Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,114)

Search Parameters:
Keywords = uniqueness criteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2183 KiB  
Article
Advancing Semantic Enrichment Compliance in BIM: An Ontology-Based Framework and IDS Evaluation
by Tomo Cerovšek and Mohamed Omar
Buildings 2025, 15(15), 2621; https://doi.org/10.3390/buildings15152621 (registering DOI) - 24 Jul 2025
Abstract
As BIM projects grow in volume and complexity, automated Information Compliance Checking (ICC) is becoming essential to meet demanding regulatory and contractual requirements. This study presents novel controlled vocabularies and processes for the management of information requirements, along with a structured evaluation of [...] Read more.
As BIM projects grow in volume and complexity, automated Information Compliance Checking (ICC) is becoming essential to meet demanding regulatory and contractual requirements. This study presents novel controlled vocabularies and processes for the management of information requirements, along with a structured evaluation of the Information Delivery Specification (IDS) and its associated tools. The controlled vocabularies are important as they provide support to standardization, information retrieval, data-driven workflows, and AI integration. Information requirements are classified by input type and project interaction context (phase, origin, project role, and communication), as well as by applicability (data management function, model granularity, BIM usage, and checkability). The ontology comprises seven categories: identity, geometry, design/performance, fabrication/construction, operation/maintenance, cost, and regulatory category, each linked to verification principles such as uniqueness and consistency. This enables systematic implementation of validation checks aligned with company and project needs. We introduce three ICC workflows in relation to the BIM authoring tools (inside, outside, and hybrid) and suggest key criteria for the functional and non-functional evaluation of IDS tools. Empirical results from a real project using five IDS tools reveal implementation issues with the classification facet, regular expressions, and issue reporting. The proposed ontology and framework lay the foundation for a scalable, transparent ICC within openBIM. The results also provide ICC process guidance for practitioners, a SWOT analysis that can inform enhancements to the existing IDS schema, identify possible inputs for certification of IDS tools, and generate innovative ideas for research and development. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

23 pages, 264 KiB  
Article
The Patentability of AI-Generated Technical Solutions and Institutional Responses: Chinese Perspective vs. Other Countries
by Wen Ding and Shemin Deng
Information 2025, 16(8), 629; https://doi.org/10.3390/info16080629 (registering DOI) - 24 Jul 2025
Abstract
The continuously enhanced generative capabilities of artificial intelligence (AI) are challenging the existing patent system. There are still some issues, such as whether AI can be considered an inventor, whether technical solutions generated by AI are patentable, and how ownership should be allocated. [...] Read more.
The continuously enhanced generative capabilities of artificial intelligence (AI) are challenging the existing patent system. There are still some issues, such as whether AI can be considered an inventor, whether technical solutions generated by AI are patentable, and how ownership should be allocated. AI-generated technical solutions fall under the category of patentable subject matter. Specifically, if they meet the requirements of the “three criteria,” they can become the subject of patent rights. Regarding the issue of AI’s eligibility as an inventor, a parallel technical generation registration system for AI should be established, with the current inventor system maintained in parallel. Concerning patent ownership issues, the assignable subjects of patent rights should be limited to the binary subjects of users and investors. Contractual agreements should take precedence to ensure contractual freedom, and ownership should generally be attributed to the user if no agreement exists. Additionally, a specialized fast-track review and authorization mechanism should be designed for AI-generated technical solutions, given the unique nature of AI-generated solutions. Moreover, their protection periods should be appropriately shortened to ensure a balance of interests. Furthermore, a disclosure system should be built across the entire lifecycle to prevent and mitigate risks that may arise during the machine generation of technical solutions, patent applications, patent authorizations, and dissemination stages. Full article
24 pages, 1654 KiB  
Review
Acute Respiratory Distress Syndrome: Pathophysiological Insights, Subphenotypes, and Clinical Implications—A Comprehensive Review
by Mairi Ziaka and Aristomenis Exadaktylos
J. Clin. Med. 2025, 14(15), 5184; https://doi.org/10.3390/jcm14155184 - 22 Jul 2025
Viewed by 36
Abstract
Increased epithelial and endothelial permeability, along with dysregulated inflammatory responses, are key aspects of acute respiratory distress syndrome (ARDS) pathophysiology, which not only impact the lungs but also contribute to detrimental organ crosstalk with distant organs, ultimately leading to multiple organ dysfunction syndrome [...] Read more.
Increased epithelial and endothelial permeability, along with dysregulated inflammatory responses, are key aspects of acute respiratory distress syndrome (ARDS) pathophysiology, which not only impact the lungs but also contribute to detrimental organ crosstalk with distant organs, ultimately leading to multiple organ dysfunction syndrome (MODS)—the primary cause of morbidity and mortality in patients with lung injury (LI) and ARDS. It is predominantly manifested by hypoxemic respiratory failure and bilateral pulmonary infiltrates, which cannot be fully attributed to cardiac failure or hypervolemia, but rather to alveolo-capillary barrier dysfunction, dysregulated systemic and pulmonary inflammation, immune system abnormalities, and mechanical stimuli-related responses. However, these pathological features are not uniform among patients with ARDS, as distinct subphenotypes with unique biological, clinical, physiological, and radiographic characteristics have been increasingly recognized in recent decades. The severity of ARDS, clinical outcomes, mortality, and efficacy of applied therapeutic measures appear significant depending on the respective phenotype. Acknowledging the heterogeneity of ARDS and defining distinct subphenotypes could significantly modify therapeutic strategies, enabling more precise and targeted treatments. To address these issues, a comprehensive literature search was conducted in PubMed using predefined keywords related to ARDS pathophysiology, subphenotypes, and personalized therapeutic approaches. Optimizing the identification and characterization of discrete ARDS subphenotypes—based on clinical, biological, physiological, and radiographic criteria—will deepen our understanding of ARDS pathophysiology, promote targeted recruitment in prospective clinical studies to define patient clusters with heterogeneous therapeutic responses, and support the shift toward individualized treatment strategies. Full article
(This article belongs to the Special Issue Ventilation in Critical Care Medicine: 2nd Edition)
Show Figures

