Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = ultrasonic pulse-echo (UPE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7320 KiB  
Article
Determination of Main Bearing Dynamic Clearance in a Shield Tunneling Machine Through a Broadband PMUT Array with a Decreased Blind Area and High Accuracy
by Guoxi Luo, Haoyu Zhang, Delai Liu, Wenyan Li, Min Li, Zhikang Li, Lin Sun, Ping Yang, Ryutaro Maeda and Libo Zhao
Sensors 2025, 25(13), 4182; https://doi.org/10.3390/s25134182 - 4 Jul 2025
Viewed by 329
Abstract
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by [...] Read more.
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by integrating six types of different cells with adjacent resonant frequencies into an array. Through overlapping and coupling of the bandwidths from the different cells, the proposed PMUTs showed a wide –6 dB fractional bandwidth of 108% in silicon oil. Due to the broadening of bandwidth, the device could obtain the maximum steady state with less excitation (5 cycles versus 14 cycles) and reduce its residual ring-down (ca. 6 μs versus 15 μs) compared with the traditional PMUT array with the same cells, resulting in a small blind area. The pulse–echo ranging experiments demonstrated that the blind area was effectively reduced to 4.4 mm in air or 12.8 mm in silicon oil, and the error was controlled within ±0.3 mm for distance measurements up to 250 mm. In addition, a specific ultrasound signal processing circuit with functions of transmitting, receiving, and processing ultrasonic waves was developed. Combining the processing circuit and PMUT device, the system was applied to determine the axial clearance of the main bearing in a tunneling machine. This work develops broadband PMUTs with a small blind area and high resolution for distance measurement in narrow and confined spaces, opening up a new path for ultrasonic ranging technology. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 3047 KiB  
Article
Comparison of Pulse-Echo Tomography and Through-Transmission Ultrasonic Test for UPV Characterization of Building Materials
by Emilia Vasanelli, Davide Di Gennaro, Matteo Sticchi, Gianni Blasi and Luigi Capozzoli
Infrastructures 2025, 10(7), 162; https://doi.org/10.3390/infrastructures10070162 - 27 Jun 2025
Viewed by 294
Abstract
Ultrasonic pulse velocity (UPV) is a widely used technique for diagnosis and structural safety assessment of existing buildings. The main difficulties in UPV tests on-site are due to one-sided accessibility of materials and degraded/irregular surfaces. Pulse-echo ultrasonic tomography (PE-UT) can overcome the problem. [...] Read more.
Ultrasonic pulse velocity (UPV) is a widely used technique for diagnosis and structural safety assessment of existing buildings. The main difficulties in UPV tests on-site are due to one-sided accessibility of materials and degraded/irregular surfaces. Pulse-echo ultrasonic tomography (PE-UT) can overcome the problem. Though it has been widely applied for detecting inhomogeneities within concrete, few works use the instrument to assess UPV. The present paper aims to fill the gap by comparing PE-UT results with those of through-transmission ultrasonic tests (TT-UT) commonly used for UPV characterization. TT-UT measurements were performed with cylindrical and exponential transducers. The latter are used on irregular surfaces or when coupling gel is forbidden. Few data are in the literature comparing exponential and cylindrical transducers’ results. This is a further element of novelty of the paper. PE-UT and TT-UT results were compared considering the effect of material compositeness, water, transmission mode, and transducer type. It was found that PE-UT allows for reliable and rapid one-sided measurements on concrete and stone in different conditions. The differences between PE-UT and TT-UT results were between 1 and 3%. Exponential transducers gave reliable results on fine-grained stone in direct transmission, with differences lower than 4% with cylindrical transducer results. Full article
(This article belongs to the Section Infrastructures Materials and Constructions)
Show Figures

