A Wide Field of View and Broadband Infrared Imaging System Integrating a Dispersion-Engineered Metasurface
Abstract
1. Introduction
2. Discussions and Results
2.1. Design and Analysis of the Optical Imaging System
2.2. Characterization of the Metasurface
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, Q.; Zhang, X. Athermalization of the medium-wave infrared optical system based on chalcogenide glasses. Infrared Laser Eng. 2015, 44, 1467–1471. [Google Scholar]
- Chen, L.; Feng, S. A Compact Athermalizing Infrared Optical System. Infrared Technol. 2007, 29, 203–205. [Google Scholar]
- Rafał, K.; Leszek, J.; Marek, O.; Janusz, P. Experimental study on terahertz metamaterial embedded in nematic liquid crystal. Appl. Phys. Lett. 2015, 106, 092905. [Google Scholar] [CrossRef]
- Shuvo, M.M.K.; Hossain, M.I.; Mahmud, S.; Rahman, S.; Topu, M.T.H.; Hoque, A.; Islam, S.S.; Soliman, M.S.; Almalki, S.H.A.; Islam, M.S. Polarization and angular insensitive bendable metamaterial absorber for UV to NIR range. Sci. Rep. 2022, 12, 4857. [Google Scholar] [CrossRef]
- Zheng, C.; Ni, P.; Xie, Y.; Genevet, P. On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces. Opto-Electron. Adv. 2025, 8, 240159. [Google Scholar] [CrossRef]
- Zheng, C.; Li, H.; Liu, J.; Wang, M.; Zang, H.; Zhang, Y.; Yao, J. Full-Stokes metasurface polarimetry requiring only a single measurement. Photonics Res. 2024, 12, 514. [Google Scholar] [CrossRef]
- He, X.; Wu, M.; Lu, G.; Zhang, Y.; Geng, Z. High-efficiency multi-channel focusing and imaging enabled by polarization-frequency multiplexing non-interleaved metasurfaces. Photonics Res. 2025, 13, 976–986. [Google Scholar] [CrossRef]
- Wu, M.; He, X.; Lu, G.; Geng, Z.; Zhang, Y. Multi-mode non-diffraction vortex beams enabled by polarization-frequency multiplexing transmissive terahertz metasurfaces. J. Appl. Phys. 2024, 136, 103102. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Shi, Y.; Fan, S.; Fu, R.; Liu, X. Dual-wavelength and dual-linear polarized omnidirectional beam deflectors. Opt. Commun. 2025, 578, 131480. [Google Scholar] [CrossRef]
- Li, S.; Zhou, W.; Li, Y.; Lu, Z.; Zhao, F.; He, X.; Jiang, X.; Du, T.; Zhang, Z.; Deng, Y.; et al. Collision of high-resolution wide FOV metalens cameras and vision tasks. Nanophotonics 2025, 14, 315–326. [Google Scholar] [CrossRef]
- Pan, M.; Fu, Y.; Zheng, M.; Chen, H.; Zang, Y.; Duan, H.; Li, Q.; Qiu, M.; Hu, Y. Dielectric metalens for miniaturized imaging systems: Progress and challenges. Light Sci. Appl. 2022, 11, 195. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Shao, Y.; Zhan, J.; Yu, J.; Wang, Y.; Choudhury, P.K.; Hernandez-Figueroa, H.E.; Ma, Y. Polarization-controlled metasurface for simultaneous holographic display and three-dimensional depth perception. Nanophotonics 2025, 14, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Chen, C.; Dai, Y.; Wang, X.; Cui, H.; Zhu, X.; Liu, H. Reconfigurable Janus metasurface with chiral meta-atoms for multi-channel vortex beams and holography multiplexing. Opt. Express 2025, 33, 309–321. [Google Scholar] [CrossRef]