Figure 1

16 pages, 1291 KiB  
Review
Pellucid Marginal Degeneration: A Comprehensive Review of Pathophysiology, Diagnosis, and Management Strategies
by Michael Tsatsos, Konstantina Koulotsiou, Ioannis Giachos, Ioannis Tsinopoulos and Nikolaos Ziakas
J. Clin. Med. 2025, 14(15), 5178; https://doi.org/10.3390/jcm14155178 - 22 Jul 2025
Viewed by 47
Abstract
Purpose: Pellucid Marginal Degeneration (PMD) is a rare ectatic corneal disorder characterized by inferior peripheral thinning and significant irregular astigmatism. Despite its clinical similarities to keratoconus, PMD presents unique diagnostic and therapeutic challenges. This review aims to provide a comprehensive update on the [...] Read more.
Purpose: Pellucid Marginal Degeneration (PMD) is a rare ectatic corneal disorder characterized by inferior peripheral thinning and significant irregular astigmatism. Despite its clinical similarities to keratoconus, PMD presents unique diagnostic and therapeutic challenges. This review aims to provide a comprehensive update on the pathophysiology, clinical features, diagnostic approaches, and management strategies for PMD, emphasizing the latest advancements in treatment options. Methods: A systematic literature search was performed in MEDLINE (via PubMed), Google Scholar, and Scopus up to February 2025 using the terms: “pellucid marginal degeneration,” “PMD,” “ectatic corneal disorders,” “keratoplasty in PMD,” “corneal cross-linking in PMD,” “ICRS in PMD,” “toric IOL PMD” and their Boolean combinations (AND/OR). The search was restricted to English-language studies involving human subjects, including case reports, case series, retrospective studies, clinical trials, and systematic reviews. A total of 76 studies met the inclusion criteria addressing treatment outcomes in PMD. Results: PMD is characterized by a crescent-shaped band of inferior corneal thinning, leading to high irregular astigmatism and reduced visual acuity. Diagnosis relies on advanced imaging techniques such as Scheimpflug-based corneal tomography, which reveals the characteristic “crab-claw” pattern. Conservative management includes rigid gas-permeable (RGP) lenses and scleral lenses, which provide effective visual rehabilitation in mild to moderate cases. Surgical options, such as CXL, ICRS, and toric IOLs, are reserved for advanced cases, with varying degrees of success. Newer techniques such as CAIRS, employing donor tissue instead of synthetic rings, show promising outcomes in corneal remodeling with potentially improved biocompatibility. Penetrating keratoplasty (PK) and deep anterior lamellar keratoplasty (DALK) remain definitive treatments for severe PMD, though they are associated with significant risks, including graft rejection and postoperative astigmatism. Conclusions: PMD is a complex and progressive corneal disorder that requires a tailored approach to management. Early diagnosis and intervention are critical to optimizing visual outcomes. While conservative measures are effective in mild cases, surgical interventions offer promising results for advanced disease. Further research is needed to refine treatment protocols and improve long-term outcomes for patients with PMD. Full article
(This article belongs to the Special Issue New Insights into Corneal Disease and Transplantation)
Show Figures

