from the original detection results and
a reduction of 10.2% and 10.3% compared to the direct attack on the SAR-Ship-Dataset.
When the adversarial perturbations generated on the SSDD and SAR-Ship-Dataset were
transferred to the AIR-SARShip-1.0 dataset, the mAP accuracy of the YOLOv3 detector
decreased to 68.6% and 73.1%, respectively, which is a decrease of 20.3% and 15.8% from the
original detection results and a reduction of 12% and 16.5% compared to the direct attack
on the AIR-SARShip-1.0 dataset. By comparing the three sets of results, we found that the
RaLP attack perturbations generated from data with the same source exhibit different attack
transferability on different target datasets. Notably, the adversarial perturbations obtained
on the AIR-SARShip-1.0 dataset showed the best attack transferability on the SSDD dataset.
It is important to note that attack transferability does not directly correlate linearly with
attack efficacy on the original dataset. The RaLP attack perturbations generated on the AIR-
SARShip-1.0 dataset had the strongest attack effect, but their transferability was not the best.
The experiments in Scenario 1 demonstrate that RaLP adversarial perturbations trained
on one dataset have good attack transferability to other datasets when using the same
target detector. Although there are differences in the transferability of RaLP adversarial
perturbations generated from different datasets, these differences are minimal.

Scenario 2: We continue to divide the experimental results into three groups according
to the dataset. Each group of results demonstrates the effects of adversarial perturbations
generated by RaLP on specific datasets using the YOLOv3 object detector, as well as their
transferability to black-box detection models. As shown in Table 4, RaLP adversarial per-
turbations exhibit significant transferability between different detection models. On the
SSDD dataset, the adversarial perturbations created by YOLOv3 effectively reduced the
mAP accuracy of the two black-box detection models by 22.4% and 24.4%, respectively.
Similarly, on the SAR-Ship-Dataset, the perturbations led to a decrease in the mAP accuracy
of 24.3% and 24.6% for the two models. On the AIR-SARShip-1.0 dataset, the perturba-
tions effectively reduced the mAP accuracy of the black-box models by 24.7% and 24.0%.
Additionally, we found that the impacts of RaLP adversarial perturbations were almost
identical on Faster R-CNN and FCOS, with average reductions in mAP of 23.8% and 24.3%,
respectively. The experiments in Scenario 2 indicate that the transferability of adversarial
perturbations is not affected by the different design philosophies of the anchor-based and
anchor-free detection models.
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Table 3. Scenario 1: dataset-to-dataset attack transferability.

Source Dataset Target Dataset Clean Adversarial Reduce (↓)

SSDD
SSDD 89.9%

60.9% 29.0%
SAR-Ship-Dataset 70.4% 19.5%
AIR-SARShip-1.0 68.1% 21.8%

SSDD
SAR-Ship-Dataset 87.8%

68.1% 19.7%
SAR-Ship-Dataset 57.9% 29.9 %
AIR-SARShip-1.0 68.2% 19.6%

SSDD
AIR-SARShip-1.0 88.9%

68.6% 20.3%
SAR-Ship-Dataset 73.1% 15.8%
AIR-SARShip-1.0 56.6% 32.3%

Table 4. Scenario 2: model-to-model attack transferability.

Source Datasets Model Clean Adversarial Reduce (↓)

SSDD Faster R-CNN 82.9% 60.5% 22.4%
SSDD FCOS 80.8% 56.4% 24.4%

SAR-Ship-Dataset Faster R-CNN 87.4% 63.1% 24.3%
SAR-Ship-Dataset FCOS 89.9% 65.3% 24.6%

AIR-SARShip-1.0 Faster R-CNN 78.4% 53.7% 24.7%
AIR-SARShip-1.0 FCOS 81.2% 57.2% 24.0%

Table 5. Scenario 3: cross-dataset and model attack transferability.

Source Dataset Target Dataset Model Clean Adversarial Reduce (↓)

