Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = ultra-wide spectral range

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9479 KB  
Article
The Influence of Projection Lamps on the Colors of Early Silent Cinema Films
by Daniel Vázquez, Antonio Álvarez Fernández-Balbuena, Irene Hernández, Marian del Egido, Patricia Uceda, María Muñoz, Javier Rellán and Manuel Melgosa
Heritage 2025, 8(12), 532; https://doi.org/10.3390/heritage8120532 - 13 Dec 2025
Viewed by 166
Abstract
Quantitative data on the colors of early film productions is very scarce but may be useful for preserving these cultural assets and for guiding modern digitization processes. We measured the spectral transmittance of 46 small areas in 13 frames of films from the [...] Read more.
Quantitative data on the colors of early film productions is very scarce but may be useful for preserving these cultural assets and for guiding modern digitization processes. We measured the spectral transmittance of 46 small areas in 13 frames of films from the 1910s and 1920s, which were colored using the same tinting process. From spectral measurements of the light source in an early carbon arc cinema projector, we computed CIELAB color coordinates for these areas and the results were compared with those from two more recent light sources: a Xenon lamp and an ultra-high performance (UHP) lamp. Average color inconstancy values for the 46 samples were 3.5, 7.9, and 7.0 CIELAB units for carbon-Xenon, carbon-UHP and Xenon-UHP changes, respectively, which are color differences above human visual thresholds for observers with normal color vision. Therefore, for accurate color specifications of such films, in addition to the spectral transmittances of frames, we must consider the spectral power distribution of projection lamps. Compared with a recent surface object-color gamut, the 46 samples were spread across a relatively wide region of color space, excluding CIELAB hue-angles in the range of 270–360 degrees. Full article
(This article belongs to the Section Cultural Heritage)
Show Figures

Figure 1

9 pages, 2395 KB  
Article
A Wide Field of View and Broadband Infrared Imaging System Integrating a Dispersion-Engineered Metasurface
by Bo Liu, Yunqiang Zhang, Zhu Li, Xuetao Gan and Xin Xie
Photonics 2025, 12(10), 1033; https://doi.org/10.3390/photonics12101033 - 19 Oct 2025
Viewed by 603
Abstract
We present a compact hybrid imaging system operating in the 3–5 μm spectral band that combines refractive optics with a dispersion-engineered metasurface to overcome the longstanding trade-off between wide field of view (FOV), system size, and thermal stability. The system achieves an ultra-wide [...] Read more.
We present a compact hybrid imaging system operating in the 3–5 μm spectral band that combines refractive optics with a dispersion-engineered metasurface to overcome the longstanding trade-off between wide field of view (FOV), system size, and thermal stability. The system achieves an ultra-wide 178° FOV within a total track length of only 28.25 mm, employing just three refractive lenses and one metasurface. Through co-optimization of material selection and system architecture, it maintains the modulation transfer function (MTF) exceeding 0.54 at 33 lp/mm and the geometric (GEO) radius below 15 μm across an extended operational temperature range from –40 °C to 60 °C. The metasurface is designed using a propagation phase approach with cylindrical unit cells to ensure polarization-insensitive behavior, and its broadband dispersion-free phase profile is optimized via a particle swarm algorithm. The results indicate that phase-matching errors remain small at all wavelengths, with a mean value of 0.11068. This design provides an environmentally resilient solution for lightweight applications, including automotive infrared night vision and unmanned aerial vehicle remote sensing. Full article
(This article belongs to the Special Issue Optical Metasurfaces: Applications and Trends)
Show Figures

