Research Advances in Underground Bamboo Shoot Detection Methods
Abstract
:1. Introduction
2. Existing Technologies for Winter Bamboo Shoot Detection
2.1. Manual Detection Method
2.2. Microwave Detection Method
2.3. Resistivity Method
2.4. Biomimetic Method
2.5. Summary of Methods
3. Existing Problems and Development Prospects
3.1. Existing Problems
3.2. Economic Feasibility of Intelligent Detector
3.3. Development Prospects
3.3.1. 3D Model Construction
3.3.2. Winter Bamboo Shoot Harvesting Robots
3.3.3. Planting Standardization
3.3.4. Integration of Visual Features with Intelligent Imaging Analysis
3.3.5. Aeroponic Bamboo Shoot Cultivation with AI
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, Z.; Upadhyay, A.; Ding, Y.; Emamverdian, A.; Shahzad, A. Bamboo: Origin, habitat, distributions and global prospective. In Biotechnological Advances in Bamboo; Ahmad, Z., Ding, Y., Shahzad, A., Eds.; Springer: Singapore; pp. 1–31. [CrossRef]
- Chen, L.; He, A.; Xu, Z.; Li, B.; Zhang, H.; Li, G.; Guo, X.; Li, Z. Mapping aboveground biomass of Moso bamboo (Phyllostachys pubescens) forests under Pantana phyllostachysae Chao-induced stress using Sentinel-2 imagery. Ecol. Indic. 2024, 158, 111564. [Google Scholar] [CrossRef]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manag. 2017, 393, 113–138. [Google Scholar] [CrossRef]
- Bian, F.; Zhong, Z.; Zhang, X.; Yang, C.; Gai, X. Bamboo—An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 2020, 246, 125750. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Bai, Y.; Xu, J.; Xie, Y.; Cheng, Z.; Gao, J. Transcriptome and phosphoproteomics provides potential insights into how sucrose regulates the growth of bamboo shoots. Ind. Crops Prod. 2025, 224, 120439. [Google Scholar] [CrossRef]
- Feng, P.; Li, Y. China’s Bamboo Resources in 2021. World Bamboo Ratt. 2023, 21, 100–103. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Li, Y.; Yang, J.; Yang, H.; Zhao, Y.; Chen, G. Bamboo shoot and its food applications in last decade: An undervalued edible resource from forest to feed future people. Trends Food Sci. Technol. 2024, 146, 104399. [Google Scholar] [CrossRef]
- Das, M. Bamboo: Inherent source of nutrition and medicine. J. Pharmacogn. Phytochem. 2019, 8, 1338–1344. [Google Scholar]
- Fan, L.; Chen, S.; Cai, Z.; Guo, Z.; Yang, J.; Zheng, R.; Hu, R. Expansion of Pleioblastus amarus in tea plantations significantly enhances the appearance and nutritional composition of bamboo shoots but adversely affects palatability. BMC Plant Biol. 2024, 24, 1161. [Google Scholar] [CrossRef]
- Banik, R.L. Morphology and growth. In Bamboo: The Plant and Its Uses; Springer: Berlin/Heidelberg, Germany, 2015; pp. 43–89. [Google Scholar]
- Liang, H.; Xing, L.; Lin, J. Application and Algorithm of Ground-Penetrating Radar for Plant Root Detection: A Review. Sensors 2020, 20, 2836. [Google Scholar] [CrossRef]
- Atkinson, J.A.; Pound, M.P.; Bennett, M.J.; Wells, D.M. Uncovering the hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotechnol. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Benedikter, S.; Truong, T.Q.; Kapp, G.; Vasquez Coda, M. Towards an integrative perspective on commercialised wild-gathered bamboo use: Insights into the extraction of lung bamboo in the Vietnamese uplands. Aust. For. 2022, 85, 116–132. [Google Scholar] [CrossRef]
- Desalegn, G. Durability of Ethiopian bamboo culms and alternative damage control measures against biodeteriorating agents. Ethiop. J. Biol. Sci. 2015, 14, 93–127. [Google Scholar]
- Qin, H.; Niu, L.; Wu, Q.; Chen, J.; Li, Y.; Liang, C.; Xu, Q.; Fuhrmann, J.J.; Shen, Y. Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance. Plant Soil 2017, 420, 407–421. [Google Scholar] [CrossRef]