Figure 1

11 pages, 1586 KiB  
Article
Quantification of Sensitization in Aluminum–Magnesium Alloys Through Frequency-Dependent Ultrasonic Attenuation
by Songwei Wang and Haiying Huang
Sensors 2025, 25(13), 3983; https://doi.org/10.3390/s25133983 - 26 Jun 2025
Viewed by 300
Abstract
Aluminum–Magnesium (Al–Mg) alloys undergo sensitization, i.e., the precipitations of β-phase (Al2Mg3) at the grain boundaries, when exposed to elevated temperature. This microstructural change increases the susceptibility of Al–Mg alloys to intergranular corrosion, exfoliation, and stress corrosion cracking. This study [...] Read more.
Aluminum–Magnesium (Al–Mg) alloys undergo sensitization, i.e., the precipitations of β-phase (Al2Mg3) at the grain boundaries, when exposed to elevated temperature. This microstructural change increases the susceptibility of Al–Mg alloys to intergranular corrosion, exfoliation, and stress corrosion cracking. This study introduces a time-frequency analysis (TFA) technique to determine the frequency-dependent ultrasonic attenuation parameter and correlate the frequency-attenuation slope to the Degree of Sensitization (DoS) developed in heat-treated Al–Mg alloy samples. Broadband pitch-catch signal was generated using a laser ultrasonic testing (LUT) system, from which the narrowband pitch-catch signal at different frequencies can be digitally generated. The attenuation parameters of sensitized Al–Mg samples were determined from these narrowband pitch-catch signals using the primary pulse-first echo (PP-FE) method. By identifying the frequency range within which the attenuation parameter is linearly proportional to the frequency, the slopes of the frequency-attenuation relationship were determined and correlated with the DoS values of the sample plates. The experimental results validate that the frequency-attenuation slope has a higher sensitivity and lower scattering as compared to other conventional ultrasonic attenuation measurement techniques. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

20 pages, 9176 KiB  
Article
Research on Drive and Detection Technology of CMUT Multi-Array Transducers Based on MEMS Technology
by Chenyuan Li, Jiagen Chen, Chengwei Liu, Yao Xie, Yangyang Cui, Shiwang Zhang, Zhikang Li, Libo Zhao, Guoxing Chen, Shaochong Wei, Yu Gao and Linxi Dong
Micromachines 2025, 16(6), 604; https://doi.org/10.3390/mi16060604 - 22 May 2025
Viewed by 2311
Abstract
This paper presents an ultrasonic driving and detection system based on a CMUT array using MEMS technology. Among them, the core component CMUT array is composed of 8 × 8 CMUT array elements, and each CMUT array element contains 6 × 6 CMUT [...] Read more.
This paper presents an ultrasonic driving and detection system based on a CMUT array using MEMS technology. Among them, the core component CMUT array is composed of 8 × 8 CMUT array elements, and each CMUT array element contains 6 × 6 CMUT units. The collapse voltage of a single CMUT unit obtained through finite element analysis is 95.91 V, and the resonant frequency is 3.16 MHz. The driving section achieves 64-channel synchronous driving, with key parameters including an adjustable excitation signal frequency ranging from 10 kHz to 5.71 MHz, a delay precision of up to 1 ns, and an excitation duration of eight pulse cycles. For the echo reception, a two-stage amplification circuit for high-frequency weak echoes with 32 channels was designed, achieving a gain of 113.72 dB and −3 dB bandwidth of 3.89 MHz. Simultaneously, a 32-channel analog-to-digital conversion based on a self-calibration algorithm was implemented, with a sampling rate of 50 Mbps and a data width of 10 bits. Finally, the experimental results confirm the successful implementation of the driving system’s designed functions, yielding a center frequency of 1.4995 MHz and a relative bandwidth of 127.9%@−6 dB for the CMUT operating in silicone oil. This paper successfully conducted the transmit–receive integrated experiment of the CMUT and applied Butterworth filtering to the echo data, resulting in high-quality ultrasonic echo signals that validate the applicability of the designed CMUT-based system for ultrasonic imaging. Full article
Show Figures

