Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (474)

Search Parameters:
Keywords = ubiquitin-proteasomal pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4786 KiB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 439
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Graphical abstract

25 pages, 4337 KiB  
Article
Cullin-3 and Regulatory Biomolecules Profiling in Vitiligo: Integrated Docking, Clinical, and In Silico Insights
by Hidi A. A. Abdellatif, Mohamed Azab, Eman Hassan El-Sayed, Rwan M. M. M. Halim, Ahmad J. Milebary, Dhaifallah A. Alenizi, Manal S. Fawzy and Noha M. Abd El-Fadeal
Biomolecules 2025, 15(7), 1053; https://doi.org/10.3390/biom15071053 - 21 Jul 2025
Viewed by 394
Abstract
Background: Vitiligo, a chronic depigmentation disorder driven by oxidative stress and immune dysregulation, remains poorly understood mechanistically. The Keap1/NRF2/ARE pathway is critical for melanocyte protection against oxidative damage; however, the role of Cullin-3 (CUL3), a scaffold for E3 ubiquitin ligases that regulate NRF2 [...] Read more.
Background: Vitiligo, a chronic depigmentation disorder driven by oxidative stress and immune dysregulation, remains poorly understood mechanistically. The Keap1/NRF2/ARE pathway is critical for melanocyte protection against oxidative damage; however, the role of Cullin-3 (CUL3), a scaffold for E3 ubiquitin ligases that regulate NRF2 degradation, and its interplay with inflammatory mediators in vitiligo pathogenesis are underexplored. This study investigates CUL3, NRF2, and the associated regulatory networks in vitiligo, integrating clinical profiling and computational docking to identify therapeutic targets. Methods: A case-control study compared non-segmental vitiligo patients with age-/sex-matched controls. Lesional skin biopsies were analyzed by qRT-PCR for the expression of CUL3, NRF2, miRNA-146a, FOXP3, NF-κB, IL-6, TNF-α, and P53. Molecular docking was used to evaluate vitexin’s binding affinity to Keap1, validated by root mean square deviation (RMSD) calculations. Results: Patients with vitiligo exhibited significant downregulation of CUL3 (0.27 ± 0.03 vs. 1 ± 0.58; p = 0.013), NRF2 (0.37 ± 0.26 vs. 1 ± 0.8; p = 0.001), and FOXP3 (0.09 ± 0.2 vs. 1 ± 0.3; p = 0.001), alongside the upregulation of miRNA-146a (4.7 ± 1.9 vs. 1 ± 0.8; p = 0.001), NF-κB (4.7 ± 1.9 vs. 1 ± 0.5; p = 0.001), IL-6 (2.8 ± 1.5 vs. 1 ± 0.4; p = 0.001), and TNF-α (2.2 ± 1.1 vs. 1 ± 0.3; p = 0.001). P53 showed no differential expression (p > 0.05). Docking revealed a strong binding of vitexin to Keap1 (RMSD: 0.23 Å), mirroring the binding of the control ligand CDDO-Im. Conclusions: Dysregulation of the CUL3/Keap1/NRF2 axis and elevated miRNA-146a levels correlate with vitiligo progression, suggesting a role for oxidative stress and immune imbalance. Vitexin’s high-affinity docking to Keap1 positions it as a potential modulator of the NRF2 pathway, offering novel therapeutic avenues. This study highlights the translational potential of targeting the ubiquitin–proteasome and antioxidant pathways in the management of vitiligo. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Skin Disorders)
Show Figures