- Yin, Z.; Fan, S.; Xia, W.; Zhou, Y.; Zhou, X.; Zhang, X.; Li, C.; Guan, F. Response of growth, metabolism and yield of Dendrocalamopsis oldhami to long-day photoperiod and fertilizer compensation. J. For. Res. 2023, 34, 151–166. [Google Scholar] [CrossRef]
- Yang, S.; Xu, X.; Shi, D. Impacts of the aging labor force on bamboo land-use efficiency-An empirical analysis based on mediation effect. Sci. Silvae Sin. 2018, 54, 132–142. [Google Scholar] [CrossRef]
- Dong, Q.; Xiong, Y. Kinetics study on conventional and microwave pyrolysis of moso bamboo. Bioresour. Technol. 2014, 171, 127–131. [Google Scholar] [CrossRef]
- Cui, T.J. Microwave metamaterials—From passive to digital and programmable controls of electromagnetic waves. J. Opt. 2017, 19, 084004. [Google Scholar] [CrossRef]
- Ting, T.H.; Wu, K.H.; Hsu, J.S.; Chuang, M.H.; Yang, C.C. Microwave absorption and infrared stealth characteristics of bamboo charcoal/silver composites prepared by chemical reduction method. J. Chin. Chem. Soc. 2008, 55, 724–731. [Google Scholar] [CrossRef]
- Wang, J.; Lv, Y.; Ni, Z.; Huang, Z.; Ni, Y. Design of winter bamboo shoot detector based on microwave reflection method. J. China Agric. Univ. 2021, 26, 177–188. [Google Scholar] [CrossRef]
- Quinn, J.A.; Patsia, O.; Giannopoulos, A.; Brádaigh, C.M.Ó.; McCarthy, E.D. Novel application of ground penetrating radar for damage detection in thick FRP composites. Compos. Part B Eng. 2024, 284, 111716. [Google Scholar] [CrossRef]
- Zhang, J.; Ningping, Y.; Qiaoqiao, L. Application of directional drilling technology in mines geological exploration. Saf. Coal Mines 2013, 44, 131–134. [Google Scholar]
- Obaid, M.H. Underground crude oil pipeline leakage detection using dexined deep learning techniques and lab color space. Iraqi J. Comput. Inform. 2023, 49, 9–19. [Google Scholar] [CrossRef]
- Cui, X.; Li, S.; Zhang, L.; Peng, L.; Guo, L.; Cao, X.; Chen, X.; Yin, H.; Shen, M. Integrated extraction of root diameter and location in ground-penetrating radar images via cyclegan-guided multi-task neural network. Forests 2025, 16, 110. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, K.; Yu, H.; Wen, C.; Fan, M.; Yang, K. Research on forward simulation of underground winter bamboo shoots based on gprmax. S. Agric. Mach. 2023, 16, 63–65+103. [Google Scholar] [CrossRef]
- Kluge, B.; Peters, A.; Krüger, J.; Wessolek, G. Detection of soil microbial activity by infrared thermography (IRT). Soil Biol. Biochem. 2013, 57, 383–389. [Google Scholar] [CrossRef]
- Lin, W.; Wang, J.; Ni, Z.; Lü, Y.; Ni, Y. Design of underground position detector for winter bamboo shoot based on time domain reflectometry. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2019, 35, 31–38. [Google Scholar] [CrossRef]
- Takata, I.; Masami, S.; Subaru, I.; Heimu, T. Discussion on the foundation of a simple soil detection machine for resonant electrodes. Electron. Inf. Commun. Soc. Pap. C 2022, 105, 81–86. [Google Scholar] [CrossRef]
- Lazzoni, V.; Brizi, D.; Stagliano, N.; Giordano, C.; Pecoraro, E.; Anichini, M.; Ugolini, F.; Bindi, M.; Argenti, G.; Monorchio, A. Development of a microwave sensor for the non-invasive detection of plant responses to water stress: A practical application on maize (Zea mays L.). Biosyst. Eng. 2024, 246, 191–203. [Google Scholar] [CrossRef]
- Fan, Y.; Lu, Y.; Chen, S.; Zhang, Y.; Wang, M. Intelligent winter bamboo shoot detector based on microwave and resistivity method. China For. Prod. Ind. 2022, 59, 38–42. [Google Scholar] [CrossRef]
- Alao, J.O.; Lawal, K.M.; Dewu, B.B.M.; Raimi, J. Detection of shallow underground targets using electrical resistivity tomography and the implications in civil/environmental engineering. Discov. Geosci. 2024, 2, 52. [Google Scholar] [CrossRef]