Figure 1

21 pages, 756 KiB  
Systematic Review
Challenges in Identifying Biomarkers of Frailty Syndrome: A Systematic Review
by Indira Omarova, Ainur Yeshmanova, Gulzhan Gabdulina, Aigul Tazhiyeva, Shynar Ryspekova, Akmaral Abdykulova, Ainur Nuftieva, Tamara Abdirova, Dame Sailanova, Zhanar Mombiyeva and Indira Karibayeva
Medicina 2025, 61(7), 1309; https://doi.org/10.3390/medicina61071309 - 21 Jul 2025
Viewed by 170
Abstract
Background and Objectives: The aim of this study is to categorize and combine (according to the source of biomaterial) biomarkers of frailty syndrome and identify challenges in research on these biomarkers by reviewing the current literature from the past five years. Methods [...] Read more.
Background and Objectives: The aim of this study is to categorize and combine (according to the source of biomaterial) biomarkers of frailty syndrome and identify challenges in research on these biomarkers by reviewing the current literature from the past five years. Methods: We systematically searching five electronic databases—PubMed, Scopus, Web of Science, CINAHL, and the Cochrane Library—for citations from 1 January 2019 to 1 July 2024. We conducted a qualitative data synthesis and categorized the limitations by topics and subtopics. PROSPERO—CRD: 42024491369. Results: A total of 61 papers met the criteria for inclusion in this study. These studies included a total of 56,758 participants, and 1479 unique biomarkers. We categorized biomarkers such as blood, genetic, urinary, and salivary biomarkers. Our analysis identified three major categories of challenges: challenges related to study design, unclear pathophysiological mechanisms, and biomarker-specific challenges. Conclusions: This review underscores the extensive research into biomarkers associated with frailty syndrome, such as blood, genetic, urinary, and salivary biomarkers. However, significant challenges persist, including methodological inconsistencies, biomarker measurement variability, and a limited understanding of underlying mechanisms. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

19 pages, 1167 KiB  
Article
A Reservoir Group Flood Control Operation Decision-Making Risk Analysis Model Considering Indicator and Weight Uncertainties
by Tangsong Luo, Xiaofeng Sun, Hailong Zhou, Yueping Xu and Yu Zhang
Water 2025, 17(14), 2145; https://doi.org/10.3390/w17142145 - 18 Jul 2025
Viewed by 159
Abstract
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir [...] Read more.
Reservoir group flood control scheduling decision-making faces multiple uncertainties, such as dynamic fluctuations of evaluation indicators and conflicts in weight assignment. This study proposes a risk analysis model for the decision-making process: capturing the temporal uncertainties of flood control indicators (such as reservoir maximum water level and downstream control section flow) through the Long Short-Term Memory (LSTM) network, constructing a feasible weight space including four scenarios (unique fixed value, uniform distribution, etc.), resolving conflicts among the weight results from four methods (Analytic Hierarchy Process (AHP), Entropy Weight, Criteria Importance Through Intercriteria Correlation (CRITIC), Principal Component Analysis (PCA)) using game theory, defining decision-making risk as the probability that the actual safety level fails to reach the evaluation threshold, and quantifying risks based on the First-Order Second-Moment (FOSM) method. Case verification in the cascade reservoirs of the Qiantang River Basin of China shows that the model provides a risk assessment framework integrating multi-source uncertainties for flood control scheduling decisions through probabilistic description of indicator uncertainties (e.g., Zmax1 with μ = 65.3 and σ = 8.5) and definition of weight feasible regions (99% weight distribution covered by the 3σ criterion), filling the methodological gap in risk quantification during the decision-making process in existing research. Full article
(This article belongs to the Special Issue Flood Risk Identification and Management, 2nd Edition)
Show Figures

