Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = two-slit interference

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 843 KiB  
Article
A Missing Link: The Double-Slit Experiment and Quantum Entanglement
by Arkady Plotnitsky
Entropy 2025, 27(8), 781; https://doi.org/10.3390/e27080781 - 24 Jul 2025
Viewed by 359
Abstract
This article reconsiders the double-slit experiment by establishing a new type of relationship between it and the concept of entanglement. While the role of entanglement in the double-slit experiment has been considered, this particular relationship appears to have been missed in preceding discussions [...] Read more.
This article reconsiders the double-slit experiment by establishing a new type of relationship between it and the concept of entanglement. While the role of entanglement in the double-slit experiment has been considered, this particular relationship appears to have been missed in preceding discussions of the experiment, even by Bohr, who extensively used it to support his argument concerning quantum physics. The main reason for this relationship is the different roles of the diaphragm with slits in two setups, S1 and S2, defining the double-slit experiment as a quantum experiment. In S1, in each individual run of the experiment one can in principle (even if not actually) know throughout which slit the quantum object considered has passed; in S2 this knowledge is in principle impossible, which impossibility is coextensive with the appearance of the interference pattern, once a sufficient number of individual runs of the experiment have taken place. The article offers the following argument based on two new concepts, an “experimentally quantum object” and an “ontologically quantum object.” In S1 the diaphragm can be treated as part of an observational arrangement and thus considered as a classical object, while the object passing through one or the other slit is considered as an “ontologically quantum object,” defined as an object necessary to establish a quantum phenomenon. By contrast, in S2, the diaphragm can, via the concept of Heisenberg-von-Neumann cut, be treated as an “experimentally quantum object,” defined as an object treatable by quantum theory, even while possibly being an ontologically classical object. This interaction is not an observation but a quantum entanglement between these two quantum objects, one ontologically and one experimentally quantum. This argument is grounded in a particular interpretation of quantum phenomena and quantum theory, which belongs to the class of interpretations designated here as “reality without realism” (RWR) interpretations. The article also argues that wave-particle complementarity, with which the concept of complementarity is often associated, plays little, if any, role in quantum physics, or in Bohr’s thinking, and may be misleading in considering the double-slit experiment, often explained by using this complementarity. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness V)
Show Figures

Figure 1

10 pages, 2195 KiB  
Article
Adaptive Dynamics Simulation of Interference Phenomenon for Physical and Biological Systems
by Tadashi Ando, Masanari Asano, Andrei Khrennikov, Takashi Matsuoka and Ichiro Yamato
Entropy 2023, 25(11), 1487; https://doi.org/10.3390/e25111487 - 26 Oct 2023
Cited by 4 | Viewed by 1785
Abstract
Biological systems have been shown to have quantum-like behaviors by applying the adaptive dynamics view on their interaction networks. In particular, in the process of lactose–glucose metabolism, cells generate probabilistic interference patterns similarly to photons in the two-slit experiment. Such quantum-like interference patterns [...] Read more.
Biological systems have been shown to have quantum-like behaviors by applying the adaptive dynamics view on their interaction networks. In particular, in the process of lactose–glucose metabolism, cells generate probabilistic interference patterns similarly to photons in the two-slit experiment. Such quantum-like interference patterns can be found in biological data, on all scales, from proteins to cognitive, ecological, and social systems. The adaptive dynamics approach covers both biological and physical phenomena, including the ones which are typically associated with quantum physics. We guess that the adaptive dynamics can be used for the clarification of quantum foundations, and the present paper is the first step in this direction. We suggest the use of an algorithm for the numerical simulation of the behavior of a billiard ball-like particle passing through two slits by explicitly considering the influence of the two-slit environment (experimental context). Our simulation successfully mimics the interference pattern obtained experimentally in quantum physics. The interference of photons or electrons by two slits is known as a typical quantum mechanical effect. We do not claim that the adaptive dynamics can reproduce the whole body of quantum mechanics, but we hope that this numerical simulation example will stimulate further extensive studies in this direction—the representation of quantum physical phenomena in an adaptive dynamical framework. Full article
(This article belongs to the Special Issue Complex Interdisciplinary Phenomena: Modeling and Analysis)
Show Figures