Figure 1

17 pages, 3159 KiB  
Article
Csn5 Depletion Reverses Mitochondrial Defects in GCN5-Null Saccharomyces cerevisiae
by Angela Cirigliano, Emily Schifano, Alessandra Ricelli, Michele M. Bianchi, Elah Pick, Teresa Rinaldi and Arianna Montanari
Int. J. Mol. Sci. 2025, 26(14), 6916; https://doi.org/10.3390/ijms26146916 - 18 Jul 2025
Viewed by 220
Abstract
In this study, we investigated the mitochondrial defects resulting from the deletion of GCN5, a lysine-acetyltransferase, in the yeast Saccharomyces cerevisiae. Gcn5 serves as the catalytic subunit of the SAGA acetylation complex and functions as an epigenetic regulator, primarily acetylating N-terminal [...] Read more.
In this study, we investigated the mitochondrial defects resulting from the deletion of GCN5, a lysine-acetyltransferase, in the yeast Saccharomyces cerevisiae. Gcn5 serves as the catalytic subunit of the SAGA acetylation complex and functions as an epigenetic regulator, primarily acetylating N-terminal lysine residues on histones H2B and H3 to modulate gene expression. The loss of GCN5 leads to mitochondrial abnormalities, including defects in mitochondrial morphology, a reduced mitochondrial DNA copy number, and defective mitochondrial inheritance due to the depolarization of actin filaments. These defects collectively trigger the activation of the mitophagy pathway. Interestingly, deleting CSN5, which encodes to Csn5/Rri1 (Csn5), the catalytic subunit of the COP9 signalosome complex, rescues the mitochondrial phenotypes observed in the gcn5Δ strain. Furthermore, these defects are suppressed by exogenous ergosterol supplementation, suggesting a link between the rescue effect mediated by CSN5 deletion and the regulatory role of Csn5 in the ergosterol biosynthetic pathway. Full article
(This article belongs to the Special Issue Research on Mitochondrial Genetics and Epigenetics)
Show Figures

Figure 1

20 pages, 3707 KiB  
Article
Genome-Wide CRISPR-Cas9 Knockout Screening Identifies NUDCD2 Depletion as Sensitizer for Bortezomib, Carfilzomib and Ixazomib in Multiple Myeloma
by Sophie Vlayen, Tim Dierckx, Marino Caruso, Swell Sieben, Kim De Keersmaecker, Dirk Daelemans and Michel Delforge
Hemato 2025, 6(3), 21; https://doi.org/10.3390/hemato6030021 - 16 Jul 2025
Viewed by 388
Abstract
Background/Objectives: The treatment of multiple myeloma (MM) remains a challenge, as almost all patients will eventually relapse. Proteasome inhibitors are a cornerstone in the management of MM. Unfortunately, validated biomarkers predicting drug response are largely missing. Therefore, we aimed to identify genes associated [...] Read more.
Background/Objectives: The treatment of multiple myeloma (MM) remains a challenge, as almost all patients will eventually relapse. Proteasome inhibitors are a cornerstone in the management of MM. Unfortunately, validated biomarkers predicting drug response are largely missing. Therefore, we aimed to identify genes associated with drug resistance or sensitization to proteasome inhibitors. Methods: We performed genome-wide CRISPR-Cas9 knockout (KO) screens in human KMS-28-BM myeloma cells to identify genetic determinants associated with resistance or sensitization to proteasome inhibitors. Results: We show that KO of KLF13 and PSMC4 induces drug resistance, while NUDCD2, OSER1 and HERC1 KO cause drug sensitization. Subsequently, we focused on top sensitization hit, NUDCD2, which acts as a co-chaperone of Hsp90 to regulate the LIS1/dynein complex. RNA sequencing showed downregulation of genes involved in the ERAD pathway and in ER-associated ubiquitin-dependent protein catabolic processes in both untreated and carfilzomib-treated NUDCD2 KO cells, suggesting that NUDCD2 depletion alters protein degradation. Furthermore, bortezomib-treated NUDCD2 KO cells showed a decreased expression of genes that have a function in oxidative phosphorylation and the mitochondrial membrane, such as Carnitine Palmitoyltransferase 1A (CPT1A). CPT1A catalyzes the uptake of long chain fatty acids into mitochondria. Mitochondrial lipid metabolism has recently been reported as a possible therapeutic target for MM drug sensitivity. Conclusions: These results contribute to the search for therapeutic targets that can sensitize MM patients to proteasome inhibitors. Full article
(This article belongs to the Section Plasma Cell Disorders)
Show Figures

