Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (220)

Search Parameters:
Keywords = underground radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 58070 KiB  
Article
An Underground Goaf Locating Framework Based on D-InSAR with Three Different Prior Geological Information Conditions
by Kewei Zhang, Yunjia Wang, Feng Zhao, Zhanguo Ma, Guangqian Zou, Teng Wang, Nianbin Zhang, Wenqi Huo, Xinpeng Diao, Dawei Zhou and Zhongwei Shen
Remote Sens. 2025, 17(15), 2714; https://doi.org/10.3390/rs17152714 - 5 Aug 2025
Abstract
Illegal mining operations induce cascading ecosystem degradation by causing extensive ground subsidence, necessitating accurate underground goaf localization for effectively induced-hazard mitigation. The conventional locating method applied the synthetic aperture radar interferometry (InSAR) technique to obtain ground deformation to estimate underground goaf parameters, and [...] Read more.
Illegal mining operations induce cascading ecosystem degradation by causing extensive ground subsidence, necessitating accurate underground goaf localization for effectively induced-hazard mitigation. The conventional locating method applied the synthetic aperture radar interferometry (InSAR) technique to obtain ground deformation to estimate underground goaf parameters, and the locating accuracy was crucially contingent upon the appropriateness of nonlinear deformation function models selection and the precision of geological parameters acquisition. However, conventional model-driven underground goaf locating frameworks often fail to sufficiently integrate prior geological information during the model selection process, potentially leading to increased positioning errors. In order to enhance the operational efficiency and locating accuracy of underground goaf, deformation model selection must be aligned with site-specific geological conditions under varying cases of prior information. To address these challenges, this study categorizes prior geological information into three different hierarchical levels (detailed, moderate, and limited) to systematically investigate the correlations between model selection and prior information. Subsequently, field validation was carried out by applying two different non-linear deformation function models, Probability Integral Model (PIM) and Okada Dislocation Model (ODM), with three different prior geological information conditions. The quantitative performance results indicate that, (1) under a detailed prior information condition, PIM achieves enhanced dimensional parameter estimation accuracy with 6.9% reduction in maximum relative error; (2) in a moderate prior information condition, both models demonstrate comparable estimation performance; and (3) for a limited prior information condition, ODM exhibits superior parameter estimation capability showing 3.4% decrease in maximum relative error. Furthermore, this investigation discusses the influence of deformation spatial resolution, the impacts of azimuth determination methodologies, and performance comparisons between non-hybrid and hybrid optimization algorithms. This study demonstrates that aligning the selection of deformation models with different types of prior geological information significantly improves the accuracy of underground goaf detection. The findings offer practical guidelines for selecting optimal models based on varying information scenarios, thereby enhancing the reliability of disaster evaluation and mitigation strategies related to illegal mining. Full article
Show Figures

Figure 1

21 pages, 5188 KiB  
Article
Radar Monitoring and Numerical Simulation Reveal the Impact of Underground Blasting Disturbance on Slope Stability
by Chi Ma, Zhan He, Peitao Wang, Wenhui Tan, Qiangying Ma, Cong Wang, Meifeng Cai and Yichao Chen
Remote Sens. 2025, 17(15), 2649; https://doi.org/10.3390/rs17152649 - 30 Jul 2025
Viewed by 231
Abstract
Underground blasting vibrations are a critical factor influencing the stability of mine slopes. However, existing studies have yet to establish a quantitative relationship or clarify the underlying mechanisms linking blasting-induced vibrations and slope deformation. Taking the Shilu Iron Mine as a case study, [...] Read more.
Underground blasting vibrations are a critical factor influencing the stability of mine slopes. However, existing studies have yet to establish a quantitative relationship or clarify the underlying mechanisms linking blasting-induced vibrations and slope deformation. Taking the Shilu Iron Mine as a case study, this research develops a dynamic mechanical response model of slope stability that accounts for blasting loads. By integrating slope radar remote sensing data and applying the Pearson correlation coefficient, this study quantitatively evaluates—for the first time—the correlation between underground blasting activity and slope surface deformation. The results reveal that blasting vibrations are characterized by typical short-duration, high-amplitude pulse patterns, with horizontal shear stress identified as the primary trigger for slope shear failure. Both elevation and lithological conditions significantly influence the intensity of vibration responses: high-elevation areas and structurally loose rock masses exhibit greater dynamic sensitivity. A pronounced lag effect in slope deformation was observed following blasting, with cumulative displacements increasing by 10.13% and 34.06% at one and six hours post-blasting, respectively, showing a progressive intensification over time. Mechanistically, the impact of blasting on slope stability operates through three interrelated processes: abrupt perturbations in the stress environment, stress redistribution due to rock mass deformation, and the long-term accumulation of fatigue-induced damage. This integrated approach provides new insights into slope behavior under blasting disturbances and offers valuable guidance for slope stability assessment and hazard mitigation. Full article
Show Figures