Figure 1

10 pages, 2836 KiB  
Article
Ultrafast Dynamics of Extraordinary Optical Transmission through Two-Slit Plasmonic Antenna
by Guangqing Du, Fangrui Yu, Yu Lu, Lin Kai, Caiyi Chen, Qing Yang, Xun Hou and Feng Chen
Nanomaterials 2023, 13(16), 2284; https://doi.org/10.3390/nano13162284 - 9 Aug 2023
Cited by 3 | Viewed by 1511
Abstract
We have theoretically investigated the spatial-temporal dynamics of extraordinary optical transmission (EOT) through a two-slit plasmonic antenna under femtosecond laser dual-beam irradiation. The dynamic interference of the crossed femtosecond laser dual-beam with the transiently excited surface plasmon polariton waves are proposed to characterize [...] Read more.
We have theoretically investigated the spatial-temporal dynamics of extraordinary optical transmission (EOT) through a two-slit plasmonic antenna under femtosecond laser dual-beam irradiation. The dynamic interference of the crossed femtosecond laser dual-beam with the transiently excited surface plasmon polariton waves are proposed to characterize the particular spatial-temporal evolutions of EOT. It is revealed that the dynamic EOT can be flexibly switched with tunable symmetry through the respective slit of a two-slit plasmonic antenna by manipulating the phase correlation of the crossed femtosecond laser dual-beam. This is explained as tunable interference dynamics by phase control of surface plasmon polariton waves, allowing the dynamic modulation of EOT at optimized oblique incidences of dual-beams. Furthermore, we have obtained the unobserved traits of symmetry-broken transient spectra of EOT from the respective up- and down-slit of the antenna under crossed femtosecond laser dual-beam irradiation. This study can provide fundamental insights into the ultrafast dynamics of EOT in two-slit plasmonic antennas, which can be helpful to advance a wide range of applications, such as ultrafast plasmonic switch, ultrahigh resolution imaging, the transient amplification of non-linear effects, etc. Full article
(This article belongs to the Special Issue Advances in Photonic and Plasmonic Nanomaterials—Volume II)
Show Figures

Figure 1

14 pages, 5872 KiB  
Article
Design and Implementation of a Planar MIMO Antenna for Spectrum-Sensing Applications
by Sachin Kumar, Dinesh Kumar Raheja, Sandeep Kumar Palaniswamy, Binod Kumar Kanaujia, Hala Mostafa, Hyun Chul Choi and Kang Wook Kim
Electronics 2023, 12(15), 3311; https://doi.org/10.3390/electronics12153311 - 2 Aug 2023
Cited by 6 | Viewed by 2486
Abstract
Spectrum sensing is an important aspect in cognitive radio (CR) networks as it involves the identification of unused frequency spectra, which saves both bandwidth and energy. The design of a compact super-wideband (SWB) multi-input multi-output (MIMO)/diversity antenna with triple-band-notched features is presented for [...] Read more.
Spectrum sensing is an important aspect in cognitive radio (CR) networks as it involves the identification of unused frequency spectra, which saves both bandwidth and energy. The design of a compact super-wideband (SWB) multi-input multi-output (MIMO)/diversity antenna with triple-band-notched features is presented for spectrum sensing in CR systems. The MIMO antenna comprises four identical semi-elliptical-shaped monopole resonators, which are orthogonally positioned and excited individually via tapered coplanar waveguide feed lines. Also, a mirror-slot analogous to the radiator is etched in the ground conductor of each antenna element to achieve SWB characteristics. In order to avoid interference with the SWB, the antenna radiator is loaded with a staircase-shaped slit and a pair of concentric slits, arranged like a complementary split-ring resonator. The antenna resonates from 1.2 to 43 GHz, exhibiting a bandwidth ratio of 36:1. In the MIMO antenna, the antenna elements are located orthogonally, and the isolation > 18 dB and envelope correlation coefficient < 0.01 are realized in the resonating band. The antenna offers a peak gain of 4 dBi, and a sharp reduction in gain at notch frequencies (3.5 GHz, 5.5 GHz, and 8.5 GHz) is achieved. The size of the MIMO antenna is 52 mm × 52 mm. The proposed compact-size antenna features a high bandwidth ratio and straightforward design procedure, and can be simply integrated into contemporary RF equipment. The presented SWB MIMO antenna outperforms SWB antenna designs reported in the open literature, which featured one or two notched bands, whereas it has three notched bands. Also, the three notches in the SWB are achieved without the use of any filters, which simplifies the antenna development process. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