Figure 1

18 pages, 3134 KiB  
Article
A Novel Chemotherapy Combination to Enhance Proteotoxic Cell Death in Hepatocellular Carcinoma Experimental Models Without Killing Non-Cancer Cells
by Carlos Perez-Stable, Alicia de las Pozas, Teresita Reiner, Jose Gomez, Manojavan Nagarajan, Robert T. Foster, Daren R. Ure and Medhi Wangpaichitr
Int. J. Mol. Sci. 2025, 26(14), 6699; https://doi.org/10.3390/ijms26146699 - 12 Jul 2025
Viewed by 447
Abstract
Inhibitors of the ubiquitin–proteasome system increase proteotoxic stress and have achieved clinical success for multiple myeloma but not for solid cancers such as hepatocellular carcinoma. Our objective is to identify a combination with proteasome inhibitors that enhances proteotoxic stress and apoptotic cell death [...] Read more.
Inhibitors of the ubiquitin–proteasome system increase proteotoxic stress and have achieved clinical success for multiple myeloma but not for solid cancers such as hepatocellular carcinoma. Our objective is to identify a combination with proteasome inhibitors that enhances proteotoxic stress and apoptotic cell death in hepatocellular carcinoma but with less toxicity to non-cancer cells. We found that rencofilstat, a pan-cyclophilin inhibitor, combined with ixazomib, a proteasome inhibitor, increased apoptotic cell death in hepatocellular carcinoma but not in umbilical vein or dermal fibroblast non-cancer cells. We then analyzed the effects of rencofilstat + ixazomib on XBP1s and PERK, critical factors in the unfolded protein response used by cells to survive proteotoxic stress. Rencofilstat + ixazomib maintained higher expression of XBP1s and genetic models suggested that XBP1s was a pro-survival protein early and pro-death protein at later times. Simultaneously, decreased PERK expression prevented the block in protein synthesis via phospho-eIF2α and likely further amplified proteotoxic stress. Rencofilstat + ixazomib did not have effects on XBP1s or PERK in non-cancer cells. Further genetic experiments revealed the pro-survival roles for cyclophilin A and B in mediating rencofilstat + ixazomib-induced cell death. In the Hep3B xenograft model, rencofilstat + ixazomib significantly inhibited tumor volumes/weights without general toxicity. We conclude that rencofilstat + ixazomib amplified proteotoxic stress in hepatocellular carcinoma past a threshold pro-survival pathways could not tolerate, whereas non-cancer cells were less affected. Full article
Show Figures