Figure 1

17 pages, 7653 KiB  
Article
Research on Wireless Passive Ultrasonic Thickness Measurement Technology Based on Pulse Compression Method
by Long Pan, Kunsan Shi, Lei Han, Dingrong Qu, Yanling Zhang and Wenwu Chen
Sensors 2024, 24(24), 8023; https://doi.org/10.3390/s24248023 - 16 Dec 2024
Viewed by 793
Abstract
Fixed-point thickness measurement is commonly used in corrosion detection within petrochemical enterprises, but it suffers from low detection efficiency for localized thinning, limitations regarding measurement locations, and high equipment costs due to insulation and cooling layers. To address these challenges, this paper introduces [...] Read more.
Fixed-point thickness measurement is commonly used in corrosion detection within petrochemical enterprises, but it suffers from low detection efficiency for localized thinning, limitations regarding measurement locations, and high equipment costs due to insulation and cooling layers. To address these challenges, this paper introduces a wireless passive ultrasonic thickness measurement technique based on a pulse compression algorithm. The research methodology encompassed the development of mathematical and circuit models for single coil and wireless energy transmission, the proposal of a three-terminal wireless energy mutual coupling system, and the establishment of a finite element model simulating the ultrasonic body wave thickness measurement and wireless energy transmission system. An experimental setup was constructed to conduct thickness measurements on metal samples varying in thickness, shape, and material composition. The experimental findings revealed that the wireless ultrasonic echo signal, when processed using the pulse compression algorithm, achieved a thickness measurement accuracy approximately ten times superior to that of the untreated echo signal. This significant improvement in accuracy facilitates the high-density deployment of thickness measurement points in petrochemical applications. Full article
Show Figures

Figure 1

17 pages, 8620 KiB  
Article
Unique Characteristics of Pulse-Echo Sensing Systems for Ultrasonic Immersion Testing in Harsh Environments
by Gaofeng Sha, Andrew R. Bozek, Bernhard R. Tittmann and Cliff J. Lissenden
Sensors 2024, 24(23), 7748; https://doi.org/10.3390/s24237748 - 4 Dec 2024
Viewed by 1127
Abstract
Ultrasound is an excellent way to acquire data that reveal useful information about systems operating in harsh environments, which may include elevated temperature, ionizing radiation, and aggressive chemicals. The effects of harsh environments on piezoelectric materials have been studied in much more depth [...] Read more.
Ultrasound is an excellent way to acquire data that reveal useful information about systems operating in harsh environments, which may include elevated temperature, ionizing radiation, and aggressive chemicals. The effects of harsh environments on piezoelectric materials have been studied in much more depth than the other aspects of ultrasonic transducers used in pulse-echo mode. Therefore, finite element simulations and laboratory experiments are used to demonstrate the unique characteristics of pulse-echo immersion testing. Using an aluminum nitride piezoelectric element mounted on a vessel wall, characteristics associated with electrode thickness, couplant, backing material, and an acoustic matching layer are investigated. Considering a wave path through a vessel wall and into a fluid containing a target, when the travel distance in the fluid is relatively short, it can be difficult to discern the target echo from the reverberations in the vessel wall. When an acoustic matching layer between the vessel wall and the fluid does not suffice, a simple subtractive signal-processing method can minimize the reverberations, leaving just the target echoes of interest. Simulations and experiments demonstrate that sufficient target echoes are detected to determine the time of flight. Furthermore, a simple disc-like surface anomaly on the target is detectable. Full article
Show Figures