23 pages, 2546 KiB  
Article
Young’s Experiment with Entangled Bipartite Systems: The Role of Underlying Quantum Velocity Fields
by Ángel S. Sanz
Entropy 2023, 25(7), 1077; https://doi.org/10.3390/e25071077 - 17 Jul 2023
Cited by 5 | Viewed by 1552
Abstract
We consider the concept of velocity fields, taken from Bohmian mechanics, to investigate the dynamical effects of entanglement in bipartite realizations of Young’s two-slit experiment. In particular, by comparing the behavior exhibited by factorizable two-slit states (cat-type state analogs in the position representation) [...] Read more.
We consider the concept of velocity fields, taken from Bohmian mechanics, to investigate the dynamical effects of entanglement in bipartite realizations of Young’s two-slit experiment. In particular, by comparing the behavior exhibited by factorizable two-slit states (cat-type state analogs in the position representation) with the dynamics exhibited by a continuous-variable Bell-type maximally entangled state, we find that, while the velocity fields associated with each particle in the separable scenario are well-defined and act separately on each subspace, in the entangled case there is a strong deformation in the total space that prevents this behavior. Consequently, the trajectories for each subsystem are not constrained any longer to remain confined within the corresponding subspace; rather, they exhibit seemingly wandering behavior across the total space. In this way, within the subspace associated with each particle (that is, when we trace over the other subsystem), not only interference features are washed out, but also the so-called Bohmian non-crossing rule (i.e., particle trajectories are allowed to get across the same point at the same time). Full article
(This article belongs to the Special Issue Quantum Mechanics and Its Foundations III)
Show Figures

Figure 1

14 pages, 3120 KiB  
Article
Image-Enhanced Pseudo-Thermal Ghost Imaging with Hybrid Speckle Pattern
by Tong Tian, Zhe Sun, Sukyoon Oh and Christian Spielmann
Photonics 2023, 10(7), 709; https://doi.org/10.3390/photonics10070709 - 21 Jun 2023
Cited by 4 | Viewed by 1911
Abstract
In this study, the influence of hybrid speckle patterns on the contrast-to-noise ratio (CNR) and resolution in pseudo-thermal ghost imaging (PGI) was examined based on the object dimensions in the macroscopic and microscopic regimes. This research shows that an enhanced scaling of the [...] Read more.
In this study, the influence of hybrid speckle patterns on the contrast-to-noise ratio (CNR) and resolution in pseudo-thermal ghost imaging (PGI) was examined based on the object dimensions in the macroscopic and microscopic regimes. This research shows that an enhanced scaling of the ghost image CNR and resolution from that of the hybrid speckle pattern was observed with the increase in speckle size for a macroscopic object, compared with the use of single-size speckle patterns. For microscopic objects, the hybrid speckle pattern also offered the advantage of retrieving ghost images even if the CNR followed the same trend as the resolution. These results were verified using two different slits with the same transmitted area. In addition, the numerical analysis revealed that the interference of the hybrid speckle pattern was the major factor for a better CNR. Based on these findings, the novel hybrid speckle pattern found in this research provides a possible way for future experiments in PGI to regulate hybrid speckle patterns to obtain a better ghost image quality. Full article
Show Figures