Graphical abstract

26 pages, 12136 KiB  
Article
Integrated Analysis of Satellite and Geological Data to Characterize Ground Deformation in the Area of Bologna (Northern Italy) Using a Cluster Analysis-Based Approach
by Alberto Manuel Garcia Navarro, Celine Eid, Vera Rocca, Christoforos Benetatos, Claudio De Luca, Giovanni Onorato and Riccardo Lanari
Remote Sens. 2025, 17(15), 2645; https://doi.org/10.3390/rs17152645 - 30 Jul 2025
Viewed by 288
Abstract
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human [...] Read more.
This study investigates ground deformations in the southeastern Po Plain (northern Italy), focusing on the Bologna area—a densely populated region affected by natural and anthropogenic subsidence. Ground deformations in the area result from geological processes (e.g., sediment compaction and tectonic activity) and human activities (e.g., ground water production and underground gas storage—UGS). We apply a multidisciplinary approach integrating subsurface geology, ground water production, advanced differential interferometry synthetic aperture radar—DInSAR, gas storage data, and land use information to characterize and analyze the spatial and temporal variations in vertical ground deformations. Seasonal and trend decomposition using loess (STL) and cluster analysis techniques are applied to historical DInSAR vertical time series, targeting three representatives areas close to the city of Bologna. The main contribution of the study is the attempt to correlate the lateral extension of ground water bodies with seasonal ground deformations and water production data; the results are validated via knowledge of the geological characteristics of the uppermost part of the Po Plain area. Distinct seasonal patterns are identified and correlated with ground water production withdrawal and UGS operations. The results highlight the influence of superficial aquifer characteristics—particularly the geometry, lateral extent, and hydraulic properties of sedimentary bodies—on the ground movements behavior. This case study outlines an effective multidisciplinary approach for subsidence characterization providing critical insights for risk assessment and mitigation strategies, relevant for the future development of CO2 and hydrogen storage in depleted reservoirs and saline aquifers. Full article
Show Figures

Figure 1

27 pages, 7109 KiB  
Article
The Long-Term Surface Deformation Monitoring and Prediction of Hutubi Gas Storage Reservoir in Xinjiang Based on InSAR and the GWO-VMD-GRU Model
by Wang Huang, Wei Liao, Jie Li, Xuejun Qiao, Sulitan Yusan, Abudutayier Yasen, Xinlu Li and Shijie Zhang
Remote Sens. 2025, 17(14), 2480; https://doi.org/10.3390/rs17142480 - 17 Jul 2025
Viewed by 353
Abstract
Natural gas storage is an effective solution to address the energy supply–demand imbalance, and underground gas storage (UGS) is a primary method for storing natural gas. The overarching goal of this study is to monitor and analyze surface deformation at the Hutubi underground [...] Read more.
Natural gas storage is an effective solution to address the energy supply–demand imbalance, and underground gas storage (UGS) is a primary method for storing natural gas. The overarching goal of this study is to monitor and analyze surface deformation at the Hutubi underground gas storage facility in Xinjiang, China, which is the largest gas storage facility in the country. This research aims to ensure the stable and efficient operation of the facility through long-term monitoring, using remote sensing data and advanced modeling techniques. The study employs the SBAS-InSAR method, leveraging Synthetic Aperture Radar (SAR) data from the TerraSAR and Sentinel-1 sensors to observe displacement time series from 2013 to 2024. The data is processed through wavelet transformation for denoising, followed by the application of a Gray Wolf Optimization (GWO) algorithm combined with Variational Mode Decomposition (VMD) to decompose both surface deformation and gas pressure data. The key focus is the development of a high-precision predictive model using a Gated Recurrent Unit (GRU) network, referred to as GWO-VMD-GRU, to accurately predict surface deformation. The results show periodic surface uplift and subsidence at the facility, with a notable net uplift. During the period from August 2013 to March 2015, the maximum uplift rate was 6 mm/year, while from January 2015 to December 2024, it increased to 12 mm/year. The surface deformation correlates with gas injection and extraction periods, indicating periodic variations. The accuracy of the InSAR-derived displacement data is validated through high-precision GNSS data. The GWO-VMD-GRU model demonstrates strong predictive performance with a coefficient of determination (R2) greater than 0.98 for the gas well test points. This study provides a valuable reference for the future safe operation and management of underground gas storage facilities, demonstrating significant contributions to both scientific understanding and practical applications in underground gas storage management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