Figure 1

31 pages, 6030 KB  
Review
Advances in Laser Linewidth Measurement Techniques: A Comprehensive Review
by Zhongtian Liu, Hao Zheng, Chunwei Li, Zunhan Qi, Cunwei Zhang, Tie Li and Zhenxu Bai
Micromachines 2025, 16(9), 990; https://doi.org/10.3390/mi16090990 - 29 Aug 2025
Cited by 1 | Viewed by 2839
Abstract
As a key parameter that defines the spectral characteristics of lasers, the precise measurement of laser linewidth is crucial for a wide range of advanced applications. This review systematically summarizes recent advances in laser linewidth measurement techniques, covering methods applicable from GHz-level broad [...] Read more.
As a key parameter that defines the spectral characteristics of lasers, the precise measurement of laser linewidth is crucial for a wide range of advanced applications. This review systematically summarizes recent advances in laser linewidth measurement techniques, covering methods applicable from GHz-level broad linewidths to sub-Hz ultranarrow regimes. We begin by presenting representative applications of lasers with varying linewidth requirements, followed by the physical definition of linewidth and a discussion of the fundamental principles underlying its measurement. For broader linewidth regimes, we review two established techniques: direct spectral measurement using high-resolution spectrometers and Fabry–Pérot interferometer-based analysis. In the context of narrow-linewidth lasers, particular emphasis is placed on the optical beating method. A detailed comparison is provided between two dominant approaches: power spectral density (PSD) analysis of the beat signal and phase-noise-based linewidth evaluation. For each technique, we discuss the working principles, experimental configurations, achievable resolution, and limitations, along with comparative assessments of their advantages and drawbacks. Additionally, we critically examine recent innovations in ultra-high-precision linewidth metrology. This review aims to serve as a comprehensive technical reference for the development, characterization, and application of lasers across diverse spectral regimes. Full article
Show Figures

Figure 1

9 pages, 1596 KB  
Article
Polarization-Independent Broadband Infrared Selective Absorber Based on Multilayer Thin Film
by Shenglan Wu, Hao Huang, Xin Wang, Chunhui Tian, Zhenyong Huang, Zhiyong Zhong and Shuang Liu
Nanomaterials 2025, 15(9), 678; https://doi.org/10.3390/nano15090678 - 29 Apr 2025
Viewed by 997
Abstract
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance [...] Read more.
Spectrally selective infrared absorbers play a pivotal role in enabling optoelectronic applications such as infrared detection, thermal imaging, and photothermal conversion. In this paper, a dual-band wide-spectrum infrared selective absorber based on a metal–dielectric multilayer structure is designed. Through optimized design, the absorptance of the absorber reaches the peak values of 0.87 and 1.0 in the target bands (3–5 μm and 8–14 μm), while maintaining a low absorptance of about 0.2 in the non-working bands of 5–8 μm, with excellent spectral selectivity. By analyzing the Poynting vector and loss distribution, the synergistic mechanism of the ultra-thin metal localized enhancement effect, impedance matching, and intrinsic absorption of the material is revealed. This structure exhibits good polarization-insensitive characteristics and angle robustness within a large incident angle range, showing strong adaptability to complex optical field environments. Moreover, the proposed planarized structure design is compatible with standard fabrication processes and has good scalability, which can be applied to other electromagnetic wave bands. This research provides new design ideas and technical solutions for advanced optoelectronic applications such as radiation cooling, infrared stealth, and thermal radiation regulation. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

17 pages, 12096 KB  
Article
Real-Time Precise Prediction Dispersion Turning Point of Optical Microfiber Coupler Biosensor with Ultra-High Sensitivity and Wide Linear Dynamic Range
by Haiyang Yu, Yue Wang, Yang Xu, Wenchao Zhou and Yihui Wu
Biosensors 2025, 15(4), 241; https://doi.org/10.3390/bios15040241 - 10 Apr 2025
Viewed by 1082
Abstract
Optical microfiber biosensors demonstrate exceptionally ultra-high sensitivity at the dispersion turning point (DTP). However, the DTP is highly susceptible to variations in dimensional and external environmental factors, and the spectral response is mismatched from preparation in air to application in a liquid environment, [...] Read more.
Optical microfiber biosensors demonstrate exceptionally ultra-high sensitivity at the dispersion turning point (DTP). However, the DTP is highly susceptible to variations in dimensional and external environmental factors, and the spectral response is mismatched from preparation in air to application in a liquid environment, making the DTP difficult to control effectively. In this work, we propose a method that bridges the relationship between the interference spectra of air and aqueous environments. By counting the interference peaks in air, we can accurately predict the DTP position in liquids. Meanwhile, it provides a new balance between sensitivity and wide linear dynamic range, achieving wide dynamic range detection across various concentrations. The optical microfiber coupler (OMC) is fabricated using the hydrogen–oxygen flame melting tapering method. In addition, the concentration, temperature, and solvent used for the sensor’s biofunctional layer are optimized. Finally, in refractive index sensing, a maximum sensitivity of 1.17 × 105 ± 0.038 × 105 nm/RIU is achieved. For biosensing, a wide dynamic range detection of cardiac troponin I (cTnI) is realized at concentrations of 12–48 ng/mL, 120–480 pg/mL, and 120–480 fg/mL. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