- Farah, A.; Khairunnisa, N.; Norbi, A.; Muhammad, S.; Mohamad, H.; Zairi, I. Implementation of earth conductivity experiment to evaluate underground parameters. ARPN J. Eng. Appl. Sci. 2017, 12, 3271–3277. [Google Scholar]
- Martin, S.; Choi, C.T. A post-processing method for three-dimensional electrical impedance tomography. Sci. Rep. 2017, 7, 7212. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.; Crabb, M.; Jehl, M.; Lionheart, W.; Adler, A. Methods for calculating the electrode position Jacobian for impedance imaging. Physiol. Meas. 2017, 16, 555. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Khambampati, A.K.; Du, J. A parametric level set method for electrical impedance tomography. IEEE Trans. Med. Imaging 2017, 37, 451–460. [Google Scholar] [CrossRef]
- Zhu, K.; Luo, D.; Fu, Z.; Xue, Z.; Bu, X. A sparse representation-based reconstruction method of electrical impedance imaging for grounding grid. Energies 2024, 17, 6459. [Google Scholar] [CrossRef]
- Akhtari-Zavare, M.; Latiff, L.A. Electrical impedance tomography as a primary screening technique for breast cancer detection. Asian Pac. J. Cancer Prev. 2015, 16, 5595–5597. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, D.; Bardill, A.; De Gelidi, S.; Bayford, R.; Demosthenous, A. A high frame rate wearable EIT system using active electrode ASICs for lung respiration and heart rate monitoring. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 3810–3820. [Google Scholar] [CrossRef]
- He, L.; Yang, L.; Yan, X.; Chen, W.; Huang, S. Research on the Grounding Grid Electrical Impedance Imaging Algorithm Based on Improved Tikhonov and Lp Regularization. Prog. Electromagn. Res. B 2024, 106, 1–16. [Google Scholar] [CrossRef]
- Li, X.; Cui, M.; Yang, J.; Han, W.; Xiong, X. Tomographic image reconstruction of plant single root by electrical impedance tomography. Trans. Chin. Soc. Agric. Eng. 2014, 30, 173–180. [Google Scholar]
- Yang, J.; Li, X.; Cui, M. Canola roots detected in soil based on electrical impedance tomography. J. Agric. Mech. Res. 2015, 3, 187–190. [Google Scholar] [CrossRef]
- Lynch, J. Root architecture and plant productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z. Simulation Research on Detecting Bamboo Shoots by Resistance Method. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2020. [Google Scholar]
- She, Z.; Wang, B.; Zhang, Y.; Zeng, L.; Xie, L.; Shen, S. Study on Coal Seam Roof Failure Based on Optical Fiber Acoustic Sensing and the Parallel Electrical Method. Energies 2024, 17, 5471. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, R.; Cao, J.; Wang, X. Processing for near-source potential resistivity based on the parallel electrical method. Acta Geophys. 2022, 70, 2705–2714. [Google Scholar] [CrossRef]
- Ou, Y.; Zhang, P.; Li, J.; Tan, L.; Wang, W. Bischofia polycarpa root spatial distribution detection test research based on parallel electrical method. Sci. Technol. Eng. 2017, 17, 131–135. [Google Scholar]
- Chen, Y.; Ou, Y.; Hu, X. Feasibility study and observation system optimization of parallel electric method detection of bamboo shoots. J. Henan Polytech. Univ. (Nat. Sci.) 2019, 38, 54–60. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, H.; Ren, L.; Bao, L.; Wen, J.; Xie, L. Research progress of slippage characteristic and gas film stability enhancement methods on biomimetic hydrophobic surfaces. J. Hydrodyn. 2024, 36, 87–101. [Google Scholar] [CrossRef]
- Chen, L.; Wu, C.; Chou, T.; Chiu, S.; Tang, K. Development of a dual MOS electronic nose/camera system for improving fruit ripeness classification. Sensors 2018, 18, 3256. [Google Scholar] [CrossRef]
- Dias, L.G.; Fernandes, A.; Veloso, A.C.; Machado, A.A.; Pereira, J.A.; Peres, A.M. Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue. Food Chem. 2014, 160, 321–329. [Google Scholar] [CrossRef]