19 pages, 4353 KiB  
Article
The Lightweight Method of Ground Penetrating Radar (GPR) Hidden Defect Detection Based on SESM-YOLO
by Yu Yan, Guangxuan Jiao, Minxing Cui and Lei Ni
Buildings 2025, 15(13), 2345; https://doi.org/10.3390/buildings15132345 - 3 Jul 2025
Viewed by 421
Abstract
Ground Penetrating Radar (GPR) is a high-resolution nondestructive technique for detecting subsurface defects, yet its image interpretation suffers from strong subjectivity, low efficiency, and high false-alarm rates. To establish a customized underground GPR defect detection algorithm, this paper introduces SESM-YOLO which is an [...] Read more.
Ground Penetrating Radar (GPR) is a high-resolution nondestructive technique for detecting subsurface defects, yet its image interpretation suffers from strong subjectivity, low efficiency, and high false-alarm rates. To establish a customized underground GPR defect detection algorithm, this paper introduces SESM-YOLO which is an enhancement of YOLOv8n tailored for GPR images: (1) A Slim_Efficient_Block module replaces the bottleneck in the backbone, enhancing feature extraction while maintaining lightweight properties through a conditional gating mechanism. (2) A feature fusion network named Efficient_MS_FPN is designed, which significantly enhances the feature representation capability and performance. Additionally, the SCSA attention mechanism is introduced before the detection head, enabling precise extraction of defect object features. (3) As a novel loss function, MPDIoU is proposed to reduce the disparity between the corners of the predicted bounding boxes and those of the ground truth boxes. Experimental results on a custom dataset show that SESM-YOLO achieves an average precision of 92.8% in detecting hidden road defects, which is 6.2% higher than the YOLOv8n baseline. The model also shows improvements in precision (92.4%) and recall (86.7%), with reductions in parameters and computational load, demonstrating significant advantages over current mainstream detection models. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

22 pages, 2286 KiB  
Article
GPR-Based Leakage Reconstruction of Shallow-Buried Water Supply Pipelines Using an Improved UNet++ Network
by Qingqi Xu, Qinghua Liu and Shan Ouyang
Remote Sens. 2025, 17(13), 2174; https://doi.org/10.3390/rs17132174 - 25 Jun 2025
Viewed by 279
Abstract
Ground-penetrating radar (GPR) plays a critical role in detecting underground targets, particularly locating and characterizing leaks in buried pipelines. However, the complex nature of GPR images related to pipeline leaks, combined with the limitations of existing neural network-based inversion methods, such as insufficient [...] Read more.
Ground-penetrating radar (GPR) plays a critical role in detecting underground targets, particularly locating and characterizing leaks in buried pipelines. However, the complex nature of GPR images related to pipeline leaks, combined with the limitations of existing neural network-based inversion methods, such as insufficient feature extraction and low inversion accuracy, poses significant challenges for effective leakage reconstruction. To address these challenges, this paper proposes an enhanced UNet++-based model: the Multi-Scale Directional Network PlusPlus (MSDNet++). The network employs an encoder–decoder architecture, in which the encoder incorporates multi-scale directional convolutions with coordinate attention to extract and compress features across different scales effectively. The decoder fuses multi-level features through dense skip connections and further enhances the representation of critical information via coordinate attention, enabling the accurate inversion of dielectric constant images. Experimental results on both simulated and real-world data demonstrate that MSDNet++ can accurately invert the location and extent of buried pipeline leaks from GPR B-scan images. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