Figure 1

14 pages, 5226 KiB  
Article
Porous Metal Backing for High-Temperature Ultrasonic Transducers
by Guy Feuillard, Dang Chi Nguyen, Marc Lethiecq, Mathieu Jean and Frédéric Navacchia
Acoustics 2024, 6(4), 1074-1087; https://doi.org/10.3390/acoustics6040058 - 25 Nov 2024
Viewed by 1466
Abstract
Improving the performance of high-temperature ultrasonic transducers is a goal of major importance in many industrial applications. To this aim, we propose to use porous metals that support high temperatures as backings. Thus, the acoustic properties of stainless steel and porous stainless steel [...] Read more.
Improving the performance of high-temperature ultrasonic transducers is a goal of major importance in many industrial applications. To this aim, we propose to use porous metals that support high temperatures as backings. Thus, the acoustic properties of stainless steel and porous stainless steel with porosity of 25% and 35% are determined at ambient temperature and up to 400 °C. Over the temperature range, the longitudinal wave velocity variation is comprised between 5% and 6% in the porous metals. We find that temperature does not significantly affect the attenuation in the material. The pulse-echo response and frequency response of a LiNbO3-based transducer with a porous backing are simulated using a one dimensional electroacoustic model. These simulations, compared to those of a reference transducer, show that the axial resolution with such a design allows these transducers to be used for imaging and/or Non-Destructive Testing and evaluation at high temperature. Full article
Show Figures

Figure 1

13 pages, 4201 KiB  
Article
Convolutional Neural Network for Interface Defect Detection in Adhesively Bonded Dissimilar Structures
by Damira Smagulova, Vykintas Samaitis and Elena Jasiuniene
Appl. Sci. 2024, 14(22), 10351; https://doi.org/10.3390/app142210351 - 11 Nov 2024
Cited by 2 | Viewed by 1453
Abstract
This study presents an ultrasonic non-destructive method with convolutional neural networks (CNN) used for the detection of interface defects in adhesively bonded dissimilar structures. Adhesive bonding, as the weakest part of such structures, is prone to defects, making their detection challenging due to [...] Read more.
This study presents an ultrasonic non-destructive method with convolutional neural networks (CNN) used for the detection of interface defects in adhesively bonded dissimilar structures. Adhesive bonding, as the weakest part of such structures, is prone to defects, making their detection challenging due to various factors, including surface curvature, which causes amplitude variations. Conventional non-destructive methods and processing algorithms may be insufficient to enhance detectability, as some influential factors cannot be fully eliminated. Even after aligning signals reflected from the sample surface and interface, in some cases, due to non-parallel interfaces, persistent amplitude variations remain, significantly affecting defect detectability. To address this problem, a proposed method that integrates ultrasonic NDT and CNN, and which is able to recognize complex patterns and non-linear relationships, is developed in this work. Traditional ultrasonic pulse-echo testing was performed on adhesive structures to collect experimental data and generate C-scan images, covering the time gate from the first interface reflection to the time point where the reflections were attenuated. Two classes of datasets, representing defective and defect-free areas, were fed into the neural network. One subset of the dataset was used for model training, while another subset was used for model validation. Additionally, data collected from a different sample during an independent experiment were used to evaluate the generalization and performance of the neural network. The results demonstrated that the integration of a CNN enabled high prediction accuracy and automation of the analysis process, enhancing efficiency and reliability in detecting interface defects. Full article
(This article belongs to the Special Issue New Technology Trends in Smart Sensing)
Show Figures