SSDD
SAR-Ship-Dataset Faster R-CNN 94.0% 85.1% 8.9%

FCOS 95.5% 88.5% 7.0%

AIR-SARShip-1.0 Faster R-CNN 95.9% 73.1% 22.8%
FCOS 59.8% 44.6% 15.2%

SAR-Ship-Dataset
SSDD Faster R-CNN 98.0% 82.0% 16.0%

FCOS 91.1% 82.3% 8.8%

AIR-SARShip-1.0 Faster R-CNN 95.9% 82.6% 13.3%
FCOS 59.8% 44.3% 15.5%

AIR-SARShip-1.0
SAR-Ship-Dataset Faster R-CNN 94.0% 79.9% 14.1%

FCOS 95.5% 85.0% 10.5%

SSDD Faster R-CNN 98.0% 83.5% 14.5%
FCOS 91.1% 80.1% 11.0%

Scenario 3: We investigated the combined effect of RaLP adversarial perturbations
on attack transferability across different datasets and models. The experiments followed
the setup of Scenario 2, categorizing the results into three groups based on the dataset,
generating RaLP adversarial perturbations from a source dataset, and testing them on
black-box detection models trained on other datasets. The results presented in Table 5
indicate that the RaLP perturbations exhibit a certain level of attack transferability between
black-box models trained on various datasets. For instance, when the SSDD dataset was
used as the source, the YOLOv3-generated adversarial perturbations caused 8.9% and
7% decreases in mAP for models trained on the SAR-Ship-Dataset and 22.8% and 15.2%
decreases for models trained on the AIR-SARShip-1.0 dataset. When using the SAR-Ship-
Dataset as the source, the adversarial perturbations led to 16% and 8.8% reductions in mAP
for models trained on the SSDD dataset and 13.3% and 15.5% reductions for models trained
on the AIR-SARShip-1.0 dataset. With AIR-SARShip-1.0 as the source, the perturbations
caused a 14.1% and 10.5% decrease in mAP for models trained on the SAR-Ship-Dataset
and a 14.5% and 11.0% decrease for SSDD-trained models. The findings from Scenario 3
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not only further confirm that the design philosophy of different models has a minor impact
on the transferability of adversarial perturbations but also highlight the significant effect of
dataset variation on the effectiveness of the attacks.

4.6. Attack Effectiveness of Region-Adaptive Local Adversarial Perturbations

The magnitude and distribution of adversarial perturbations profoundly impact the
effectiveness of adversarial attacks. Previous methods of generating local perturbations
involved designing perturbations of a fixed size to be combined with image targets. How-
ever, in SAR ship detection datasets, the target sizes are diverse, ranging from ocean-going
tankers to coastal fishing boats. Employing a one-size-fits-all perturbation can lead to
extreme cases, such as small targets in images being completely obscured by large pertur-
bations or large targets remaining unaffected by small perturbations. Therefore, in this
paper, we employ an adaptive scaling strategy to process adversarial perturbations to
accommodate targets of varying sizes, as demonstrated in Figure 4.

Figure 4. Illustrative examples of adversarial examples created by combining targets of different sizes
with perturbations of various sizes. Each row represents adversarial example images formed by com-
bining a target of a specific size with three types of perturbations of different sizes. The combination
of adversarial perturbations generated using an adaptive strategy for the targets results in a superior
visual effect.

While the adaptive strategy effectively mitigates the extreme cases caused by size dis-
crepancies, the initial size of the region-adaptive local perturbation (RaLP) still significantly
influences the potency of the attack. Therefore, this study aims to identify the optimal
initial size for RaLP. As shown in Table 6, we tested adversarial perturbations across a
spectrum of sizes ranging from 10 × 10 to 120 × 120. These findings suggest an upwards
trend in the efficacy of RaLP perturbations with increasing size; however, the relationship
is not linear. Notably, the size of 100 × 100 exhibited a peak in adversarial effectiveness.
Below this threshold, the impact of the perturbations progressively increased, while sizes
beyond this point resulted in a gradual decrease in the effect.
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Table 6. Effectiveness of adversarial perturbations of different sizes.

Size mAP

10 × 10 73.9%
50 × 50 71.7%
80 × 80 67.3%

100 × 100 57.9%
120 × 120 60.9%

Figure 5 presents a visual comparison of the effect of RaLP across varying sizes.
The visualization illustrates that as the size of the effect increases, the texture and the infor-
mational content become more discernible, leading to an enhanced visual representation
and a consistent pattern of textural features. Smaller-sized adversarial perturbations, which
possess limited semantic information with overly simplistic patterns, tend to be less effec-
tive in terms of disruptive capacity. Conversely, larger perturbations, with their rich pattern
details, can more effectively interfere with the detector’s ability to capture object features,
thereby improving their disruptive impact. However, the adversarial effect of the 120 × 120
RaLP perturbations is less potent than that of the 100 × 100 perturbations. This could be
attributed to convergence towards a fixed pattern of texture in the perturbations, where
further size increases merely introduce additional noise, which paradoxically weakens the
perturbation’s intended adversarial effect.

Figure 5. Illustrative diagram of adversarial perturbations of different sizes. From left to right,
the sizes of the adversarial perturbations are 10 × 10, 50 × 50, 80 × 80, 100 × 100, and 120 × 120.

In Sections 4.4 and 4.5, we employed the mean average precision (mAP) as a metric
for a preliminary evaluation of the attack effectiveness of adversarial examples. While
the mAP reflects the model’s performance across the entire dataset, it may not reveal the
model’s vulnerabilities in individual instances in detail. To more comprehensively assess
the attack effectiveness of our region-adaptive local perturbation (RaLP) algorithm, we
conducted more stringent experimental tests.