15 pages, 7261 KB  
Article
Design of Ultra-Wide-Band Fourier Transform Infrared Spectrometer
by Liangjie Zhi, Wei Han, Shuai Yuan, Fengkun Luo, Han Gao, Zixuan Zhang and Min Huang
Optics 2025, 6(1), 7; https://doi.org/10.3390/opt6010007 - 5 Mar 2025
Viewed by 2047
Abstract
A wide band range can cover more of the characteristic spectral lines of substances, and thus analyze the structure and composition of substances more accurately. In order to broaden the band range of spectral instruments, an ultra-wide-band Fourier transform infrared spectrometer is designed. [...] Read more.
A wide band range can cover more of the characteristic spectral lines of substances, and thus analyze the structure and composition of substances more accurately. In order to broaden the band range of spectral instruments, an ultra-wide-band Fourier transform infrared spectrometer is designed. The incident light of the spectrometer is constrained by a secondary imaging scheme, and switchable light sources and detectors are set to achieve an ultra-wide band coverage. A compact and highly stable double-moving mirror swing interferometer is adopted to generate optical path difference, and a controller is used to stabilize the swing of the moving mirrors. A distributed design of digital system integration and analog system integration is adopted to achieve a lightweight and low-power-consumption spectrometer. High-speed data acquisition and a transmission interface are applied to improve the real-time performance. Further, a series of experiments are performed to test the performance of the spectrometer. Finally, the experimental results show that the spectral range of the ultra-wide-band Fourier transform infrared spectrometer covers 0.770–200 μm, with an accurate wave number, a spectral resolution of 0.25 cm−1, and a signal-to-noise ratio better than 50,000:1. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

23 pages, 5469 KB  
Article
A Wide-Range Adjustable Conservative Memristive Hyperchaotic System with Transient Quasi-Periodic Characteristics and Encryption Application
by Fei Yu, Bohong Tan, Ting He, Shaoqi He, Yuanyuan Huang, Shuo Cai and Hairong Lin
Mathematics 2025, 13(5), 726; https://doi.org/10.3390/math13050726 - 24 Feb 2025
Cited by 30 | Viewed by 1086
Abstract
In comparison with dissipative chaos, conservative chaos is better equipped to handle the risks associated with the reconstruction of phase space due to the absence of attractors. This paper proposes a novel five-dimensional (5D) conservative memristive hyperchaotic system (CMHS), by incorporating memristors into [...] Read more.
In comparison with dissipative chaos, conservative chaos is better equipped to handle the risks associated with the reconstruction of phase space due to the absence of attractors. This paper proposes a novel five-dimensional (5D) conservative memristive hyperchaotic system (CMHS), by incorporating memristors into a four-dimensional (4D) conservative chaotic system (CCS). We conducted a comprehensive analysis, using Lyapunov exponent diagrams, bifurcation diagrams, phase portraits, equilibrium points, and spectral entropy maps to thoroughly verify the system’s chaotic and conservative properties. The system exhibited characteristics such as hyperchaos and multi-stability over an ultra-wide range of parameters and initial values, accompanied by transient quasi-periodic phenomena. Subsequently, the pseudorandom sequences generated by the new system were tested and demonstrated excellent performance, passing all the tests set by the National Institute of Standards and Technology (NIST). In the final stage of the research, an image-encryption application based on the 5D CMHS was proposed. Through security analysis, the feasibility and security of the image-encryption algorithm were confirmed. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