Figure 1

25 pages, 10965 KiB  
Article
Bottom Crack Detection with Real-Time Signal Amplitude Correction Using EMAT-PEC Composite Sensor
by Yizhou Guo, Yu Hu, Kai Wang, Yini Song, Bo Feng, Yihua Kang and Zhaoqi Duan
Sensors 2024, 24(16), 5196; https://doi.org/10.3390/s24165196 - 11 Aug 2024
Cited by 4 | Viewed by 1867
Abstract
During electromagnetic ultrasonic testing, it is difficult to recognize small-size bottom cracks by time of flight (ToF), and the lift-off fluctuation of the probe affects the accuracy and consistency of the inspection results. In order to overcome the difficulty, a novel composite sensor [...] Read more.
During electromagnetic ultrasonic testing, it is difficult to recognize small-size bottom cracks by time of flight (ToF), and the lift-off fluctuation of the probe affects the accuracy and consistency of the inspection results. In order to overcome the difficulty, a novel composite sensor of an electromagnetic acoustic transducer (EMAT) and pulse eddy current (PEC) is designed. We use the amplitude of a bottom echo recorded by EMAT to identify the tiny bottom crack as well as the amplitude of PEC signals picked up by the integrated symmetric coils to measure the average lift-off of the probe in real time. Firstly, the effects of lift-off and bottom cracks on the amplitude of bottom echo are distinguished by combining the theoretical analysis and finite element method (FEM). And then an amplitude correction method based on the fusion of EMAT and PEC signals is proposed to reduce the impact of lift-off on the defect signal. The experimental results demonstrate that the designed composite sensor can effectively detect a bottom crack as small as 0.1 mm × 0.3 mm. The signal fusion method can accurately correct the amplitude of defect signals and the relative error is less than ±8%. Full article
(This article belongs to the Special Issue Novel Sensors for Structural Health Monitoring: 2nd Edition)
Show Figures

Figure 1

16 pages, 71175 KiB  
Article
Acoustic Assessment of Microstructural Deformation Mechanisms on a Cold Rolled Cu30Zn Brass
by María Sosa, Linton Carvajal, Vicente Salinas Barrera, Fernando Lund, Claudio Aguilar and Felipe Castro Cerda
Materials 2024, 17(13), 3321; https://doi.org/10.3390/ma17133321 - 4 Jul 2024
Cited by 2 | Viewed by 1411
Abstract
The relationship between acoustic parameters and the microstructure of a Cu30Zn brass plate subjected to plastic deformation was evaluated. The plate, previously annealed at 550 °C for 30 min, was cold rolled to reductions ranging from 10% to 70%. Linear ultrasonic measurements were [...] Read more.
The relationship between acoustic parameters and the microstructure of a Cu30Zn brass plate subjected to plastic deformation was evaluated. The plate, previously annealed at 550 °C for 30 min, was cold rolled to reductions ranging from 10% to 70%. Linear ultrasonic measurements were performed on each of the nine specimens, corresponding to the nine different reductions, using the pulse-echo method to record the times of flight of longitudinal waves along the thickness axis. Subsequently, acoustic measurements were conducted to determine the nonlinear parameter β through second harmonic generation. Microstructural analysis, carried out by X-ray diffraction, Vickers hardness testing, and optical microscopy, revealed an increase in deformation twins, reaching a maximum at 40% thickness reduction. At higher deformations, the microstructure showed the generation and proliferation of shear bands, coinciding with a decrease in the twinning structure and an increase in dislocation density. The longitudinal wave velocity exhibited a 0.9% decrease at 20% deformation, attributed to dislocations and initial twin formation, followed by a continuous increase up to 2% beyond this point, resulting from the combined effects of twinning and shear banding. The nonlinear parameter β displayed a notable maximum, approximately one order of magnitude greater than its original value, at 40% deformation. This peak correlates with a roughly tenfold increase in twinning fault probability at the same deformation level. Full article
Show Figures

Figure 1

14 pages, 3818 KiB  
Article
Use of Non-Destructive Ultrasonic Techniques as Characterization Tools for Different Varieties of Wine
by José Ángel Corbacho, David Morcuende, Montaña Rufo, Jesús M. Paniagua, María Ángeles Ontalba and Antonio Jiménez
Sensors 2024, 24(13), 4294; https://doi.org/10.3390/s24134294 - 2 Jul 2024
Cited by 1 | Viewed by 2054
Abstract
In this work, we have verified how non-destructive ultrasonic evaluation allows for acoustically characterizing different varieties of wine. For this, a 3.5 MHz transducer has been used by means of an immersion technique in pulse-echo mode. The tests were performed at various temperatures [...] Read more.
In this work, we have verified how non-destructive ultrasonic evaluation allows for acoustically characterizing different varieties of wine. For this, a 3.5 MHz transducer has been used by means of an immersion technique in pulse-echo mode. The tests were performed at various temperatures in the range 14–18 °C. The evaluation has been carried out studying, on the one hand, conventional analysis parameters (velocity and attenuation) and, on the other, less conventional parameters (frequency components). The experimental study comprised two stages. In the first, the feasibility of the study was checked by inspecting twelve samples belonging to six varieties of red and white wine. The results showed clearly higher ultrasonic propagation velocity values in the red wine samples. In the second, nine samples of different monovarietal wine varieties (Grenache, Tempranillo and Cabernet Sauvignon) were analyzed. The results show how ultrasonic velocity makes it possible to unequivocally classify the grape variety used in winemaking with the Cabernet Sauvignon variety having the highest values and the Grenache the lowest. In addition, the wines of the Tempranillo variety are those that present higher values of the attenuation coefficient, and those from the Grenache variety transmit higher frequency waves. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