Figure 1

21 pages, 1765 KiB  
Article
Comparative Diagnostic Efficacy of Four Breast Imaging Modalities in Dense Breasts: A Single-Center Retrospective Study
by Danka Petrović, Bojana Šćepanović, Milena Spirovski, Zoran Nikin and Nataša Prvulović Bunović
Biomedicines 2025, 13(7), 1750; https://doi.org/10.3390/biomedicines13071750 - 17 Jul 2025
Viewed by 312
Abstract
Background and Objectives: The aim of our study was to assess the diagnostic accuracy of four imaging modalities—digital mammography (DM), digital breast tomosynthesis (DBT), ultrasound (US), and breast magnetic resonance imaging (MRI)—applied individually and in combination in early cancer detection in women [...] Read more.
Background and Objectives: The aim of our study was to assess the diagnostic accuracy of four imaging modalities—digital mammography (DM), digital breast tomosynthesis (DBT), ultrasound (US), and breast magnetic resonance imaging (MRI)—applied individually and in combination in early cancer detection in women with dense breasts. Methods: This single-center retrospective study was conducted from January 2021 to September 2024 at the Oncology Institute of Vojvodina in Serbia and included 168 asymptomatic and symptomatic women with dense breasts. Based on the exclusion criteria, the final number of women who were screened with all four imaging methods was 156. The reference standard for checking the diagnostic accuracy of these methods is the result of a histopathological examination, if a biopsy is performed, or a stable radiological finding in the next 12–24 months. Results: The findings underscore the superior diagnostic performance of breast MRI with the highest sensitivity (95.1%), specificity (78.7%), and overall accuracy (87.2%). In contrast, DM showed the lowest sensitivity (87.7%) and low specificity (49.3%). While the combination of DM + DBT + US demonstrated improved sensitivity to 96.3%, its specificity drastically decreased to 32%, illustrating as ensitivity–specificity trade-off. Notably, the integration of all four modalities increased sensitivity to 97.5% but decreased specificity to 29.3%, suggesting an overdiagnosis risk. DBT significantly improved performance over DM alone, likely due to enhanced tissue differentiation. US proved valuable in dense breast tissue but was associated with a high false-positive rate. Breast MRI, even when used alone, confirmed its status as the gold standard for dense breast imaging. However, its widespread use is constrained by economic and logistical barriers. ROC curve analysis further emphasized MRI’s diagnostic superiority (AUC = 0.958) compared with US (0.863), DBT (0.828), and DM (0.820). Conclusions: This study provides a unique, comprehensive comparison of all four imaging modalities within the same patient cohort, offering a rare model for optimizing diagnostic pathways in women with dense breasts. The findings support the strategic integration of complementary imaging approaches to improve early cancer detection while highlighting the risk of increased false-positive rates. In settings where MRI is not readily accessible, a combined DM + DBT + US protocol may serve as a pragmatic alternative, though its limitations in specificity must be carefully considered. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

34 pages, 2170 KiB  
Article
In Silico Evaluation of Quinolone–Triazole and Conazole–Triazole Hybrids as Promising Antimicrobial and Anticancer Agents
by Humaera Noor Suha, Mansour H. Almatarneh, Raymond A. Poirier and Kabir M. Uddin
Int. J. Mol. Sci. 2025, 26(14), 6752; https://doi.org/10.3390/ijms26146752 - 14 Jul 2025
Viewed by 195
Abstract
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that [...] Read more.
Cancer remains one of the leading causes of death globally, highlighting the urgent need for novel anticancer therapies with higher efficacy and reduced toxicity. Similarly, the rise in multidrug-resistant pathogens and emerging infectious diseases underscores the critical demand for new antimicrobial agents that target resistant infections through unique mechanisms. This study used computational approaches to investigate twenty quinolone–triazole and conazole–triazole hybrid derivatives as antimicrobial and anticancer agents (120) with nine reference drugs. By studying their interactions with 6 bacterial DNA gyrase and 10 cancer-inducing target proteins (E. faecalis, M. tuberculosis, S. aureus, E. coli, M. smegmatis, P. aeruginosa and EGFR, MPO, VEGFR, CDK6, MMP1, Bcl-2, LSD1, HDAC6, Aromatase, ALOX15) and comparing them with established drugs such as ampicillin, cefatrizine, fluconazole, gemcitabine, itraconazole, ribavirin, rufinamide, streptomycin, and tazobactam, compounds 15 and 16 emerged as noteworthy antimicrobial and anticancer agents, respectively. In molecular dynamics simulations, compounds 15 and 16 had the strongest binding at −10.6 kcal mol−1 and −12.0 kcal mol−1 with the crucial 5CDQ and 2Z3Y proteins, respectively, exceeded drug-likeness criteria, and displayed extraordinary stability within the enzyme’s pocket over varied temperatures (300–320 K). In addition, we used density functional theory (DFT) to calculate dipole moments and molecular orbital characteristics and analyze the thermodynamic stability of putative antimicrobial and anticancer derivatives. This finding reveals a well-defined, possibly therapeutic relationship, supported by theoretical and future in vitro and in vivo studies. Compounds 15 and 16, thus, emerged as intriguing contenders in the fight against infectious diseases and cancer. Full article
(This article belongs to the Special Issue Peptide Self-Assembly)
Show Figures