Graphical abstract

16 pages, 2386 KiB  
Article
Heat-Killed Lactobacillus plantarum beLP1 Attenuates Dexamethasone-Induced Sarcopenia in Rats by Increasing AKT Phosphorylation
by Jinsu Choi, Eunwoo Jeong, Harang Park, Hye-Yeong Song, Juyeong Moon, Min-ah Kim, Bon Seo Koo, Jin-Ho Lee, Jong Kwang Hong, Kwon-Il Han, Doyong Kim, Han Sung Kim and Tack-Joong Kim
Biomedicines 2025, 13(7), 1668; https://doi.org/10.3390/biomedicines13071668 - 8 Jul 2025
Viewed by 423
Abstract
Background/Objectives: Sarcopenia is an age-related disease resulting in muscle mass deterioration and declining strength and functional ability. Muscle protein degradation pathways are activated through the ubiquitin–proteasome system, which is integral to the pathogenesis of sarcopenia. This study examined the capability of Lactobacillus [...] Read more.
Background/Objectives: Sarcopenia is an age-related disease resulting in muscle mass deterioration and declining strength and functional ability. Muscle protein degradation pathways are activated through the ubiquitin–proteasome system, which is integral to the pathogenesis of sarcopenia. This study examined the capability of Lactobacillus plantarum beLP1 as a postbiotic ingredient of kimchi that prevents sarcopenia. Methods: We evaluated cell viability and measured diameters in a C2C12 myotube damage model and muscle volume, muscle weight, muscle strength, and the expression of muscle degradation proteins MuRF1 and Atrogin-1 in dexamethasone-induced sarcopenic model rats using a heat-killed beLP1 strain. Results: beLP1 had no cytotoxic effects on C2C12 and prevented dexamethasone-induced cellular damage, suggesting its role in muscle protein degradation pathways. beLP1 treatment significantly prevented the dexamethasone-induced reduction in myotube diameter. In a dexamethasone-induced sarcopenic rat model, oral beLP1 significantly mitigated muscle mass decline and prevented grip strength reduction. Microcomputed tomography demonstrated that beLP1 reduced dexamethasone-induced muscle volume loss. beLP1 treatment reduced Atrogin-1 and Muscle RING-finger protein-1 (MuRF1) and the transcription factor Forkhead box O3 alpha (FoxO3α), which triggers muscle protein breakdown. beLP1 exerts protective effects by inhibiting the ubiquitin-proteasome system and regulating FoxO3α signaling. It increased AKT (Ser473) phosphorylation, which affected muscle protein synthesis, degradation, and cell survival, suggesting its potential to prevent sarcopenia. Conclusions: Heat-killed Lactobacillus plantarum beLP1 alleviates muscle mass wasting and weakness in a dexamethasone-induced sarcopenia model by regulating muscle protein degradation pathways and signaling molecules. Thus, postbiotics may be functional ingredients in sarcopenia prevention. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

17 pages, 5007 KiB  
Review
PROTAC-Based Antivirals for Respiratory Viruses: A Novel Approach for Targeted Therapy and Vaccine Development
by Amith Anugu, Pankaj Singh, Dharambir Kashyap, Jillwin Joseph, Sheetal Naik, Subhabrata Sarkar, Kamran Zaman, Manpreet Dhaliwal, Shubham Nagar, Tanishq Gupta and Prasanna Honnavar
Microorganisms 2025, 13(7), 1557; https://doi.org/10.3390/microorganisms13071557 - 2 Jul 2025
Viewed by 520
Abstract
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this [...] Read more.
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this control is limited due to unexpected events, such as mutations and the development of antiviral resistance. The technology of proteolysis-targeting chimeras (PROTACs) has been emerging as a novel technology in viral therapeutics. These are small molecules that can selectively degrade target proteins via the ubiquitin–proteasome pathway. PROTACs as a therapy were initially developed against cancer, but they have recently shown promising results in their antiviral mechanisms by targeting viral and/or host proteins involved in the pathogenesis of viral infections. In this review, we elaborate on the antiviral potential of PROTACs as therapeutic agents and their potential as vaccine components against important respiratory viral pathogens, including influenza viruses, coronaviruses (SARS-CoV-2), and respiratory syncytial virus. Advanced applications of PROTAC antiviral strategies, such as hemagglutinin and neuraminidase degraders for influenza and spike proteins of SARS-CoV-2, are detailed in this review. Additionally, the role of PROTACs in targeting cellular mechanisms within the host, thereby preventing viral pathogenesis and eliciting an antiviral effect, is discussed. The potential of PROTACs as vaccines, utilizing proteasome-based virus attenuation to achieve a robust protective immune response, while ensuring safety and enhancing efficient production, is also presented. With the promises exhibited by PROTACs, this technology faces significant challenges, including the emergence of novel viral strains, tissue-specific expression of E3 ligases, and pharmacokinetic constraints. With advanced computational design in molecular platforms, PROTAC-based antiviral development offers an alternative, transformative path in tackling respiratory viruses. Full article
Show Figures