16 pages, 4559 KiB  
Article
Subsurface Cavity Imaging Based on UNET and Cross–Hole Radar Travel–Time Fingerprint Construction
by Hui Cheng, Yonghui Zhao and Kunwei Feng
Remote Sens. 2025, 17(12), 1986; https://doi.org/10.3390/rs17121986 - 8 Jun 2025
Viewed by 546
Abstract
As a significant geological hazard in large–scale engineering construction, deep subsurface voids demand effective and precise detection methods. Cross–hole radar tomography overcomes depth limitations by transmitting/receiving electromagnetic (EM) waves between boreholes, enabling the accurate determination of the spatial distribution and EM properties of [...] Read more.
As a significant geological hazard in large–scale engineering construction, deep subsurface voids demand effective and precise detection methods. Cross–hole radar tomography overcomes depth limitations by transmitting/receiving electromagnetic (EM) waves between boreholes, enabling the accurate determination of the spatial distribution and EM properties of subsurface cavities. However, conventional inversion approaches, such as travel–time/attenuation tomography and full–waveform inversion, still face challenges in terms of their stability, accuracy, and computational efficiency. To address these limitations, this study proposes a deep learning–based imaging method that introduces the concept of travel–time fingerprints, which compress raw radar data into structured, low–dimensional inputs that retain key spatial features. A large synthetic dataset of irregular subsurface cavity models is used to pre–train a UNET model, enabling it to learn nonlinear mapping, from fingerprints to velocity structures. To enhance real–world applicability, transfer learning (TL) is employed to fine–tune the model using a small amount of field data. The refined model is then tested on cross–hole radar datasets collected from a highway construction site in Guizhou Province, China. The results demonstrate that the method can accurately recover the shape, location, and extent of underground cavities, outperforming traditional tomography in terms of clarity and interpretability. This approach offers a high–precision, computationally efficient solution for subsurface void detection, with strong engineering applicability in complex geological environments. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

23 pages, 24434 KiB  
Article
Ground Penetrating Radar for the Exploration of Complex Mining Contexts
by Cristina Sáez Blázquez, Miguel Ángel Maté-González, Sergio Alejandro Camargo Vargas, Ignacio Martín Nieto, Vasileios Protonotarios and Diego González-Aguilera
Remote Sens. 2025, 17(11), 1911; https://doi.org/10.3390/rs17111911 - 30 May 2025
Viewed by 768
Abstract
Mining waste management is a significant environmental challenge that requires effective technical and economic solutions. In this context, the use of underground storage systems is sometimes a viable option to isolate this type of mining waste from the outside (especially when it poses [...] Read more.
Mining waste management is a significant environmental challenge that requires effective technical and economic solutions. In this context, the use of underground storage systems is sometimes a viable option to isolate this type of mining waste from the outside (especially when it poses a risk of environmental contamination). Despite the applicability and advantages of these structures, it is crucial to conduct thorough monitoring of the isolation and containment measures implemented during their construction. This study demonstrates how ground penetrating radar techniques can provide valuable insights into subsurface insulation layers with the aim of detecting potential water accumulation at depth and verifying the integrity of the seal and the state of buried materials. The results of the georadar survey applied on a mining case study demarcate the areas that should receive more attention in the near future and contribute to defining the most urgent actions to be implemented at the mining site. Beyond the evaluation of the 2D profiles, the research culminates in the creation of a 3D visualization tool for the entire mining site and its insulation layer, enabling users to inspect the structure’s condition at any location and obtain accurate depth measurements. Full article
Show Figures