Figure 1

43 pages, 594 KiB  
Article
Maxwell-Dirac Isomorphism Revisited: From Foundations of Quantum Mechanics to Geometrodynamics and Cosmology
by Arkady L. Kholodenko
Universe 2023, 9(6), 288; https://doi.org/10.3390/universe9060288 - 12 Jun 2023
Cited by 2 | Viewed by 2611
Abstract
Although electrons (fermions)and photons (bosons) produce the same interference patterns in the two-slit experiments, known in optics for photons since the 17th Century, the description of these patterns for electrons and photons thus far was markedly different. Photons are spin one, relativistic and [...] Read more.
Although electrons (fermions)and photons (bosons) produce the same interference patterns in the two-slit experiments, known in optics for photons since the 17th Century, the description of these patterns for electrons and photons thus far was markedly different. Photons are spin one, relativistic and massless particles while electrons are spin half massive particles producing the same interference patterns irrespective to their speed. Experiments with other massive particles demonstrate the same kind of interference patterns. In spite of these differences, in the early 1930s of the 20th Century, the isomorphism between the source-free Maxwell and Dirac equations was established. In this work, we were permitted replace the Born probabilistic interpretation of quantum mechanics with the optical. In 1925, Rainich combined source-free Maxwell equations with Einstein’s equations for gravity. His results were rediscovered in the late 1950s by Misner and Wheeler, who introduced the word "geometrodynamics” as a description of the unified field theory of gravity and electromagnetism. An absence of sources remained a problem in this unified theory until Ranada’s work of the late 1980s. However, his results required the existence of null electromagnetic fields. These were absent in Rainich–Misner–Wheeler’s geometrodynamics. They were added to it in the 1960s by Geroch. Ranada’s solutions of source-free Maxwell’s equations came out as knots and links. In this work, we establish that, due to their topology, these knots/links acquire masses and charges. They live on the Dupin cyclides—the invariants of Lie sphere geometry. Symmetries of Minkowski space-time also belong to this geometry. Using these symmetries, Varlamov recently demonstrated group-theoretically that the experimentally known mass spectrum for all mesons and baryons is obtainable with one formula, containing electron mass as an input. In this work, using some facts from polymer physics and differential geometry, a new proof of the knotty nature of the electron is established. The obtained result perfectly blends with the description of a rotating and charged black hole. Full article
(This article belongs to the Section Mathematical Physics)
19 pages, 4581 KiB  
Article
A Spectroscopic Reflectance-Based Low-Cost Thickness Measurement System for Thin Films: Development and Testing
by Néstor Eduardo Sánchez-Arriaga, Divya Tiwari, Windo Hutabarat, Adrian Leyland and Ashutosh Tiwari
Sensors 2023, 23(11), 5326; https://doi.org/10.3390/s23115326 - 4 Jun 2023
Cited by 7 | Viewed by 5863
Abstract
The requirement for alternatives in roll-to-roll (R2R) processing to expand thin film inspection in wider substrates at lower costs and reduced dimensions, and the need to enable newer control feedback options for these types of processes, represents an opportunity to explore the applicability [...] Read more.
The requirement for alternatives in roll-to-roll (R2R) processing to expand thin film inspection in wider substrates at lower costs and reduced dimensions, and the need to enable newer control feedback options for these types of processes, represents an opportunity to explore the applicability of newer reduced-size spectrometers sensors. This paper presents the hardware and software development of a novel low-cost spectroscopic reflectance system using two state-of-the-art sensors for thin film thickness measurements. The parameters to enable the thin film measurements using the proposed system are the light intensity for two LEDs, the microprocessor integration time for both sensors and the distance from the thin film standard to the device light channel slit for reflectance calculations. The proposed system can deliver better-fit errors compared with a HAL/DEUT light source using two methods: curve fitting and interference interval. By enabling the curve fitting method, the lowest root mean squared error (RMSE) obtained for the best combination of components was 0.022 and the lowest normalised mean squared error (MSE) was 0.054. The interference interval method showed an error of 0.09 when comparing the measured with the expected modelled value. The proof of concept in this research work enables the expansion of multi-sensor arrays for thin film thickness measurements and the potential application in moving environments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