16 pages, 4784 KB  
Article
Ultra High Efficiency Solar Capture Device Based on InAs Nanoring Microstructure
by Zao Yi, Xiangchao Yao, Qianju Song and Xianwen Wu
Coatings 2025, 15(2), 243; https://doi.org/10.3390/coatings15020243 - 19 Feb 2025
Cited by 5 | Viewed by 1171
Abstract
As a widely used clean energy source, solar energy has demonstrated significant promise across various applications due to its wide spectral range and efficient absorption performance. This study introduces a cross-structured, ultra-broadband solar absorber utilizing titanium (Ti) and titanium dioxide (TiO2) [...] Read more.
As a widely used clean energy source, solar energy has demonstrated significant promise across various applications due to its wide spectral range and efficient absorption performance. This study introduces a cross-structured, ultra-broadband solar absorber utilizing titanium (Ti) and titanium dioxide (TiO2) as its foundational materials. The absorber exhibits over 90% absorption within the 280–4000 nm wavelength range and surpasses 95% absorption in the broader spectrum from 542 to 3833 nm through the cavity coupling effect of incident light excitation and the subsequent initiation of the surface plasmon resonance mechanism, thus successfully achieving the goal of broadband high absorption. Through the finite difference time domain method (FDTD) simulation, the average absorption efficiency reaches 97.38% within the range from 280 nm to 4000 nm, and it is 97.75% in the range from 542 nm to 3833 nm. At the air mass of 1.5 (AM 1.5), the average absorption efficiency of solar energy is 97.46%, and the loss of solar energy is 2.54%, which has extremely high absorption efficiency. In addition, thanks to the material considerations, the absorber adopts a variety of high-temperature resistant materials, making the thermal radiation efficiency in a high-temperature environment still good; specifically, at the temperature of 900 K, its thermal radiation efficiency can reach 97.27%, and at the extreme 1800 K temperature, it can still maintain 97.52% of high efficiency thermal radiation, further highlighting its excellent thermal stability and comprehensive performance. The structure exhibits excellent optical absorption and thermal radiation properties, which give it broad applicability as an ideal absorber or thermal emitter. More importantly, the absorber is insensitive to the polarization state of the light and can effectively handle the incident light lines in the wide-angle range. In addition, its photothermal conversion efficiency (Hereafter referred to as pc efficiency) can sustain an elevated level under various temperature conditions, which enables it to flexibly adapt to diverse environmental conditions, especially suitable for the integration and application of solar photovoltaic systems, and further broaden its potential application range in the field of renewable energy. Full article
Show Figures

Figure 1

25 pages, 16213 KB  
Article
Imaging Shallow Velocity Structure of an Inactive Fault by Airgun Seismic Source: A Case Study of Xiliushui Fault in Qiliang Mountain
by Manzhong Qin, Baichen Wu, Yi Wang, Xueyi Shang, Yuansheng Zhang, Xuzhou Liu, Xiao Guo, Rui Zou, Yahong Wang and Dianfeng Sun
Geosciences 2025, 15(1), 16; https://doi.org/10.3390/geosciences15010016 - 7 Jan 2025
Viewed by 1218
Abstract
We observed high-quality waves from a repeatable airgun seismic source recorded by a linear ultra-dense seismic array across the Xiliushui fault zone, one of the inactive faults in the Qilian Mountain, on the northeastern margin of the Tibetan Plateau, China. We used Snell’s [...] Read more.
We observed high-quality waves from a repeatable airgun seismic source recorded by a linear ultra-dense seismic array across the Xiliushui fault zone, one of the inactive faults in the Qilian Mountain, on the northeastern margin of the Tibetan Plateau, China. We used Snell’s law of seismic ray propagation to determine a simplified ambient velocity model. Based on the flexible and precise spectral element method, we computed broadband synthetic seismograms for a shallow low-velocity fault zone (FZ) to model the direct P-wave travel time delay and incident angle of the wavefield near the FZ. The FZ extent range and boundaries were inverted by apparent travel time delays and amplification patterns across the fault. According to prior information on the properties of the direct P-waves, we could constrain the inverse modeling and conduct a grid search for the fault parameters. The velocity reduction between the FZ and host rock, along with the dip angle of the FZ, were also constrained by the P-wave travel time delay systematic analysis and incoming angle of the P-waves. We found that the Xiliushui fault has a 70~80 m-wide low-velocity fault damage zone in which the P-wave velocity is reduced to ~40% with respect to the host rock. The fault damage zone dips ~35°southwest and extends to ~165 m in depth. The repeatability and environment protection characteristics of the airgun seismic survey and the economic benefits of a limited number of instruments setting are prominent. Full article
(This article belongs to the Special Issue Geophysical Inversion)
Show Figures