Figure 1

15 pages, 1903 KiB  
Article
Handheld Ground-Penetrating Radar Antenna Position Estimation Using Factor Graphs
by Paweł Słowak, Tomasz Kraszewski and Piotr Kaniewski
Sensors 2025, 25(11), 3275; https://doi.org/10.3390/s25113275 - 23 May 2025
Viewed by 447
Abstract
Accurate localization of handheld ground-penetrating radar (HH-GPR) systems is critical for high-quality subsurface imaging and precise geospatial mapping of detected buried objects. In our previous works, we demonstrated that a UWB positioning system with an extended Kalman filter (EKF) employing a proprietary pendulum [...] Read more.
Accurate localization of handheld ground-penetrating radar (HH-GPR) systems is critical for high-quality subsurface imaging and precise geospatial mapping of detected buried objects. In our previous works, we demonstrated that a UWB positioning system with an extended Kalman filter (EKF) employing a proprietary pendulum (PND) dynamics model yielded highly accurate results. Building on that foundation, we present a factor-graph-based estimation algorithm to further enhance the accuracy of HH-GPR antenna trajectory estimation. The system was modeled under realistic conditions, and both the EKF and various factor-graph algorithms were implemented. Comparative evaluation indicates that the factor-graph approach achieves an improvement in localization accuracy from over 30 to almost 50 percent compared to the EKF PND. The sparse matrix representation inherent in the factor graph enabled an efficient iterative solution of the underlying linearized system. This enhanced positioning accuracy is expected to facilitate the generation of clearer, more distinct underground images, thereby supporting the potential for more reliable identification and classification of buried objects and infrastructure. Full article
(This article belongs to the Special Issue Indoor Wi-Fi Positioning: Techniques and Systems—2nd Edition)
Show Figures

Figure 1

18 pages, 3003 KiB  
Article
Performance Evaluation of AML Equipment for Determining the Depth and Location of Subsurface Facilities in South Korea
by Seung-Jun Lee and Hong-Sik Yun
Appl. Sci. 2025, 15(11), 5794; https://doi.org/10.3390/app15115794 - 22 May 2025
Viewed by 494
Abstract
The accurate detection and mapping of subsurface utilities are critical for ensuring safety and efficiency in excavation and construction projects. Among various technologies, Ground-Penetrating Radar (GPR) has been widely used for locating underground infrastructure due to its non-destructive nature and ability to detect [...] Read more.
The accurate detection and mapping of subsurface utilities are critical for ensuring safety and efficiency in excavation and construction projects. Among various technologies, Ground-Penetrating Radar (GPR) has been widely used for locating underground infrastructure due to its non-destructive nature and ability to detect both metallic and non-metallic materials. However, many GPR systems struggle to meet the practical depth requirements in real-world conditions, especially when identifying non-metallic facilities such as PVC and PE pipes. In South Korea, the legal regulations require underground utility locators to meet specific accuracy standards, including a minimum detectable depth of 3 m. These regulations also mandate periodic performance testing of surveying equipment at authorized inspection centers. Despite this, most GPR systems tested at the official performance evaluation site at Sungkyunkwan University demonstrated limited effectiveness, with an average detection range of only 1.5 m. This study evaluates the performance of a handheld All Materials Locator (AML) device developed by SubSurface Instruments, Inc., (Janesville, WI, USA) which uses ultra-high radio frequencies to detect subsurface density variations. Experimental results from both the certified test facility and field conditions indicate that the AML meets South Korea’s legal requirements for minimum depth and accuracy, by successfully identifying a wide range of subsurface utilities including non-metallic materials. The findings suggest that the AML is a viable alternative to conventional GPR systems for utility detection in regulated environments. Full article
(This article belongs to the Special Issue Ground Penetrating Radar (GPR): Theory, Methods and Applications)
Show Figures

Figure 1

19 pages, 3825 KiB  
Article
A Semi-Supervised Attention-Temporal Ensembling Method for Ground Penetrating Radar Target Recognition
by Li Liu, Dajiang Yu, Xiping Zhang, Hang Xu, Jingxia Li, Lijun Zhou and Bingjie Wang
Sensors 2025, 25(10), 3138; https://doi.org/10.3390/s25103138 - 15 May 2025
Viewed by 518
Abstract
Ground penetrating radar (GPR) is an effective and efficient nondestructive testing technology for subsurface investigations. Deep learning-based methods have been successfully used in automatic underground target recognition. However, these methods are mostly based on supervised learning, requiring large amounts of labeled training data [...] Read more.
Ground penetrating radar (GPR) is an effective and efficient nondestructive testing technology for subsurface investigations. Deep learning-based methods have been successfully used in automatic underground target recognition. However, these methods are mostly based on supervised learning, requiring large amounts of labeled training data to guarantee high accuracy and generalization ability, which is a challenge in GPR fields due to time-consuming and labor-intensive data annotation work. To alleviate the demand for abundant labeled data, a semi-supervised deep learning method named attention–temporal ensembling (Attention-TE) is proposed for underground target recognition using GPR B-scan images. This method integrates a semi-supervised temporal ensembling architecture with a triplet attention module to enhance the classification performance. Experimental results of laboratory and field data demonstrate that the proposed method can automatically recognize underground targets with an average accuracy of above 90% using less than 30% of labeled data in the training dataset. Ablation experimental results verify the efficiency of the triplet attention module. Moreover, comparative experimental results validate that the proposed Attention-TE algorithm outperforms the supervised method based on transfer learning and four semi-supervised state-of-the-art methods. Full article
Show Figures