Figure 1

18 pages, 2646 KiB  
Article
COP1 Deficiency in BRAFV600E Melanomas Confers Resistance to Inhibitors of the MAPK Pathway
by Ada Ndoja, Christopher M. Rose, Eva Lin, Rohit Reja, Jelena Petrovic, Sarah Kummerfeld, Andrew Blair, Helen Rizos, Zora Modrusan, Scott Martin, Donald S. Kirkpatrick, Amy Heidersbach, Tao Sun, Benjamin Haley, Ozge Karayel, Kim Newton and Vishva M. Dixit
Cells 2025, 14(13), 975; https://doi.org/10.3390/cells14130975 - 25 Jun 2025
Viewed by 707
Abstract
Aberrant activation of the mitogen-activated protein kinase (MAPK) cascade promotes oncogenic transcriptomes. Despite efforts to inhibit oncogenic kinases, such as BRAFV600E, tumor responses in patients can be heterogeneous and limited by drug resistance mechanisms. Here, we describe patient tumors that acquired COP1 or [...] Read more.
Aberrant activation of the mitogen-activated protein kinase (MAPK) cascade promotes oncogenic transcriptomes. Despite efforts to inhibit oncogenic kinases, such as BRAFV600E, tumor responses in patients can be heterogeneous and limited by drug resistance mechanisms. Here, we describe patient tumors that acquired COP1 or DET1 mutations after treatment with the BRAFV600E inhibitor vemurafenib. COP1 and DET1 constitute the substrate adaptor of the E3 ubiquitin ligase CRL4COP1/DET1, which targets transcription factors, including ETV1, ETV4, and ETV5, for proteasomal degradation. MAPK-MEK-ERK signaling prevents CRL4COP1/DET1 from ubiquitinating ETV1, ETV4, and ETV5, but the mechanistic details are still being elucidated. We found that patient mutations in COP1 or DET1 inactivated CRL4COP1/DET1 in melanoma cells, stabilized ETV1, ETV4, and ETV5, and conferred resistance to inhibitors of the MAPK pathway. ETV5, in particular, enhanced cell survival and was found to promote the expression of the pro-survival gene BCL2A1. Indeed, the deletion of pro-survival BCL2A1 re-sensitized COP1 mutant cells to vemurafenib treatment. These observations indicate that the post-translational regulation of ETV5 by CRL4COP1/DET1 modulates transcriptional outputs in ERK-dependent cancers, and its inactivation contributes to therapeutic resistance. Full article
(This article belongs to the Special Issue Targeting Hallmarks of Cancer)
Show Figures

Graphical abstract

63 pages, 3732 KiB  
Review
TrypPROTACs Unlocking New Therapeutic Strategies for Chagas Disease
by Ana Luísa Rodriguez Gini, Pamela Souza Tada da Cunha, Emílio Emílio João, Chung Man Chin, Jean Leandro dos Santos, Esteban Carlos Serra and Cauê Benito Scarim
Pharmaceuticals 2025, 18(6), 919; https://doi.org/10.3390/ph18060919 - 19 Jun 2025
Viewed by 1387
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), continues to pose significant public health challenges due to the toxicity, poor tolerability, and limited efficacy of current treatments. Targeted protein degradation (TPD) using proteolysis-targeting chimeras (PROTACs) represents a novel [...] Read more.
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), continues to pose significant public health challenges due to the toxicity, poor tolerability, and limited efficacy of current treatments. Targeted protein degradation (TPD) using proteolysis-targeting chimeras (PROTACs) represents a novel therapeutic avenue by leveraging the ubiquitin–proteasome system to selectively degrade essential parasite proteins. This review introduces the conceptual framework of “TrypPROTACs” as a prospective strategy for T. cruzi, integrating a comprehensive analysis of druggable targets across critical biological pathways, including ergosterol biosynthesis, redox metabolism, glycolysis, nucleotide synthesis, protein kinases, molecular chaperones such as heat shock protein 90 (Hsp90), and epigenetic regulators such as T. cruzi bromodomain factor 3 (TcBDF3). It is important to note that no TrypPROTAC compound has yet been synthesized or experimentally validated in T. cruzi; the approach discussed herein remains theoretical and forward-looking. Representative inhibitors for each target class are compiled, highlighting potency, selectivity, and structural features relevant to ligand design. We also examine the parasite’s ubiquitination machinery and compare it to the human system to identify putative E3 ubiquitin ligases. Key aspects of linker engineering and ternary complex stabilization are discussed, alongside potential validation techniques such as the cellular thermal shift assay (CETSA) and bioluminescence resonance energy transfer (NanoBRET). Collectively, these insights outline a roadmap for the rational design of TrypPROTACs and support the feasibility of expanding targeted protein degradation strategies to neglected tropical diseases. Full article
Show Figures