9 pages, 5982 KiB  
Communication
Bistable Switch Based on Tunable Fano Resonance in Coupled Resonator-Cavity Structure
by Zhuofan Jiang, Lei Gao, Yaqiong Ding, Yu Fang, Xingzhi Wu, Qian Wu, Yong Sun and Yongqiang Chen
Electronics 2023, 12(9), 2023; https://doi.org/10.3390/electronics12092023 - 27 Apr 2023
Cited by 1 | Viewed by 1733
Abstract
We report a side-coupled resonator-cavity configuration with a tunable Fano-type interference effect for a novel subwavelength switch. A defective microstrip photonic crystal (PC) structure is designed to provide a continuum state, while a split ring resonator (SRR) is introduced to offer a narrow [...] Read more.
We report a side-coupled resonator-cavity configuration with a tunable Fano-type interference effect for a novel subwavelength switch. A defective microstrip photonic crystal (PC) structure is designed to provide a continuum state, while a split ring resonator (SRR) is introduced to offer a narrow discrete resonance. The SRR is conductively side-coupled with the microstrip PC cavity in a subwavelength volume. Interactions between them result in Fano-type transmitting spectra with a sharp and asymmetric spectral line profile. A varactor diode serving as the nonlinear medium inclusion is integrated into the slit of the SRR for active control of the sharp Fano resonance. The strongly localized field produced by Fano resonance plays a role in improving the nonlinear properties of the microstrip PC cavity. It is found that a significant blue shift of 94 MHz on the Fano resonance frequency can be achieved by increasing the input power levels from −25 dBm to 8 dBm. We also found that the maximum transmission contrast exceeding 15.9 dB can take place between two bistable states existing at 3.05 dBm and 4.32 dBm for a bidirectional sweep of input power under a monochromatic signal frequency of 1.27 GHz. The findings may benefit the exploitation of metamaterials-assisted active photonic nanocircuits. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

8 pages, 1494 KiB  
Communication
Design and Theoretical Investigation of an on Chip Two-Dimensional Newton’s Ring-like Plasmonic Sensor for Differentiating the Chirality of Circularly Polarized Lights
by Lina Zhang, Chunyan Bai, Yan Xu, Tao Pang, Xufeng Zang, Dakui Zeng and Peizhen Qiu
Photonics 2023, 10(1), 87; https://doi.org/10.3390/photonics10010087 - 12 Jan 2023
Viewed by 1762
Abstract
In this paper, an on chip two-dimensional Newton’s ring-like plasmonic sensor is designed for differentiating the chirality of circularly polarized lights (CPLS). The structure of the plasmonic sensor consists of a circular arc slit and an array of periodic rectangular nano-grooves that are [...] Read more.
In this paper, an on chip two-dimensional Newton’s ring-like plasmonic sensor is designed for differentiating the chirality of circularly polarized lights (CPLS). The structure of the plasmonic sensor consists of a circular arc slit and an array of periodic rectangular nano-grooves that are etched into a silver film. When the sensor is illuminated by CPLS with a given chirality, the surface plasmon polariton waves generated by the slit and nano-groove array will selectively interfere with each other in the near field, which results in two different transmitted light intensity distributions in the far field. The generated far-field light intensity distributions are utilized as criteria to qualitatively differentiate the concrete chirality of the incident CPLS. The finite difference time domain method is utilized to theoretically investigate the function of the designed plasmonic sensor. The simulated results indicated that the proposed sensor has the ability to visually display the chirality information in the far field, and can provide a tool to conveniently and qualitatively differentiate the chirality of CPLS in the far field. Full article
(This article belongs to the Special Issue Surface Plasmon)
Show Figures