Figure 1

26 pages, 10076 KiB  
Article
An Adaptive Non-Reference Approach for Characterizing and Assessing Image Quality in Multichannel GPR for Automatic Hyperbola Detection
by Klaudia Pasternak, Anna Fryśkowska-Skibniewska and Łukasz Ortyl
Appl. Sci. 2025, 15(9), 5126; https://doi.org/10.3390/app15095126 - 5 May 2025
Viewed by 493
Abstract
The automation of the detection infrastructure in GPR imagery is a key issue, particularly in the context of the non-invasive acquisition of radargrams with a multi-antenna ground-penetrating radar. Due to the fact that the dataset acquired with a multi-antenna GPR is very large, [...] Read more.
The automation of the detection infrastructure in GPR imagery is a key issue, particularly in the context of the non-invasive acquisition of radargrams with a multi-antenna ground-penetrating radar. Due to the fact that the dataset acquired with a multi-antenna GPR is very large, in the context of automating the process of detecting hyperbolas, the authors have proposed an adaptive approach to the selection of GPR images. The aim of this project was to develop a method for the selection of GPR images by means of applying the appropriate quality indicators. The authors propose a new, adaptive approach to the selection of radargrams that were recorded during the route of a GPR in a single profile, where several radargrams were recorded. Depending on the obtained initial values of the standard indicators for the assessment of the quality and quality maps of the radargrams, those images from selected channels that will ensure the highest possible quality and efficiency of hyperbola detection were selected. The stage of image quality assessment is essential in the context of improving the effectiveness of the automated detection of underground infrastructure. The quality assessment was performed based on the entropy indicator, PIQE, and Laplacian variance. The selected quality indicators allowed the authors to assess the degree of blurring, noise, and the number of details representing the underground structures that are present in GPR images. An additional product of the quality assessment were the generated maps that present the distribution of entropy in the analyzed images. The image selection was verified based on the results of the parameters that assess the effectiveness of the detection of hyperbolas that represent underground networks. The proposed innovative adaptive approach to the selection of images acquired by GPR enabled a significant improvement in the efficiency of the detection of hyperbolas representing underground utility networks, by 15–40%, shortening data processing and infrastructure detection times. Full article
(This article belongs to the Special Issue Ground Penetrating Radar: Data, Imaging, and Signal Analysis)
Show Figures

Figure 1

24 pages, 9651 KiB  
Article
Three-Dimensional Localization Method of Underground Target Based on Miniaturized Single-Frequency Acoustically Actuated Antenna Array
by Chaowen Ju, Yixuan Liu, Jianle Liu, Tianxiang Nan, Xinger Cheng and Zhuo Zhang
Electronics 2025, 14(9), 1859; https://doi.org/10.3390/electronics14091859 - 2 May 2025
Viewed by 433
Abstract
The acoustically actuated antenna technology enables a significant reduction in antenna dimension, facilitating miniaturization of ground-penetrating radar systems in the very high-frequency (VHF) band. However, the current acoustically actuated antennas suffer from narrow bandwidth and low range resolution. To address this issue, this [...] Read more.
The acoustically actuated antenna technology enables a significant reduction in antenna dimension, facilitating miniaturization of ground-penetrating radar systems in the very high-frequency (VHF) band. However, the current acoustically actuated antennas suffer from narrow bandwidth and low range resolution. To address this issue, this paper proposed a three-dimensional (3D) localization method for underground targets, which combined two-dimensional (2D) array direction-of-arrival (DOA) estimation with continuous spatial sampling without relying on range resolution. By leveraging the small dimension of acoustically actuated antennas, a 2D uniform linear array was formed to obtain the target’s angle using DOA estimation. Based on the variation pattern of 2D angles in continuous spatial sampling, the genetic algorithm was employed to estimate the 3D coordinates of underground targets. The numerical simulation results indicated that the root mean square error (RMSE) of the proposed 3D localization method is 1.68 cm, which outperforms conventional methods that utilize wideband frequency-modulated pulse signals with hyperbolic vertex detection in theoretical localization accuracy, while also demonstrating good robustness. The gprMax electromagnetic simulation results further confirmed that this method can effectively localize multiple targets in ideal homogeneous underground media. Full article
Show Figures