Figure 1

15 pages, 2730 KB  
Article
Broadband Solar Absorber and Thermal Emitter Based on Single-Layer Molybdenum Disulfide
by Wanhai Liu, Fuyan Wu, Zao Yi, Yongjian Tang, Yougen Yi, Pinghui Wu and Qingdong Zeng
Molecules 2024, 29(18), 4515; https://doi.org/10.3390/molecules29184515 - 23 Sep 2024
Cited by 2 | Viewed by 1725
Abstract
In recent years, solar energy has become popular because of its clean and renewable properties. Meanwhile, two-dimensional materials have become a new favorite in scientific research due to their unique physicochemical properties. Among them, monolayer molybdenum disulfide (MoS2), as an outstanding [...] Read more.
In recent years, solar energy has become popular because of its clean and renewable properties. Meanwhile, two-dimensional materials have become a new favorite in scientific research due to their unique physicochemical properties. Among them, monolayer molybdenum disulfide (MoS2), as an outstanding representative of transition metal sulfides, is a hot research topic after graphene. Therefore, we have conducted an in-depth theoretical study and design simulation using the finite-difference method in time domain (FDTD) for a solar absorber based on the two-dimensional material MoS2. In this paper, a broadband solar absorber and thermal emitter based on a single layer of molybdenum disulfide is designed. It is shown that the broadband absorption of the absorber is mainly due to the propagating plasma resonance on the metal surface of the patterned layer and the localized surface plasma resonance excited in the adjacent patterned air cavity. The research results show that the designed structure boasts an exceptional broadband performance, achieving an ultra-wide spectral range spanning 2040 nm, with an overall absorption efficiency exceeding 90%. Notably, it maintains an average absorption rate of 94.61% across its spectrum, and in a narrow bandwidth centered at 303 nm, it demonstrates a near-unity absorption rate, surpassing 99%, underscoring its remarkable absorptive capabilities. The weighted average absorption rate of the whole wavelength range (280 nm–2500 nm) at AM1.5 is above 95.03%, and even at the extreme temperature of up to 1500 K, its heat radiation efficiency is high. Furthermore, the solar absorber in question exhibits polarization insensitivity, ensuring its performance is not influenced by the orientation of incident light. These advantages can enable our absorber to be widely used in solar thermal photovoltaics and other fields and provide new ideas for broadband absorbers based on two-dimensional materials. Full article
(This article belongs to the Special Issue Two-Dimensional Materials: From Synthesis to Applications)
Show Figures

Figure 1

9 pages, 2080 KB  
Article
The Usefulness of 55° Wide-Field Spectral-Domain Optical Coherence Tomography in Monitoring the Features of Peripheral Subretinal Fluid Remnants after Rhegmatogenous Retinal Detachment Surgery
by Valentina Carta, Filippo Lixi, Pasquale Loiudice, Francesca Frongia, Filippo Tatti, Chiara Delpiano, Pierluca Cremonesi and Enrico Peiretti
Diagnostics 2024, 14(13), 1385; https://doi.org/10.3390/diagnostics14131385 - 29 Jun 2024
Viewed by 1959
Abstract
Background: This study aimed to assess the effectiveness of 55° wide-field (WF) spectral-domain (SD) optical coherence tomography (OCT) for detecting peripheral subretinal fluid (SRF) after surgery for rhegmatogenous retinal detachment (RRD). Methods: In this retrospective observational study, the retinal periphery was examined to [...] Read more.
Background: This study aimed to assess the effectiveness of 55° wide-field (WF) spectral-domain (SD) optical coherence tomography (OCT) for detecting peripheral subretinal fluid (SRF) after surgery for rhegmatogenous retinal detachment (RRD). Methods: In this retrospective observational study, the retinal periphery was examined to evaluate the possible presence of persistent SRF after surgery. OCT scans were acquired in infrared mode to use any peripheral vessel as a landmark for better repeatability in monitoring fluid remnants. Results: A total of 80 patients (10% with high myopia) were examined using 55° WF SD OCT after successful pars plana vitrectomy (83.8%) or scleral buckling (16.3%) for RRD. A total of 18 patients (22.5%), 16 of whom underwent pars plana vitrectomy and 2 who underwent scleral buckling, showed SRF at the OCT examination during the follow-up. Potential risk factors associated with SRF persistence were analyzed, revealing a significative association with young age (p = 0.009). After a follow-up period of 7.05 ± 2.44 months (ranging from 3 to 12 months), a complete resorption in all patients (100%) within 12 months was observed. Best-corrected visual acuity significantly improved in both groups over time. Conclusion: Using 55° WF SD-OCT successfully assessed the course of SRF reabsorption, offering a viable alternative for all those realities where technologies such as ultra-wide-field (UWF) OCT are not available. Full article
(This article belongs to the Special Issue Optical Coherence Tomography in Diagnosis of Ophthalmology Disease)
Show Figures