Figure 1

31 pages, 4652 KiB  
Article
A Delayed Malware Propagation Model Under a Distributed Patching Mechanism: Stability Analysis
by Wei Zhang, Xiaofan Yang and Luxing Yang
Mathematics 2025, 13(14), 2266; https://doi.org/10.3390/math13142266 - 14 Jul 2025
Viewed by 128
Abstract
Antivirus (patch) is one of the most powerful tools for defending against malware spread. Distributed patching is superior to its centralized counterpart in terms of significantly lower bandwidth requirement. Under the distributed patching mechanism, a novel malware propagation model with double delays and [...] Read more.
Antivirus (patch) is one of the most powerful tools for defending against malware spread. Distributed patching is superior to its centralized counterpart in terms of significantly lower bandwidth requirement. Under the distributed patching mechanism, a novel malware propagation model with double delays and double saturation effects is proposed. The basic properties of the model are discussed. A pair of thresholds, i.e., the first threshold R0 and the second threshold R1, are determined. It is shown that (a) the model admits no malware-endemic equilibrium if R01, (b) the model admits a unique patch-free malware-endemic equilibrium and admits no patch-endemic malware-endemic equilibrium if 1<R0R1, and (c) the model admits a unique patch-free malware-endemic equilibrium and a unique patch-endemic malware-endemic equilibrium if R0>R1. A criterion for the global asymptotic stability of the malware-free equilibrium is given. A pair of criteria for the local asymptotic stability of the patch-free malware-endemic equilibrium are presented. A pair of criteria for the local asymptotic stability of the patch-endemic malware-endemic equilibrium are derived. Using cybersecurity terms, these theoretical outcomes have the following explanations: (a) In the case where the first threshold can be kept below unity, the malware can be eradicated through distributed patching. (b) In the case where the first threshold can only be kept between unity and the second threshold, the patches may fail completely, and the malware cannot be eradicated through distributed patching. (c) In the case where the first threshold cannot be kept below the second threshold, the patches may work permanently, but the malware cannot be eradicated through distributed patching. The influence of the delays and the saturation effects on malware propagation is examined experimentally. The relevant conclusions reveal the way the delays and saturation effects modulate these outcomes. Full article
Show Figures