Graphical abstract

19 pages, 790 KiB  
Review
Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis
by Paolo Cascio
Biomolecules 2025, 15(6), 880; https://doi.org/10.3390/biom15060880 - 16 Jun 2025
Viewed by 396
Abstract
The ubiquitin-proteasome pathway performs a strictly controlled degradation of specific protein substrates within the eukaryotic cell. This catabolic mechanism allows the rapid removal of proteins damaged in any way, and therefore potentially capable of compromising cellular homeostasis, as well as the constant turnover [...] Read more.
The ubiquitin-proteasome pathway performs a strictly controlled degradation of specific protein substrates within the eukaryotic cell. This catabolic mechanism allows the rapid removal of proteins damaged in any way, and therefore potentially capable of compromising cellular homeostasis, as well as the constant turnover of all cellular proteins, in order to balance their synthesis and thus maintain the correct levels of proteins required by the cell at any given time. Consequently, the ubiquitin-proteasome system plays a fundamental role in regulating essential cellular processes, such as the cell cycle, apoptosis, immune responses, and inflammation, whose dysregulation or malfunction can lead to neoplastic transformation. Not surprisingly, therefore, alterations in the activity and regulatory mechanisms of the proteasome are common not only in various types of tumors, but often represent a contributing cause of oncogenesis itself. Among proteasome modulators, PA28γ, due to its function in promoting cell growth and proliferation, while inhibiting apoptosis and cell-mediated immune responses, has received great attention in recent years for its well established pro-tumoral activity. Conversely, the role played in oncogenesis by the second paralogue of the PA28 family of proteasome activators, namely PA28αβ, is less clearly defined, which is also related to the lower level of general understanding of its cellular activities and biological functions. However, increasing experimental evidence has demonstrated that PA28αβ also plays a non-secondary role in the process of neoplastic transformation and tumor growth, both by virtue of its regulatory function on class I cell-mediated immune responses and through activity promoting cell duplication and growth. This review aims to summarize the current knowledge and evidence on the molecular mechanisms and cellular functions through which PA28αβ may support development and growth of cancer. Full article
Show Figures

Figure 1

43 pages, 2656 KiB  
Review
α-Synuclein Pathology in Synucleinopathies: Mechanisms, Biomarkers, and Therapeutic Challenges
by Oscar Arias-Carrión, Magdalena Guerra-Crespo, Francisco J. Padilla-Godínez, Luis O. Soto-Rojas and Elías Manjarrez
Int. J. Mol. Sci. 2025, 26(11), 5405; https://doi.org/10.3390/ijms26115405 - 4 Jun 2025
Viewed by 1793
Abstract
Parkinson’s disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, [...] Read more.
Parkinson’s disease and related synucleinopathies, including dementia with Lewy bodies and multiple system atrophy, are characterised by the pathological aggregation of the α-synuclein (aSyn) protein in neuronal and glial cells, leading to cellular dysfunction and neurodegeneration. This review synthesizes knowledge of aSyn biology, including its structure, aggregation mechanisms, cellular interactions, and systemic influences. We highlight the structural diversity of aSyn aggregates, ranging from oligomers to fibrils, their strain-like properties, and their prion-like propagation. While the role of prion-like mechanisms in disease progression remains a topic of ongoing debate, these processes may contribute to the clinical heterogeneity of synucleinopathies. Dysregulation of protein clearance pathways, including chaperone-mediated autophagy and the ubiquitin–proteasome system, exacerbates aSyn accumulation, while post-translational modifications influence its toxicity and aggregation propensity. Emerging evidence suggests that immune responses and alterations in the gut microbiome are key modulators of aSyn pathology, linking peripheral processes—particularly those of intestinal origin—to central neurodegeneration. Advances in biomarker development, such as cerebrospinal fluid assays, post-translationally modified aSyn, and real-time quaking-induced conversion technology, hold promise for early diagnosis and disease monitoring. Furthermore, positron emission tomography imaging and conformation-specific antibodies offer innovative tools for visualising and targeting aSyn pathology in vivo. Despite significant progress, challenges remain in accurately modelling human synucleinopathies, as existing animal and cellular models capture only specific aspects of the disease. This review underscores the need for more reliable aSyn biomarkers to facilitate the development of effective treatments. Achieving this goal requires an interdisciplinary approach integrating genetic, epigenetic, and environmental insights. Full article
(This article belongs to the Special Issue Molecular Insights in Neurodegeneration)
Show Figures