17 pages, 11766 KiB  
Article
Ultrasonic Study of Longitudinal Critically Refracted and Bulk Waves of the Heat-Affected Zone of a Low-Carbon Steel Welded Joint under Fatigue
by Alexander Gonchar, Alexander Solovyov and Vyacheslav Klyushnikov
Acoustics 2024, 6(3), 593-609; https://doi.org/10.3390/acoustics6030032 - 29 Jun 2024
Cited by 2 | Viewed by 2034
Abstract
Currently, ultrasonic methods for assessing the fatigue lifetime of various structural materials are being actively developed. Many steel constructions are made by welding. The weld heat-affected zone is the weak point of the construction, as it is most susceptible to destruction. Therefore, it [...] Read more.
Currently, ultrasonic methods for assessing the fatigue lifetime of various structural materials are being actively developed. Many steel constructions are made by welding. The weld heat-affected zone is the weak point of the construction, as it is most susceptible to destruction. Therefore, it is actually important to search for acoustic parameters that uniquely characterize the structural damage accumulation in the heat-affected zone of a welded joint in order to predict failure. In this work, the specimens were made from the base metal and the welded joint’s heat-affected zone. The specimens were subjected to uniaxial tension–compression under a symmetrical cycle in the region of low-cycle fatigue with control of the strain amplitude. The propagation bulk velocities of longitudinal, shear waves and subsurface longitudinal critically refracted (LCR) waves during cyclic loading were studied. The acoustic birefringence of shear waves was calculated, and a similar parameter was proposed for longitudinal and LCR waves. The dependence of the elastic modulus ratio on the cycle ratio was obtained. It was shown that the acoustic parameters change most intensively in the heat-affected zone. According to the data of the C33/C55 ratio changes measured through the ultrasonic method, a formula for calculating the remaining fatigue life in the heat-affected zone was proposed. Full article
Show Figures

Figure 1

17 pages, 12341 KiB  
Article
PMUT-Based System for Continuous Monitoring of Bolted Joints Preload
by Stefano Sanvito, Marco Passoni, Domenico Giusti, Marco Terenzi, Carlo Prelini, Monica La Mura and Alessandro Stuart Savoia
Sensors 2024, 24(13), 4150; https://doi.org/10.3390/s24134150 - 26 Jun 2024
Cited by 2 | Viewed by 2315
Abstract
In this paper, we present a bolt preload monitoring system, including the system architecture and algorithms. We show how Finite Element Method (FEM) simulations aided the design and how we processed signals to achieve experimental validation. The preload is measured using a Piezoelectric [...] Read more.
In this paper, we present a bolt preload monitoring system, including the system architecture and algorithms. We show how Finite Element Method (FEM) simulations aided the design and how we processed signals to achieve experimental validation. The preload is measured using a Piezoelectric Micromachined Ultrasonic Transducer (PMUT) in pulse-echo mode, by detecting the Change in Time-of-Flight (CTOF) of the acoustic wave generated by the PMUT, between no-load and load conditions. We performed FEM simulations to analyze the wave propagation inside the bolt and understand the effect of different configurations and parameters, such as transducer bandwidth, transducer position (head/tip), presence or absence of threads, as well as the frequency of the acoustic waves. In order to couple the PMUT to the bolt, a novel assembly process involving the deposition of an elastomeric acoustic impedance matching layer was developed. We achieved, for the first time with PMUTs, an experimental measure of bolt preload from the CTOF, with a good signal-to-noise ratio. Due to its low cost and small size, this system has great potential for use in the field for continuous monitoring throughout the operative life of the bolt. Full article
Show Figures