Figure 1

17 pages, 1864 KiB  
Article
The Neurological Metabolic Phenotype in Prolonged/Chronic Critical Illness: Propensity Score Matched Analysis of Nutrition and Outcomes
by Levan B. Berikashvili, Alexander E. Shestopalov, Petr A. Polyakov, Alexandra V. Yakovleva, Mikhail Ya. Yadgarov, Ivan V. Kuznetsov, Mohammad Tarek S. M. Said, Ivan V. Sergeev, Andrey B. Lisitsyn, Alexey A. Yakovlev and Valery V. Likhvantsev
Nutrients 2025, 17(14), 2302; https://doi.org/10.3390/nu17142302 - 12 Jul 2025
Viewed by 289
Abstract
Background: Brain injuries, including stroke and traumatic brain injury (TBI), pose a major healthcare challenge due to their severe consequences and complex recovery. While ischemic strokes are more common, hemorrhagic strokes have a worse prognosis. TBI often affects young adults and leads [...] Read more.
Background: Brain injuries, including stroke and traumatic brain injury (TBI), pose a major healthcare challenge due to their severe consequences and complex recovery. While ischemic strokes are more common, hemorrhagic strokes have a worse prognosis. TBI often affects young adults and leads to long-term disability. A critical concern in these patients is the frequent development of chronic critical illness, compounded by metabolic disturbances and malnutrition that hinder recovery. Objective: This study aimed to compare changes in nutritional status parameters under standard enteral nutrition protocols and clinical outcomes in prolonged/chronic critically ill patients with TBI or stroke versus such a population of patients without TBI or stroke. Methods: This matched prospective–retrospective cohort study included intensive care unit (ICU) patients with TBI or stroke from the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology and patients without these conditions from the eICU-CRD database. Inclusion criteria comprised age 18–74 years, ICU stay >5 days, and enteral nutrition. Patients with re-hospitalization, diabetes, acute organ failure, or incomplete data were excluded. Laboratory values and clinical outcomes were compared between the two groups. Propensity score matching (PSM) was used to balance baseline characteristics (age, sex, and body mass index). Results: After PSM, 29 patients with TBI or stroke and 121 without were included. Univariate analysis showed significant differences in 21 laboratory parameters and three hospitalization outcomes. On day 1, the TBI/stroke group had higher hemoglobin, hematocrit, lymphocytes, total protein, and albumin, but lower blood urea nitrogen (BUN), creatinine, and glucose. By day 20, they had statistically significantly lower calcium, BUN, creatinine, and glucose. This group also showed less change in lymphocytes, calcium, and direct bilirubin. Hospitalization outcomes showed longer mechanical ventilation duration (p = 0.030) and fewer cases of acute kidney injury (p = 0.0220) in the TBI/stroke group. Conclusions: TBI and stroke patients exhibit unique metabolic patterns during prolonged/chronic critical illness, differing significantly from other ICU populations in protein/glucose metabolism and complication rates. These findings underscore the necessity for specialized nutritional strategies in neurocritical care and warrant further investigation into targeted metabolic interventions. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 720 KiB  
Systematic Review
A Systematic Review of Mental Health Monitoring and Intervention Using Unsupervised Deep Learning on EEG Data
by Akhila Reddy Yadulla, Guna Sekhar Sajja, Santosh Reddy Addula, Mohan Harish Maturi, Geeta Sandeep Nadella, Elyson De La Cruz, Karthik Meduri and Hari Gonaygunta
Psychol. Int. 2025, 7(3), 61; https://doi.org/10.3390/psycholint7030061 - 10 Jul 2025
Viewed by 294
Abstract
Electroencephalography (EEG) is a widely used non-invasive method for capturing brain activity, offering valuable insights into cognitive and emotional states relevant to mental health. With the growing complexity and volume of EEG data, machine learning (ML) techniques—particularly deep learning—have become integral in extracting [...] Read more.
Electroencephalography (EEG) is a widely used non-invasive method for capturing brain activity, offering valuable insights into cognitive and emotional states relevant to mental health. With the growing complexity and volume of EEG data, machine learning (ML) techniques—particularly deep learning—have become integral in extracting meaningful patterns. While much of the current literature focuses on supervised learning methods that rely on labeled data, unsupervised learning offers an alternative approach capable of discovering hidden structures and novel biomarkers without requiring predefined labels. This systematic review aimed to identify and synthesize recent peer-reviewed research that applied unsupervised or self-supervised learning techniques to EEG data in the context of mental health monitoring, diagnosis, or analysis. A comprehensive search was conducted across six major databases, including PubMed, Scopus, Web of Science, IEEE Xplore, PsycINFO, and Google Scholar, covering literature from January 2018 to March 2025. Following PRISMA guidelines, predefined inclusion and exclusion criteria were applied to screen and assess the relevance and quality of studies. From 512 initial records, 403 unique articles were screened, and 20 underwent full-text review. Ultimately, no studies met all the inclusion criteria. Most were excluded for employing only supervised methods, being review articles, or focusing on non-mental-health applications. The absence of eligible studies highlights a significant gap in current research and emphasizes the need for future empirical work exploring unsupervised techniques in EEG-based mental health applications. Such efforts could pave the way for more scalable, label-free approaches to understanding brain dynamics in psychological conditions. Full article
(This article belongs to the Section Neuropsychology, Clinical Psychology, and Mental Health)
Show Figures