Figure 1

10 pages, 3459 KiB  
Article
Far-Field Subwavelength Straight-Line Projection/Imaging by Means of a Novel Double-Near-Zero Index-Based Two-Layer Metamaterial
by Reza Dehbashi, Taras Plakhotnik and Timo A. Nieminen
Materials 2021, 14(19), 5484; https://doi.org/10.3390/ma14195484 - 22 Sep 2021
Cited by 2 | Viewed by 2896
Abstract
In this paper, for the first time, tuned near-zero-index materials are used in a structure for the long-distance projection of very closely spaced objects with subwavelength separation. Near-zero-index materials have never been used for subwavelength projection/imaging. The proposed novel structure is composed of [...] Read more.
In this paper, for the first time, tuned near-zero-index materials are used in a structure for the long-distance projection of very closely spaced objects with subwavelength separation. Near-zero-index materials have never been used for subwavelength projection/imaging. The proposed novel structure is composed of a two-layer slab that can project two slits with a subwavelength separation distance to a long distance without diverged/converged interference of the two imaged waves. The two-layer slab consists of a thin double-near-zero (DNZ) slab with an obtained tuned index of 0.05 and thickness of 0.04λ0 coupled with a high-index dielectric slab with specific thicknesses. Through a parametric study, the non-zero index of the DNZ layer is tuned to create a clear image when it is coupled with the high-index dielectric layer. The minimum size for the aperture of the proposed two-layer slab is 2λ0 to provide a clear projection of the two slits. The space between the slits is λ0/8, which is five times beyond the diffraction limit. It is shown that, through the conventional methods (e.g., only with high-index dielectric slabs, uncoupled with a DNZ layer), it is impossible to clearly project slits at a large distance (~λ0) due to the diffraction limit. An analytical analysis, as well as numerical results in a finite-element-based simulator, confirm the function of the proposed structure. Full article
Show Figures

Figure 1

10 pages, 1759 KiB  
Letter
Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index
by Haijin Chen, Xuehao Hu, Meifan He, Qianqing Yu, Zhenggang Lian, Zicheng Yang, Heng Wang and Hang Qu
Photonics 2020, 7(4), 111; https://doi.org/10.3390/photonics7040111 - 15 Nov 2020
Cited by 2 | Viewed by 7375
Abstract
We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent [...] Read more.
We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication. Full article
(This article belongs to the Special Issue Optical Fiber Grating Sensing Technology and Application)
Show Figures

Graphical abstract

21 pages, 1811 KiB  
Article
Pre-Service Teachers’ Declarative Knowledge of Wave-Particle Dualism of Electrons and Photons: Finding Lexicons by Using Network Analysis
by Maija Nousiainen and Ismo T. Koponen
Educ. Sci. 2020, 10(3), 76; https://doi.org/10.3390/educsci10030076 - 17 Mar 2020
Cited by 9 | Viewed by 3918
Abstract
Learning the wave-particle dualism of electrons and photons plays a central role in understanding quantum physics. Teaching it requires that the teacher is fluent in using abstract and uncommon terms. We inspect the lexical structures of pre-service teachers’ declarative knowledge about the wave-particle [...] Read more.
Learning the wave-particle dualism of electrons and photons plays a central role in understanding quantum physics. Teaching it requires that the teacher is fluent in using abstract and uncommon terms. We inspect the lexical structures of pre-service teachers’ declarative knowledge about the wave-particle dualism of electrons and photons in the context of double-slit interference. The declarative knowledge is analyzed in the form of a lexical network of terms. We focus on lexical structures because, in teaching and learning, knowledge is communicated mostly through lexical structures, i.e., by speaking and writing. Using the lexical networks, we construct the lexicons used by pre-service teachers to express their knowledge of electrons and photons in the context of double-slit interference. The lexicons consist of eight different key terms, each representing a set of closely-related or synonymous terms. The lexicons by 14 pre-service teachers reveal remarkable variation and differences, and are strongly context-dependent. We also analyzed lexicons corresponding to two didactically-oriented research articles on the same topic and found that they also differ. Lexicons paralleling both texts are found among the pre-service teachers’ lexicons. However, only some of the pre-service teachers use such rich vocabulary as would indicate multi-faceted understanding of quantum entities. Full article
(This article belongs to the Special Issue Networks Applied in Science Education Research)
Show Figures