Figure 1

16 pages, 2986 KiB  
Article
Thickness Measurements with EMAT Based on Fuzzy Logic
by Yingjie Shi, Shihui Tian, Jiahong Jiang, Tairan Lei, Shun Wang, Xiaobo Lin and Ke Xu
Sensors 2024, 24(13), 4066; https://doi.org/10.3390/s24134066 - 22 Jun 2024
Cited by 2 | Viewed by 1611
Abstract
Metal thickness measurements are essential in various industrial applications, yet current non-contact ultrasonic methods face limitations in range and accuracy, hindering the widespread adoption of electromagnetic ultrasonics. This study introduces a novel combined thickness measurement method employing fuzzy logic, with the aim of [...] Read more.
Metal thickness measurements are essential in various industrial applications, yet current non-contact ultrasonic methods face limitations in range and accuracy, hindering the widespread adoption of electromagnetic ultrasonics. This study introduces a novel combined thickness measurement method employing fuzzy logic, with the aim of broadening the applicational scope of the EMAT. Leveraging minimal hardware, this method utilizes the short pulse time-of-flight (TOF) technique for initial thickness estimation, followed by secondary measurements guided by fuzzy logic principles. The integration of measurements from the resonance, short pulse echo, and linear frequency modulation echo extends the measurement range while enhancing accuracy. Rigorous experimental validation validates the method’s effectiveness, demonstrating a measurement range of 0.3–1000.0 mm with a median error within ±0.5 mm. Outperforming traditional methods like short pulse echoes, this approach holds significant industrial potential. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

15 pages, 5832 KiB  
Article
Detection of Multi-Layered Bond Delamination Defects Based on Full Waveform Inversion
by Jiawei Wen, Can Jiang and Hao Chen
Sensors 2024, 24(12), 4017; https://doi.org/10.3390/s24124017 - 20 Jun 2024
Cited by 2 | Viewed by 1485
Abstract
This study aimed to address the challenges encountered in traditional bulk wave delamination detection methods characterized by low detection efficiency. Additionally, the limitations of guided wave delamination detection methods were addressed, particularly those utilizing reflected waves, which are susceptible to edge reflections, thus [...] Read more.
This study aimed to address the challenges encountered in traditional bulk wave delamination detection methods characterized by low detection efficiency. Additionally, the limitations of guided wave delamination detection methods were addressed, particularly those utilizing reflected waves, which are susceptible to edge reflections, thus complicating effective defect extraction. Leveraging the full waveform inversion algorithm, an innovative approach was established for detecting delamination defects in multi-layered structures using ultrasonic guided wave arrays. First, finite element modeling was employed to simulate guided wave data acquisition by a circular array within an aluminum–epoxy bilayer structure with embedded delamination defects. Subsequently, the full waveform inversion algorithm was applied to reconstruct both regular and irregular delamination defects. Analysis results indicated the efficacy of the proposed approach in accurately identifying delamination defects of varying shapes. Furthermore, an experimental platform for guided wave delamination defect detection was established, and experiments were conducted on a steel–cement bilayer structure containing an irregular delamination defect. The experimental results validated the exceptional imaging precision of our proposed technique for identifying delamination defects in multi-layered boards. In summary, the proposed method can accurately determine both the positions and sizes of defects with higher detection efficiency than traditional pulse-echo delamination detection methods. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 2nd Edition)
Show Figures

Figure 1

Back to TopTop