Figure 1

9 pages, 206 KiB  
Article
Effect of Prior Laser-Assisted In Situ Keratomileusis on the Calibration Accuracy of Extended Depth of Focus Intraocular Lenses: A Direct Comparative Study
by I-Hung Lin, Chen-Cheng Chao and Chao-Kai Chang
J. Pers. Med. 2025, 15(7), 301; https://doi.org/10.3390/jpm15070301 - 10 Jul 2025
Viewed by 199
Abstract
Background: Personalized precision medicine has become a prevailing trend and applies to the selection of intraocular lenses (IOLs) for cataract surgery based on the unique corneal morphology of each person. The choice of presbyopia-correcting IOLs for post-laser-assisted in situ keratomileusis (LASIK) cataract surgery [...] Read more.
Background: Personalized precision medicine has become a prevailing trend and applies to the selection of intraocular lenses (IOLs) for cataract surgery based on the unique corneal morphology of each person. The choice of presbyopia-correcting IOLs for post-laser-assisted in situ keratomileusis (LASIK) cataract surgery is a significant concern. However, few direct comparison studies exist between eyes with and without LASIK history. We analyzed the performance of extended depth of focus (EDOF) IOL implantation in these two groups. Methods: In this retrospective single-center study, we included patients with or without previous LASIK who underwent cataract surgery and EDOF Symfony IOL implantation, with ≥1 follow up. All patients underwent optical biometry using the IOLMaster. IOL power was calculated using the Sanders Retzslaff Kraff/theoretical and Haigis-L formulas for patients without and with LASIK, respectively. Uncorrected distance visual acuity (UDVA), uncorrected near visual acuity (UNVA), refraction, and corneal tomography were recorded. The prediction error was the absolute difference between the postoperative sphere and target refraction. The right eyes of patients who met the inclusion criteria were selected for analysis. Results: Among the 321 recruited eyes, 18 underwent previous LASIK. After 1:3 age/sex matching, 17 LASIK and 49 non-LASIK eyes from 66 patients were analyzed. No significant preoperative differences existed in target refraction, spherical equivalent, or best-corrected visual acuity. All surgical procedures were uneventful. LASIK exhibited non-inferiority to non-LASIK for predictive refraction error and UNVA. An age/sex-matched regression analysis indicated no UDVA superiority between the two groups. Conclusions: Previous LASIK may have no discernible effect on the visual performance of presbyopia-correcting EDOF IOLs with respect to the absolute refractive error, UNVA, and UDVA. Longer follow-up and larger-scale studies are required to further validate these results. Full article
25 pages, 2721 KiB  
Article
GIS-Based Assessment of Stormwater Harvesting Potentials: A Sustainable Approach to Alleviate Water Scarcity in Rwanda’s Eastern Savanna Agroecological Zone
by Herve Christian Tuyishime and Kyung Sook Choi
Water 2025, 17(14), 2045; https://doi.org/10.3390/w17142045 - 8 Jul 2025
Viewed by 460
Abstract
Water scarcity remains critical in Rwanda’s Eastern Savanna Agroecological Zone due to erratic rainfall, prolonged dry seasons, and rising water demands. This challenge threatens agricultural productivity, food security, and livelihoods. Stormwater harvesting presents a sustainable solution that increases water availability and mitigates the [...] Read more.
Water scarcity remains critical in Rwanda’s Eastern Savanna Agroecological Zone due to erratic rainfall, prolonged dry seasons, and rising water demands. This challenge threatens agricultural productivity, food security, and livelihoods. Stormwater harvesting presents a sustainable solution that increases water availability and mitigates the impacts of climate variability. This study utilizes Geographic Information System (GIS) tools and SCS-CN to assess stormwater harvesting potential in the region. The methodology includes analyzing land use, soil type, rainfall data (30 years, from 1994 to 2023), and topography. Key research steps involve delineating catchment areas, estimating runoff volumes, and selecting optimal storage sites using multi-criteria decision analysis. Findings include eight main water reservoirs, each with a unique code (W_R1 to W_R8), geographic coordinates (X and Y), and 10 million cubic meters storage volumes. W_R1 has the smallest volume at 0.242 × 106 m3, while W_R2 has the largest volume at 8.51 × 106 m3. W_R3, W_R5, and W_R7 are additional noteworthy reservoirs with sizable capacities. The findings contribute to policy formulation and Sustainable Development Goals (SDGs) related to clean water, food security, and climate action. This research provides a replicable framework for addressing water scarcity and enhancing long-term resilience in water-stressed regions. Full article
Show Figures