Graphical abstract

21 pages, 4696 KiB  
Article
Mechanism of Curcumol Targeting the OTUB1/TGFBI Ubiquitination Pathway in the Inhibition of Angiogenesis in Colon Cancer
by Yimiao Zhu, Wenya Wu, Dahai Hou, Yu Zhao, Jinshu Ye, Lizong Shen, Tong Zhao and Xiaoyu Wu
Int. J. Mol. Sci. 2025, 26(10), 4899; https://doi.org/10.3390/ijms26104899 - 21 May 2025
Cited by 1 | Viewed by 671
Abstract
Tumor angiogenesis and metastasis are critical processes in the progression of colon carcinoma. Curcumol, a bioactive sesquiterpenoid derived from curcuma, exhibits anti-angiogenic properties, though its underlying mechanisms remain unclear. In this study, an HT-29 xenograft mouse model demonstrated that curcumol combined with oxaliplatin [...] Read more.
Tumor angiogenesis and metastasis are critical processes in the progression of colon carcinoma. Curcumol, a bioactive sesquiterpenoid derived from curcuma, exhibits anti-angiogenic properties, though its underlying mechanisms remain unclear. In this study, an HT-29 xenograft mouse model demonstrated that curcumol combined with oxaliplatin significantly suppressed tumor growth (Ki67↓) and microvessel density (CD31↓). In vitro assays revealed that curcumol dose dependently inhibited proliferation (MTT), migration (Transwell), and tube formation (CAM assay) in Caco-2/HT-29 and HUVEC cells. Mechanistically, curcumol downregulated OTUB1 expression, promoting TGFB1 degradation via the ubiquitin–proteasome pathway. OTUB1 overexpression activated the TGFB1/VEGF axis, enhancing cell invasiveness and angiogenesis—effects reversed by high-dose curcumol. These findings identify the OTUB1-TGFB1/VEGF axis as a key target of curcumol in inhibiting colon cancer angiogenesis, elucidating its anti-tumor mechanism and offering a novel therapeutic strategy for targeted treatment. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

33 pages, 2729 KiB  
Review
Misregulation of the Ubiquitin–Proteasome System and Autophagy in Muscular Dystrophies Associated with the Dystrophin–Glycoprotein Complex
by Manuela Bozzi, Francesca Sciandra, Maria Giulia Bigotti and Andrea Brancaccio
Cells 2025, 14(10), 721; https://doi.org/10.3390/cells14100721 - 15 May 2025
Viewed by 1252
Abstract
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, [...] Read more.
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin–glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways—primarily the ubiquitin–proteasome and autophagy–lysosome systems—in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy. Full article
Show Figures