- Wu, H.; Yue, T.; Xu, Z.; Zhang, C. Sensor array optimization and discrimination of apple juices according to variety by an electronic nose. Anal. Methods 2017, 9, 921–928. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment–A review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Wu, Z.; Ye, X.; Bian, F.; Yu, G.; Gao, G.; Ou, J.; Wang, Y.; Li, Y.; Du, X. Determination of the geographical origin of Tetrastigma hemsleyanum Diels & Gilg using an electronic nose technique with multiple algorithms. Heliyon 2022, 8, e10801. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; He, O.; Ye, X.; Wu, Z. An electronic nose for bamboo shoot identification. J. Zhejiang A F Univ. 2016, 33, 495–499. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, Y.; Yu, J.; Song, S.; Zhang, F.; Hayat, K.; Zhang, X.; Ho, C.-T. Quantitative analysis of perceived saltiness through combination of sensory evaluation and electronic tongue and its method validation. Food Anal. Methods 2024, 17, 727–738. [Google Scholar] [CrossRef]
- Tian, X.; Cai, Q.; Liu, R.; Zhang, Y. Assessment of TVOC and odor in the remediation site of contaminated soiand groundwater using electronic nose. Environ. Sci. 2013, 34, 462–467. [Google Scholar]
- Ni, Y.; Lin, W.; Ni, Z.; Song, Y.; Lv, Y.; Wang, J. Winter Bamboo Shoot Detection and Excavation Integrated Vehicle. China Patent CN201910174097.0, 17 October 2019. [Google Scholar]
- Ruan, C.; Yang, J.; Zhao, S.; He, L.; Tao, Q. An All-Terrain Winter Bamboo Shoot Detection Device Based on Electromagnetic Reflection. China Patent CN202311181613.5, 13 September 2023. [Google Scholar]
- Chen, S.; Ma, M.; Wu, S.; Tang, Q.; Wen, Z. Topography intensifies variations in the effect of human activities on forest NPP across altitude and slope gradients. Environ. Dev. 2023, 45, 100826. [Google Scholar] [CrossRef]
- Guo, L.; Chen, J.; Cui, X.; Fan, B.; Lin, H. Application of ground penetrating radar for coarse root detection and quantification: A review. Plant Soil 2013, 362, 1–23. [Google Scholar] [CrossRef]
- Dou, Z.; Ma, C.; Yang, Y. Design of Intelligent Winter Bamboo Shoot Picking Robot Based on Servo Control Technology. In Proceedings of the 2024 4th International Conference on Artificial Intelligence, Big Data and Algorithms, Zhengzhou, China, 21–23 June 2024; pp. 184–188. [Google Scholar]
- Holzinger, A.; Schweier, J.; Gollob, C.; Nothdurft, A.; Hasenauer, H.; Kirisits, T.; Häggström, C.; Visser, R.; Cavalli, R.; Spinelli, R. From industry 5.0 to forestry 5.0: Bridging the gap with human-centered artificial intelligence. Curr. For. Rep. 2024, 10, 442–455. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Zhou, P.; Zeng, S. Construction of a 3D model knowledge base based on feature description and common sense fusion. Appl. Sci. 2023, 13, 6595. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, W.; Zhang, Z.; Liu, X.; Saha, C.; Mustafa, N.; Salama, D.S. Research Progress on Key Technology of Apple Harvesting Robots in Structured Orchards. In New Technologies Applied in Apple Production. Smart Agriculture; Liu, Y., Yang, L., Shi, Y., Wang, G., Zhu, D., Zhang, Z., Eds.; Springer: Singapore; Volume 10, pp. 1–25. [CrossRef]
- Zheng, X.; Rong, J.; Zhang, Z.; Yang, Y.; Li, W.; Yuan, T. Fruit growing direction recognition and nesting grasping strategies for tomato harvesting robots. J. Field Robot. 2024, 41, 300–313. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Xing, L.; Liu, T.; Han, N.; Liu, E.; Ge, H.; Liu, Y. Mapping spatiotemporal decisions for sustainable productivity of bamboo forest land. Land Degrad. Dev. 2020, 31, 939–958. [Google Scholar] [CrossRef]