Figure 1

16 pages, 815 KiB  
Review
Microvascularization of the Vocal Folds: Molecular Architecture, Functional Insights, and Personalized Research Perspectives
by Roxana-Andreea Popa, Cosmin-Gabriel Popa, Delia Hînganu and Marius Valeriu Hînganu
J. Pers. Med. 2025, 15(7), 293; https://doi.org/10.3390/jpm15070293 - 7 Jul 2025
Viewed by 334
Abstract
Introduction: The vascular architecture of the vocal folds plays a critical role in sustaining the dynamic demands of phonation. Disruptions in this microvascular system are linked to various pathological conditions, including Reinke’s edema, hemorrhage, and laryngeal carcinoma. This review explores the structural [...] Read more.
Introduction: The vascular architecture of the vocal folds plays a critical role in sustaining the dynamic demands of phonation. Disruptions in this microvascular system are linked to various pathological conditions, including Reinke’s edema, hemorrhage, and laryngeal carcinoma. This review explores the structural and functional components of vocal fold microvascularization, with emphasis on pericytes, endothelial interactions, and neurovascular regulation. Materials and Methods: A systematic review of the literature was conducted using databases such as PubMed, Scopus, Web of Science, and Embase. Keywords included “pericytes”, “Reinke’s edema”, and “vocal fold microvascularization”. Selected studies were peer-reviewed and met criteria for methodological quality and relevance to laryngeal microvascular physiology and pathology. Results: The vocal fold vasculature is organized in a parallel, tree-like pattern with distinct arterioles, capillaries, and venules. Capillaries dominate the superficial lamina propria, while transitional vessels connect to deeper arterioles surrounded by smooth muscle. Pericytes, present from birth, form tight associations with endothelial cells and contribute to capillary stability, vessel remodeling, and mechanical protection during vibration. Their thick cytoplasmic processes suggest a unique adaptation to the biomechanical stress of phonation. Arteriovenous anastomoses regulate perfusion by shunting blood according to functional demand. Furthermore, neurovascular control is mediated by noradrenergic fibers and neuropeptides such as VIP and CGRP, modulating vascular tone and glandular secretion. The limited lymphatic presence in the vocal fold mucosa contributes to edema accumulation while also restricting carcinoma spread, offering both therapeutic challenges and advantages. Conclusions: A deeper understanding of vocal fold microvascularization enhances clinical approaches to voice disorders and laryngeal disease, offering new perspectives for targeted therapies and regenerative strategies. Full article
(This article belongs to the Special Issue Clinical Diagnosis and Treatment in Otorhinolaryngology)
Show Figures

Figure 1

24 pages, 2408 KiB  
Article
Multi-Criteria Analysis of Three Walkable Surface Configurations for Healthy Urban Trees: Suspended Grating Systems, Modular Boxes, and Structural Soils
by Magdalena Wojnowska-Heciak, Olga Balcerzak and Jakub Heciak
Sustainability 2025, 17(13), 6195; https://doi.org/10.3390/su17136195 - 6 Jul 2025
Viewed by 352
Abstract
The conflicting demands of urban trees and walkable surfaces result in significant financial burdens for municipal administrators who understand that urban residents want tree-lined walkable surfaces. This study investigates three methodologies for mitigating this tension: suspended grating systems, modular box systems, and structural [...] Read more.
The conflicting demands of urban trees and walkable surfaces result in significant financial burdens for municipal administrators who understand that urban residents want tree-lined walkable surfaces. This study investigates three methodologies for mitigating this tension: suspended grating systems, modular box systems, and structural soils. A Multi-Criteria Analysis (MCA) was conducted to evaluate their suitability in dense urban areas, employing criteria categorized into Environmental, Economical, and Other considerations. The comparison focused on critical aspects such as the impact on tree health (root growth, water availability), installation complexity, initial costs, and overall suitability for diverse urban contexts. The MCA indicates that, under the given weighting of criteria, suspended grating systems (especially those suited for existing trees) rank the highest, primarily due to their superior root protection and minimal disturbance to established root systems. In contrast, modular box systems and structural soils emerge as particularly strong contenders for new tree plantings. Structural soils may have application at sites with existing trees, but the costs of removing native soil are a consideration. Sensitivity analysis suggests that modular box systems may become the preferred option when greater emphasis is placed on stormwater management and new plantings, rather than on challenges for existing trees or underground infrastructure. Structural soils score well in cost-effectiveness and installation speed but require careful implementation to address their lower root protection performance and long-term maintenance concerns. Ultimately, the optimal solution depends on unique site-specific conditions and budgetary constraints, emphasizing the necessity of tailored approaches to balance urban infrastructure with tree health. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Back to TopTop