- Liang, X.; Deng, L.; Shan, X.; Li, Z.; Zhou, Z.; Guan, Z.; Zheng, G. Asymmetric hologram with a single-size nanostructured metasurface. Opt. Express 2021, 29, 19964–19974. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; An, J.; Kim, W.; Seong, J.; Park, Y.; Lee, E.; Kim, S.; Moon, S.; Lee, C.; Lee, H.; et al. Large-Area Floating Display with Wafer-Scale Manufactured Metalens Arrays. Laser Photonics Rev. 2025, 19, 2401425. [Google Scholar] [CrossRef]
- Zhang, F.; Pu, M.; Li, X.; Ma, X.; Guo, Y.; Gao, P.; Yu, H.; Gu, M.; Luo, X. Extreme-Angle Silicon Infrared Optics Enabled by Streamlined Surfaces. Adv. Mater. 2021, 33, 2008157. [Google Scholar] [CrossRef]
- Yu, H.; Cen, Z.; Li, X. Broadband achromatic and wide field of view metalens-doublet by inverse design. Opt. Express 2024, 32, 15315–15325. [Google Scholar] [CrossRef]
- Hu, J.; Yang, W. Metalens array miniaturized microscope for large-field-of-view imaging. Opt. Commun. 2024, 555, 130231. [Google Scholar] [CrossRef]
- Lin, D.; Hayward, T.M.; Jia, W.; Majumder, A.; Sensale-Rodriguez, B.; Menon, R. Inverse-Designed Multi-Level Diffractive Doublet for Wide Field-of-View Imaging. ACS Photon. 2023, 10, 2661–2669. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Liu, M.; Huo, P.; Tan, L.; Xu, T. Compact meta-optics infrared camera based on a polarization-insensitive metalens with a large field of view. Opt. Lett. 2023, 48, 4709–4712. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Xin, K.; Chen, Z.; Chen, Z.; Chen, R.; Chen, X.; Zhao, F.; Zheng, W.; Dong, J. Ultra-wide FOV meta-camera with transformer-neural-network color imaging methodology. Adv. Photonics 2024, 6, 056001. [Google Scholar] [CrossRef]
- Park, Y.; Kim, Y.; Kim, C.; Lee, G.; Choi, H.; Choi, T.; Jeong, Y.; Lee, B. End-to-End Optimization of Metalens for Broadband and Wide-Angle Imaging. Adv. Opt. Mater. 2025, 13, 2402853. [Google Scholar] [CrossRef]
- Wei, J.; Huang, H.; Zhang, X.; Ye, D.; Li, Y.; Wang, L.; Ma, Y.; Li, Y. Neural-Network-Enhanced Metalens Camera for High-Definition, Dynamic Imaging in the Long-Wave Infrared Spectrum. ACS Photon. 2025, 1, 140–151. [Google Scholar] [CrossRef]
- Chung, H.; Zhang, F.; Li, H.; Miller, O.D.; Smith, H.I. Inverse design of high-NA metalens for maskless lithography. Nanophotonics 2023, 12, 2371–2381. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Yi, Y.; Zhang, N.; Zhang, Y.; Wu, H.; Yi, Z.; Liu, S.; Yi, Y.; Tang, B.; Sun, T. Inverse design broadband achromatic metasurfaces for longwave infrared. Opt. Mater. 2024, 148, 114923. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Li, Z.; Wei, B.; Gan, X.; Xie, X. Broadband and Wide Field-of-View Refractive and Meta-Optics Hybrid Imaging System for Mid-Wave Infrared. Nanomaterials 2025, 15, 566. [Google Scholar] [CrossRef]
- Thomas, S.; George, J.G.; Ferranti, F.; Bhattacharya, S. Metaoptics for aberration correction in microendoscopy. Opt. Express 2024, 32, 9686–9698. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.T.; Zhu, A.Y.; Sisler, J.; Huang, Y.; Yousef, K.M.A.; Lee, E.; Qiu, C.; Capasso, F. Broadband Achromatic Metasurface-Refractive Optics. Nano Lett. 2018, 18, 7801–7808. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, T.; Lee, G.-Y.; Kim, C.; Bang, J.; Jang, J.; Jeong, Y.; Lee, B. Metasurface folded lens system for ultrathin cameras. Sci. Adv. 2024, 10, eadr2319. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, J.; Pian, S.; Xu, J.; Li, X.; Li, B.; Lu, C.; Wang, Z.; Jiang, Q.; Qin, S.; et al. Hybrid Meta-Optics Enabled Compact Augmented Reality Display with Computational Image Reinforcement. ACS Photon. 2024, 11, 3794–3803. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, W.; Wang, Y.; Huo, P.; Zhang, H.; Lu, Y.; Xu, T. Achromatic and Coma-Corrected Hybrid Meta-Optics for High-Performance Thermal Imaging. Nano Lett. 2024, 24, 7609–7615. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Lai, T.; Yuan, P.; Wang, J.; Zhao, J. Design of a refractive-metasurface hybrid annular aperture folded optical system. Opt. Express 2024, 32, 10948–10961. [Google Scholar] [CrossRef] [PubMed]
- Shih, K.; Renshaw, C. Hybrid meta/refractive lens design with an inverse design using physical optics. Appl. Opt. 2024, 63, 4032–4043. [Google Scholar] [CrossRef]
- Arbabi, E.; Arbabi, A.; Kamali, S.M.; Horie, Y.; Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica 2016, 3, 628–633. [Google Scholar] [CrossRef]
- Zuo, H.; Choi, D.-Y.; Gai, X.; Ma, P.; Xu, L.; Neshev, D.N.; Zhang, B.; Luther-Davies, B. High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging. Adv. Opt. Mater. 2017, 5, 1700585. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Lim, S.W.D.; Meretska, M.L.; Capasso, F. A High Aspect Ratio Inverse-Designed Holey Metalens. Nano Lett. 2021, 21, 8642–8649. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, Z.; Zhu, Z.; He, Y.; Sun, S.; Zhou, L.; He, Q. High-Aspect-Ratio Silicon Metasurfaces: Design, Fabrication, and Characterization. Appl. Sci. 2023, 13, 9607. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef]
Surface Number | Surface Type | R/mm | T/mm | Material |
---|---|---|---|---|
S1 | Plane | Infinity | 1.944 | KCl |
S2 | Sphere | 4.348 | 7.778 | —— |
S3 | Stop | Infinity | 0.972 | —— |
S4 | Sphere | −137.818 | 3.352 | Si |
S5 | Sphere | −18.749 | 6.635 | —— |
S6 | Sphere | 8.979 | 4.843 | KRS5 |
S7 | Sphere | 24.985 | 0.972 | —— |
S8 | Plane | Infinity | 1 | Si |
S9 | Binary 2 | Infinity | 0.757 | —— |
S10 | Image plane | Infinity | —— | —— |
Wavelength/μm | 3 | 3.5 | 4 | 4.5 | 5 |
RMS | 0.10314 | 0.11448 | 0.075609 | 0.11447 | 0.1457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Zhang, Y.; Li, Z.; Gan, X.; Xie, X. A Wide Field of View and Broadband Infrared Imaging System Integrating a Dispersion-Engineered Metasurface. Photonics 2025, 12, 1033. https://doi.org/10.3390/photonics12101033
Liu B, Zhang Y, Li Z, Gan X, Xie X. A Wide Field of View and Broadband Infrared Imaging System Integrating a Dispersion-Engineered Metasurface. Photonics. 2025; 12(10):1033. https://doi.org/10.3390/photonics12101033
Chicago/Turabian StyleLiu, Bo, Yunqiang Zhang, Zhu Li, Xuetao Gan, and Xin Xie. 2025. "A Wide Field of View and Broadband Infrared Imaging System Integrating a Dispersion-Engineered Metasurface" Photonics 12, no. 10: 1033. https://doi.org/10.3390/photonics12101033
APA StyleLiu, B., Zhang, Y., Li, Z., Gan, X., & Xie, X. (2025). A Wide Field of View and Broadband Infrared Imaging System Integrating a Dispersion-Engineered Metasurface. Photonics, 12(10), 1033. https://doi.org/10.3390/photonics12101033