Graphical abstract

45 pages, 15230 KiB  
Article
The Transcription Axes ERK-Elk1, JNK-cJun, and JAK-STAT Promote Autophagy Activation and Proteasome Inhibitor Resistance in Prostate Cancer Cells
by Georgios Kalampounias, Kalliopi Zafeiropoulou, Theodosia Androutsopoulou, Spyridon Alexis, Argiris Symeonidis and Panagiotis Katsoris
Curr. Issues Mol. Biol. 2025, 47(5), 352; https://doi.org/10.3390/cimb47050352 - 12 May 2025
Viewed by 808
Abstract
The rapid emergence of resistance limits the application of proteasome inhibitors against solid tumors, despite their effectiveness in the treatment of hematological malignancies. Resistant phenotypes are complex and multifaceted, and, thus, the mechanisms involved have not been adequately described. In this study, a [...] Read more.
The rapid emergence of resistance limits the application of proteasome inhibitors against solid tumors, despite their effectiveness in the treatment of hematological malignancies. Resistant phenotypes are complex and multifaceted, and, thus, the mechanisms involved have not been adequately described. In this study, a Bortezomib-resistant prostate cancer cell line is created by using the PC-3 cell as a prostate carcinoma model of high metastatic potential. The main biochemical differences and adaptations exhibited by the resistant cells revolve around apoptosis evasion, autophagy induction (functioning as a ubiquitin-proteasome system substitute), expression of epithelial-to-mesenchymal transition markers, and increased aggressiveness. Broad-spectrum signaling pathway analyses also reveal an upregulation and activation of Nf-κB, STAT3, cJun, and Elk1 transcription factors in the resistant cells. Additionally, intracellular reactive oxygen species assays reveal a downregulation in resistant cells, which is theorized to be a consequence of metabolic changes, increased autophagic flux, and antioxidative enzyme action. These findings expand our understanding of proteasome inhibitor resistance and highlight key kinases and transcription factors as novel potential therapeutic targets. Effective inhibition of resistance-specific pathways could re-sensitize the cells to proteasome inhibitors, thus surpassing current therapeutic limitations. Full article
(This article belongs to the Special Issue Molecular Research of Urological Diseases)
Show Figures

Figure 1

20 pages, 5346 KiB  
Article
Long-Term Moderate Increase in Medium-Chain Fatty Acids Intake Enhances Muscle Metabolism and Function in Mice
by Ziwei Zhang, Cong Wu, Shuo Wang, Yishan Tong, Jiapeng Huang, Chuwen Xue, Tiehan Cao and Katsuhiko Suzuki
Int. J. Mol. Sci. 2025, 26(9), 4126; https://doi.org/10.3390/ijms26094126 - 26 Apr 2025
Viewed by 827
Abstract
Medium-chain fatty acids (MCFAs) refer to a mixture of fatty acids typically composed of 6 to 12 carbon atoms. The unique transport and rapid metabolism of MCFAs provide more clinical benefits than other substrates, such as long-chain fatty acids. Although many studies have [...] Read more.
Medium-chain fatty acids (MCFAs) refer to a mixture of fatty acids typically composed of 6 to 12 carbon atoms. The unique transport and rapid metabolism of MCFAs provide more clinical benefits than other substrates, such as long-chain fatty acids. Although many studies have shown that MCFAs may improve exercise capacity and muscle strength, applications have mainly been limited to low doses. This study explores the effects of high-dose MCFA intake on muscle strength and exercise endurance. Mice were fed high-fat diets containing 30, 35, and 40% (w/w) MCFAs for 12 weeks, and measurements of grip strength and submaximal endurance exercise capacity were conducted to evaluate muscle function. Results showed that compared to the 30% MCFAs group, the absolute grip strength in the 35 and 40% MCFAs groups significantly increased; in terms of endurance performance, the 35% MCFAs group showed a significant increase compared to the 40% MCFAs group. These results were mainly achieved by promoting muscle regeneration and differentiation and inhibiting the expression of the ubiquitin-proteasome pathway. This study demonstrates that moderately increasing MCFA intake can improve the effects of obesity-induced muscle atrophy. However, excessive intake may reduce the impact of improvement. Full article
Show Figures

Figure 1

Back to TopTop