Figure 1

18 pages, 4684 KB  
Article
Development and Fabrication of a Multi-Layer Planar Solar Light Absorber Achieving High Absorptivity and Ultra-Wideband Response from Visible Light to Infrared
by Cheng-Fu Yang, Chih-Hsuan Wang, Pei-Xiu Ke, Teen-Hang Meen and Kuei-Kuei Lai
Nanomaterials 2024, 14(11), 930; https://doi.org/10.3390/nano14110930 - 25 May 2024
Cited by 3 | Viewed by 1740
Abstract
The objective of this study is to create a planar solar light absorber that exhibits exceptional absorption characteristics spanning from visible light to infrared across an ultra-wide spectral range. The eight layered structures of the absorber, from top to bottom, consisted of Al [...] Read more.
The objective of this study is to create a planar solar light absorber that exhibits exceptional absorption characteristics spanning from visible light to infrared across an ultra-wide spectral range. The eight layered structures of the absorber, from top to bottom, consisted of Al2O3, Ti, Al2O3, Ti, Al2O3, Ni, Al2O3, and Al. The COMSOL Multiphysics® simulation software (version 6.0) was utilized to construct the absorber model and perform simulation analyses. The first significant finding of this study is that as compared to absorbers featuring seven-layered structures (excluding the top Al2O3 layer) or using TiO2 or SiO2 layers as substituted for Al2O3 layer, the presence of the top Al2O3 layer demonstrated superior anti-reflection properties. Another noteworthy finding was that the top Al2O3 layer provided better impedance matching compared to scenarios where it was absent or replaced with TiO2 or SiO2 layers, enhancing the absorber’s overall efficiency. Consequently, across the ultra-wideband spectrum spanning 350 to 1970 nm, the average absorptivity reached an impressive 96.76%. One significant novelty of this study was the utilization of various top-layer materials to assess the absorption and reflection spectra, along with the optical-impedance-matching properties of the designed absorber. Another notable contribution was the successful implementation of evaporation techniques for depositing and manufacturing this optimized absorber. A further innovation involved the use of transmission electron microscopy to observe the thickness of each deposition layer. Subsequently, the simulated and calculated absorption spectra of solar energy across the AM1.5 spectrum for both the designed and fabricated absorbers were compared, demonstrating a match between the measured and simulated results. Full article
Show Figures