Figure 1

25 pages, 351 KiB  
Article
Bohmian-Based Approach to Gauss-Maxwell Beams
by Ángel S. Sanz, Milena D. Davidović and Mirjana Božić
Appl. Sci. 2020, 10(5), 1808; https://doi.org/10.3390/app10051808 - 6 Mar 2020
Cited by 8 | Viewed by 2379
Abstract
Usual Gaussian beams are particular scalar solutions to the paraxial Helmholtz equation, which neglect the vector nature of light. In order to overcome this inconvenience, Simon et al. (J. Opt. Soc. Am. A 1986, 3, 536–540) found a paraxial solution [...] Read more.
Usual Gaussian beams are particular scalar solutions to the paraxial Helmholtz equation, which neglect the vector nature of light. In order to overcome this inconvenience, Simon et al. (J. Opt. Soc. Am. A 1986, 3, 536–540) found a paraxial solution to Maxwell’s equation in vacuum, which includes polarization in a natural way, though still preserving the spatial Gaussianity of the beams. In this regard, it seems that these solutions, known as Gauss-Maxwell beams, are particularly appropriate and a natural tool in optical problems dealing with Gaussian beams acted or manipulated by polarizers. In this work, inspired in the Bohmian picture of quantum mechanics, a hydrodynamic-type extension of such a formulation is provided and discussed, complementing the notion of electromagnetic field with that of (electromagnetic) flow or streamline. In this regard, the method proposed has the advantage that the rays obtained from it render a bona fide description of the spatial distribution of electromagnetic energy, since they are in compliance with the local space changes undergone by the time-averaged Poynting vector. This feature confers the approach a potential interest in the analysis and description of single-photon experiments, because of the direct connection between these rays and the average flow exhibited by swarms of identical photons (regardless of the particular motion, if any, that these entities might have), at least in the case of Gaussian input beams. In order to illustrate the approach, here it is applied to two common scenarios, namely the diffraction undergone by a single Gauss-Maxwell beam and the interference produced by a coherent superposition of two of such beams. Full article
(This article belongs to the Special Issue Quantum Optics for Fundamental Quantum Mechanics)
34 pages, 23677 KiB  
Article
Numerical Study of the Comparison of Symmetrical and Asymmetrical Eddy-Generation Scheme on the Fire Whirl Formulation and Evolution
by Cheng Wang, Anthony Chun Yin Yuen, Qing Nian Chan, Timothy Bo Yuan Chen, Ho Lung Yip, Sherman Chi-Pok Cheung, Sanghoon Kook and Guan Heng Yeoh
Appl. Sci. 2020, 10(1), 318; https://doi.org/10.3390/app10010318 - 1 Jan 2020
Cited by 7 | Viewed by 3466
Abstract
A numerical study of the fire whirl formation under symmetrical and asymmetrical entraining configuration is presented. This work aims to assess the effect of eddy-generation configuration on the evolution of the intriguing phenomenon coupled with both flow dynamics and combustion. The numerical framework [...] Read more.
A numerical study of the fire whirl formation under symmetrical and asymmetrical entraining configuration is presented. This work aims to assess the effect of eddy-generation configuration on the evolution of the intriguing phenomenon coupled with both flow dynamics and combustion. The numerical framework implements large-eddy simulation, detailed chemistry to capture the sophisticated turbulence-chemistry interaction under reasonable computational cost. It also adopts liquid-based clean fuel with fixed injection rate and uniformed discretisation scheme to eliminate potential interference introduced by various aspects of uncertainties. The result reveals that the nascent fire whirl formulates significantly rapidly under the symmetrical two-slit configuration, with extended flame height and constrained vortex structure, compared with the asymmetrical baseline. However, its revolution orbit gradually diverges from domain centreline and eventually stabilises with a large radius of rotation, whereas the revolution pattern of that from the baseline case is relatively unchanged from the inception of nascent fire whirl. Through the analysis, the observed difference in evaluation pathway could be explained using the concept of circular motion with constant centripetal force. This methodology showcases its feasibility to reveal and visualise the fundamental insight and facilitate profound understanding of the flaming behaviour to benefit both research and industrial sectors. Full article
(This article belongs to the Special Issue Progress in Combustion Diagnostics, Science and Technology)
Show Figures

Figure 1

Back to TopTop