- Chatterjee, A.; Lal, R.; Wielopolski, L.; Martin, M.Z.; Ebinger, M. Evaluation of different soil carbon determination methods. Crit. Rev. Plant Sci. 2009, 28, 164–178. [Google Scholar] [CrossRef]
- Jégou, D.; Cluzeau, D.; Hallaire, V.; Balesdent, J.; Tréhen, P. Burrowing activity of the earthworms Lumbricus terrestris and Aporrectodea giardi and consequences on C transfers in soil. Eur. J. Soil Biol. 2000, 36, 27–34. [Google Scholar] [CrossRef]
- Yang, R.; Lee, Y.; Lee, F.; Liang, Z.; Liu, Y. An Improved YOLOv5 Algorithm for Bamboo Strip Defect Detection Based on the Ghost Module. Forests 2024, 15, 1480. [Google Scholar] [CrossRef]
- Kuang, H.; Ding, Y.; Li, R.; Liu, X. Defect detection of bamboo strips based on LBP and GLCM features by using SVM classifier. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 3341–3345. [Google Scholar] [CrossRef]
- Kumar, P.; Jaisuriyan, K.; Gopika, B.; Subhash, B. Aeroponics: A Modern Agriculture Technology Under Controlled Environment. In Hydroponics: The Future of Sustainable Farming; Springer: Berlin/Heidelberg, Germany, 2024; pp. 263–294. [Google Scholar]
Method | Detection Approach | Advantages | Disadvantages | Device Status | |
---|---|---|---|---|---|
Manual Methods | All-Round Plowing Harvesting | Deep-plow the bamboo forest by following the bamboo rhizomes. | Simple operation; suitable for small-scale bamboo forests; integrates soil loosening and fertilization. | Labor-intensive and time-consuming. Moreover, it is prone to damaging winter bamboo shoots and disrupting the soil structure. | - |
Rhizome-Tracing Harvesting | Locate bamboo rhizomes via foliar density and color analysis, then guide excavation by locating rhizomes. | Beneficial for preserving winter shoots and soil structure. | Low efficiency. | - | |
Pit-Excavation Harvesting | Observe surface soil loosening or cracking to determine target burial position. | Simple operation; minimal soil disturbance. | Requires considerable experience. Easy to miss the bamboo shoots that are deeply buried or hidden. | - | |
Intelligent Methods | Microwave Detection | Underground bamboo shoots are non-invasively detected by analyzing the reflected microwave signals. | Fast and non-contact. | Detection accuracy of underground bamboo shoots is affected by underground media and soil moisture content. | Commercially available |
Resistivity | Measure underground resistivity changes for target determination. | Certain effects. | Equipment is costly, destructive, and inefficient. | Prototype | |
Biomimetic | Detect winter bamboo shoots by their smell. | Broad development prospects. | Designing the equipment is challenging. | Concept |
Method | Detection Accuracy | Depth Penetration | Soil Adaptability | Cost-Effectiveness | |
---|---|---|---|---|---|
Intelligent Methods | Microwave Detection | 70–80% | 0–25 cm | Moderate | High |
Resistivity | >60% | 0–35 cm | Moderate | Moderate | |
Biomimetic | N/A | 0–5 cm | Poor | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Shao, Q.; Guo, F.; Bian, F.; Yang, H. Research Advances in Underground Bamboo Shoot Detection Methods. Agronomy 2025, 15, 1116. https://doi.org/10.3390/agronomy15051116
Li W, Shao Q, Guo F, Bian F, Yang H. Research Advances in Underground Bamboo Shoot Detection Methods. Agronomy. 2025; 15(5):1116. https://doi.org/10.3390/agronomy15051116
Chicago/Turabian StyleLi, Wen, Qiong Shao, Fan Guo, Fangyuan Bian, and Huimin Yang. 2025. "Research Advances in Underground Bamboo Shoot Detection Methods" Agronomy 15, no. 5: 1116. https://doi.org/10.3390/agronomy15051116
APA StyleLi, W., Shao, Q., Guo, F., Bian, F., & Yang, H. (2025). Research Advances in Underground Bamboo Shoot Detection Methods. Agronomy, 15(5), 1116. https://doi.org/10.3390/agronomy15051116