Figure 1

10 pages, 4505 KB  
Communication
Ultra-Broadband Ultraviolet–Visible Light–Short Wavelength Infrared InGaAs Focal Plane Arrays via n-InP Contact Layer Removal
by Jiaxin Zhang, Wei Wang, Haifeng Ye, Runyu Huang, Chen Liu, Weilin Zhao and Yanli Shi
Sensors 2024, 24(5), 1521; https://doi.org/10.3390/s24051521 - 26 Feb 2024
Cited by 5 | Viewed by 2819
Abstract
PIN InGaAs short wavelength infrared (SWIR) focal plane array (FPA) detectors have attracted extensive attention due to their high detectivity, high quantum efficiency, room temperature operation, low dark current, and good radiation resistance. Furthermore, InGaAs FPA detectors have wide applications in many fields, [...] Read more.
PIN InGaAs short wavelength infrared (SWIR) focal plane array (FPA) detectors have attracted extensive attention due to their high detectivity, high quantum efficiency, room temperature operation, low dark current, and good radiation resistance. Furthermore, InGaAs FPA detectors have wide applications in many fields, such as aviation safety, biomedicine, camouflage recognition, and infrared night vision. Recently, extensive research has been conducted on the extension of the response spectrum from short wavelength infrared (SWIR) to visible light (VIS) through InP substrate removal and reserving the n-InP contact layer. However, there is little research on the absorption of InGaAs detectors in the ultraviolet (UV) band. In this paper, we present an ultra-broadband UV–VIS–SWIR 640 × 512 15 μm InGaAs FPA detector by removing the n-InP contact layer in the active area and reserving the InP contact layer around the pixels for n contact, creating incident light to be directly absorbed by the In0.53Ga0.47As absorption layer. In addition, the optical absorption characteristics of InGaAs infrared detectors with and without an n-InP contact layer are studied theoretically. The test results show that the spectral response is extended to the range of 200–1700 nm. The quantum efficiency is higher than 45% over a broad wavelength range of 300–1650 nm. The operability is up to 99.98%, and the responsivity non-uniformity is 3.28%. The imaging capability of InGaAs FPAs without the n-InP contact layer has also been demonstrated, which proves the feasibility of simultaneous detection for these three bands. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 3701 KB  
Article
An Ultra-Compact X-ray Regenerative Amplifier Free-Electron Laser
by Madison Singleton, James Rosenzweig, Jingyi Tang and Zhirong Huang
Instruments 2024, 8(1), 2; https://doi.org/10.3390/instruments8010002 - 5 Jan 2024
Cited by 2 | Viewed by 3829
Abstract
There is a growing interest in designing and building compact X-ray Free Electron Lasers (FELs) for scientific and industry applications. In this paper, we report an X-ray Regenerative Amplifier FEL (XRAFEL) design based on a proposed Ultra Compact X-ray FEL configuration. Our results [...] Read more.
There is a growing interest in designing and building compact X-ray Free Electron Lasers (FELs) for scientific and industry applications. In this paper, we report an X-ray Regenerative Amplifier FEL (XRAFEL) design based on a proposed Ultra Compact X-ray FEL configuration. Our results show that an XRAFEL can dramatically enhance the temporal coherence and increase the spectral brightness of the radiation in the hard X-ray regime without increasing the footprint of the FEL configuration. The proposed compact, fully coherent, and high-flux hard X-ray source holds promise as a valuable candidate for a wide range of high-impact applications in both academia and industry. Full article
Show Figures

Figure 1

11 pages, 8967 KB  
Article
Optical Characteristics of Silver Thin Films from Island to Percolation in the Ultra-Wide Infrared Spectral Range
by Pian Liu, Zhe Shi, Daoxiang Teng, Fuyan Liu, Yue Cao, Yanping Lin, Zhiyong Yang, Anping Yang, Yuxiang Zheng and Liangyao Chen
Coatings 2023, 13(11), 1910; https://doi.org/10.3390/coatings13111910 - 8 Nov 2023
Cited by 3 | Viewed by 2628
Abstract
Silver (Ag) thin films have garnered significant attention due to their unique optical properties. This paper systematically investigates the optical characteristics of Ag films prepared using the electron beam evaporation method. The investigation was conducted using spectroscopic ellipsometry and covers a broad wavelength [...] Read more.
Silver (Ag) thin films have garnered significant attention due to their unique optical properties. This paper systematically investigates the optical characteristics of Ag films prepared using the electron beam evaporation method. The investigation was conducted using spectroscopic ellipsometry and covers a broad wavelength range of 1679 nm to 36 µm (0.738–0.034 eV), spanning from near-infrared to far-infrared regions. Optical and dispersion models were developed to analyze the impacts of Ag nanostructures on the complex refractive indices, dielectric functions, and reflectance. The results indicate that Ag particles and coalescence films exhibit non-metallic and low absorption properties, while Ag percolation and continuous films present a typical Drude model. The reflectance of Ag films increases as the film coverage ratio increases, and it can reach close to 100% in continuous film. Additionally, a non-destructive, non-contact, and vacuum-free means of confirming the percolation threshold of Ag films was proposed based on the slope of the imaginary part curve. This work is useful to guide simulations and provide a basis for the applications of Ag films in different fields. Full article
Show Figures

Figure 1

Back to TopTop