Figure 1

18 pages, 2613 KiB  
Review
Research Advances in Underground Bamboo Shoot Detection Methods
by Wen Li, Qiong Shao, Fan Guo, Fangyuan Bian and Huimin Yang
Agronomy 2025, 15(5), 1116; https://doi.org/10.3390/agronomy15051116 - 30 Apr 2025
Viewed by 1204
Abstract
Underground winter bamboo shoots, prized for their high nutritional value and economic significance, face harvesting challenges owing to inefficient manual methods and the lack of specialized detection technologies. This review systematically evaluates current detection approaches, including manual harvesting, microwave detection, resistivity methods, and [...] Read more.
Underground winter bamboo shoots, prized for their high nutritional value and economic significance, face harvesting challenges owing to inefficient manual methods and the lack of specialized detection technologies. This review systematically evaluates current detection approaches, including manual harvesting, microwave detection, resistivity methods, and biomimetic techniques. While manual methods remain dominant, they suffer from labor shortages, low efficiency, and high damage rates. Microwave-based technologies demonstrate high accuracy and good depths but are hindered by high costs and soil moisture interference. Resistivity methods show feasibility in controlled environments but struggle with field complexity and low resolution. Biomimetic approaches, though innovative, face limitations in odor sensitivity and real-time data processing. Key challenges include heterogeneous soil conditions, performance loss, and a lack of standardized protocols. To address these, an integrated intelligent framework is proposed: (1) three-dimensional modeling via multi-sensor fusion for subsurface mapping; (2) artificial intelligence (AI)-driven harvesting robots with adaptive excavation arms and obstacle avoidance; (3) standardized cultivation systems to optimize soil conditions; (4) convolution neural network–transformer hybrid models for visual-aided radar image analysis; and (5) aeroponic AI systems for controlled growth monitoring. These advancements aim to enhance detection accuracy, reduce labor dependency, and increase yields. Future research should prioritize edge-computing solutions, cost-effective sensor networks, and cross-disciplinary collaborations to bridge technical and practical gaps. The integration of intelligent technologies is poised to transform traditional bamboo forestry into automated, sustainable “smart forest farms”, addressing global supply demands while preserving ecological integrity. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

13 pages, 6578 KiB  
Article
A Circularly Polarized Broadband Composite Spiral Antenna for Ground Penetrating Radar
by Hai Liu, Shangyang Zhang, Pei Wu, Xu Meng, Junyong Zhou and Yanliang Du
Sensors 2025, 25(6), 1890; https://doi.org/10.3390/s25061890 - 18 Mar 2025
Viewed by 1122
Abstract
To enhance the capability of a ground penetrating radar (GPR) in subsurface target identification and improve its polarization sensitivity in detecting underground linear objects, a circularly polarized broadband composite spiral antenna was designed. This antenna integrates equiangular spiral and Archimedean spiral structures, achieving [...] Read more.
To enhance the capability of a ground penetrating radar (GPR) in subsurface target identification and improve its polarization sensitivity in detecting underground linear objects, a circularly polarized broadband composite spiral antenna was designed. This antenna integrates equiangular spiral and Archimedean spiral structures, achieving a wideband coverage of 1–5 GHz with stable circular polarization characteristics. The antenna employs an exponentially tapered microstrip balun for impedance matching and a metallic-backed cavity filled with absorbing materials to enhance its directivity. Experimental results demonstrate excellent radiation performance and stable circular polarization characteristics, with the axial ratio consistently below 3 dB throughout the operating frequency band, highlighting its suitability for polarimetric GPR systems. Furthermore, a 3D GPR measurement using the designed antenna validates its improved capacity for detecting subsurface linear objects, compared to the conventional linearly polarized bowtie antenna. Full article
Show Figures

Figure 1

Back to TopTop