During the specific experimental process, we first identified the total number of objects
in the images. We then input the original images into the detection model and counted
the objects the model could accurately predict and locate. Furthermore, we introduced
local perturbations to the object areas based on the annotation information to generate
adversarial examples and retested the model’s detection capability to observe its detection
performance on these perturbed images.

Table 7 shows a significant decrease in the model’s detection success rate upon intro-
ducing adversarial perturbations across the SSDD dataset, SAR-Ship-Dataset, and AIR-
SARShip-1.0 dataset. On the SSDD dataset, the true detection success rate decreased by
38.6%, that on the SAR-Ship-Dataset decreased by 31.0%, and that on the AIR-SARShip-1.0
dataset decreased by 43.0%. These results further confirm the ability of the RaLP algorithm
to significantly impair the model’s detection capabilities and highlight the importance of
considering the model’s sensitivity to specific objects when designing adversarial attacks.
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Table 7. The impact of the RaLP algorithm on the detection success rate of SAR object detection models.

Datasets Sample Status Detection Success Rate Detection Miss Rate

SSDD
Original Samples 91.3% 8.7%

Adversarial Samples 52.7% 47.3%

SAR-Ship-Dataset
Original Samples 81.7% 18.3%

Adversarial Samples 50.7% 49.3%

AIR-SARShip-1.0
Original Samples 87.6% 12.4%

Adversarial Samples 44.6% 55.4%

4.7. Visual Analysis

Our study demonstrates that RaLP perturbations can effectively diminish the con-
fidence of detection boxes, thereby misguiding the object detector’s outcomes. The un-
derlying mechanisms by which RaLP perturbations mislead the detector remain unclear,
prompting further investigation.

Figure 6 shows the features extracted by YOLOv3 from both the original and ad-
versarial examples using Grad-CAM [58]. A comparison of the class activation maps of
the original samples reveals that the detector focuses on the object regions, scoring them
highly. However, when RaLP perturbations are introduced, there is a noticeable shift and
attenuation in the focus on these features. This suggests that RaLP perturbations reduce
the precision of object detectors by flexibly adjusting the size of the perturbations. This
is achieved without obscuring the object; instead, it amplifies the perturbations’ interfer-
ence with the detector’s ability to extract object features. As a result, there is a loss of
contextual semantic information about the object, leading to false detections. Additionally,
the application of speckle filtering techniques to images effectively mitigates interference
from the SAR coherent speckle background, enhancing the attack stability of the RaLP
adversarial perturbations.

Figure 6. Grad-CAM visualization schematic. Each column in the figure represents the detection
results and class activation visualization for the original and adversarial examples.

5. Conclusions and Future Work

In this paper, we introduce an adversarial attack method named region-adaptive local
perturbation (RaLP) and provide a thorough explanation and analysis of the framework,
algorithm, and experimental results of RaLP. The RaLP method takes into account the
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unique properties of SAR imagery by processing the original images through filtering
and masking operations to ensure that perturbations are concentrated in the object areas.
This effectively reduces interference from coherent speckle background noise, maintaining
the efficacy and stability of the adversarial perturbations. During the phase of training
adversarial perturbations, we employ various data transformation techniques to enhance
the robustness of adversarial perturbations across different operational environments.
However, these operations increase the time costs and reduce the training efficiency, so the
balance between the effectiveness of adversarial attacks and training efficiency must be
considered. Additionally, considering the specificity of SAR object detection tasks and the
diversity of objects, RaLP employs an adaptive optimization strategy based on confidence
loss. The size of the perturbation is dynamically adjusted according to the object size,
significantly enhancing the effectiveness of the attack. The experimental results show that
RaLP demonstrates a stronger attack capability than do classic methods such as DPatch and
Obj-hinder across multiple datasets, and it exhibits good transferability. A visual analysis
further reveals the mechanism behind the successful attacks of RaLP.

The RaLP method exhibits a robust attack capability, averaging more than 10% higher
mAP values than the baseline. However, future research needs to address several key issues:
(1) Enhanced attack transferability: In light of the potential for insufficient transferability of
adversarial examples trained on a single model, we will draw upon pertinent research to ex-
plore multimodel training approaches, aiming to improve the transferability of adversarial
examples across different models [62,63]. (2) Physical attack design: The current experi-
mental methods involve purely digital exploration and cannot be realized in the physical
world. We will further investigate how to generate SAR adversarial examples under real
physical constraints, in particular, dynamic and unstable environments. (3) Integration of
self-supervised learning and graph neural networks: The effectiveness of self-supervised
learning has been substantiated in numerous studies, offering innovative approaches for
the design of enhanced adversarial examples [64–66]. Moreover, by integrating graph
neural networks [67,68], self-supervised learning facilitates a profound understanding of
model vulnerabilities [69], enabling the creation of more elusive adversarial examples.
(4) Defence mechanism research: To balance adversarial attacks and defence, exploring
effective defence strategies is necessary to enhance the robustness and security of deep
neural networks.
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