Image-Enhanced Pseudo-Thermal Ghost Imaging with Hybrid Speckle Pattern
Abstract
:1. Introduction
2. Principle and Measurement Setup
2.1. Theory
2.2. Experimental Setup
3. Experiment and Simulation Results
3.1. Experimental Results and Discussion
3.2. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asakura, T. Spatial Coherence of Laser Light Passed through Rotating Ground Glass. Opto Electron. 1970, 2, 115–123. [Google Scholar] [CrossRef]
- Estes, L.E.; Narducci, L.M.; Tuft, R.A. Scattering of Light from a Rotating Ground Glass. JOSA 1971, 61, 1301–1306. [Google Scholar] [CrossRef]
- Kumar, A.; Banerji, J.; Singh, R.P. Intensity Correlation Properties of High-Order Optical Vortices Passing through a Rotating Ground-Glass Plate. Opt. Lett. 2010, 35, 3841–3843. [Google Scholar] [CrossRef] [PubMed]
- Bennink, R.S.; Bentley, S.J.; Boyd, R.W. “Two-Photon” Coincidence Imaging with a Classical Source. Phys. Rev. Lett. 2002, 89, 113601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferri, F.; Magatti, D.; Gatti, A.; Bache, M.; Brambilla, E.; Lugiato, L.A. High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, M.; Valencia, A.; Rubin, M.H.; Shih, Y. Resolution of Quantum and Classical Ghost Imaging. Phys. Rev. A 2005, 72, 013810. [Google Scholar] [CrossRef]
- Cao, D.-Z.; Xiong, J.; Zhang, S.-H.; Lin, L.-F.; Gao, L.; Wang, K. Enhancing Visibility and Resolution in N Th-Order Intensity Correlation of Thermal Light. Appl. Phys. Lett. 2008, 92, 201102. [Google Scholar] [CrossRef]
- Gong, W.; Han, S. High-Resolution Far-Field Ghost Imaging via Sparsity Constraint. Sci. Rep. 2015, 5, srep09280. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Lu, R.; Han, S.; Xie, H.; Du, G.; Xiao, T.; Zhu, D. Fourier-Transform Ghost Imaging with Hard X rays. Phys. Rev. Lett. 2016, 117, 113901. [Google Scholar] [CrossRef] [Green Version]
- Pelliccia, D.; Rack, A.; Scheel, M.; Cantelli, V.; Paganin, D.M. Experimental X-ray Ghost Imaging. Phys. Rev. Lett. 2016, 117, 113902. [Google Scholar] [CrossRef] [Green Version]
- Schori, A.; Shwartz, S. X-ray Ghost Imaging with a Laboratory Source. Opt. Express 2017, 25, 14822–14828. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.-X.; He, Y.-H.; Wu, L.-A.; Chen, L.-M.; Wang, B.-B. Tabletop X-Ray Ghost Imaging with Ultra-Low Radiation. Optica 2018, 5, 374–377. [Google Scholar] [CrossRef] [Green Version]
- Gatti, A.; Bache, M.; Magatti, D.; Brambilla, E.; Ferri, F.; Lugiato, L.A. Coherent Imaging with Pseudo-Thermal Incoherent Light. J. Mod. Opt. 2006, 53, 739–760. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Gong, W.; Shen, X.; Huang, D.; Han, S. Improving Resolution by the Second-Order Correlation of Light Fields. Opt. Lett. 2009, 34, 1222–1224. [Google Scholar] [CrossRef]
- Han, S.; Yu, H.; Shen, X.; Liu, H.; Gong, W.; Liu, Z. A Review of Ghost Imaging via Sparsity Constraints. Appl. Sci. 2018, 8, 1379. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Liu, Z.; Wang, C.; Hu, C.; Li, E.; Gong, W.; Tong, Z.; Wu, J.; Shen, X.; Han, S. Ghost Imaging LiDAR via Sparsity Constraints Using Push-Broom Scanning. Opt. Express 2019, 27, 13219–13228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Tuitje, F.; Spielmann, C. Improving the Contrast of Pseudothermal Ghost Images Based on the Measured Signal Distribution of Speckle Fields. Appl. Sci. 2021, 11, 2621. [Google Scholar] [CrossRef]
- Ferri, F.; Magatti, D.; Sala, V.G.; Gatti, A. Longitudinal Coherence in Thermal Ghost Imaging. Appl. Phys. Lett. 2008, 92, 261109. [Google Scholar] [CrossRef] [Green Version]
- Gatti, A.; Magatti, D.; Ferri, F. Three-Dimensional Coherence of Light Speckles: Theory. Phys. Rev. A 2008, 78, 063806. [Google Scholar] [CrossRef] [Green Version]
- Magatti, D.; Gatti, A.; Ferri, F. Three-Dimensional Coherence of Light Speckles: Experiment. Phys. Rev. A 2009, 79, 053831. [Google Scholar] [CrossRef] [Green Version]
- Zerom, P.; Shi, Z.; O’Sullivan, M.N.; Chan, K.W.C.; Krogstad, M.; Shapiro, J.H.; Boyd, R.W. Thermal Ghost Imaging with Averaged Speckle Patterns. Phys. Rev. A 2012, 86, 063817. [Google Scholar] [CrossRef]
- Jue, W.; Renlong, Y.; Yu, X.; Yanming, S.; Yanru, C.; Qi, Z. Ghost Imaging with Different Speckle Sizes of Thermal Light. J. Opt. Soc. Korea 2016, 20, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Tuitje, F.; Spielmann, C. Toward High Contrast and High-Resolution Microscopic Ghost Imaging. Opt. Express 2019, 27, 33652–33661. [Google Scholar] [CrossRef] [PubMed]
- Ya-Jun, Z.; Jiao, L.; Wen-Qiang, L.; Sheng-Mei, Z. Multiple Speckle Patterns Differential Compressive Ghost Imaging. Acta Phys. Sin. 2015, 64, 014202. [Google Scholar] [CrossRef]
- Chen, M.; Li, E.; Han, S. Application of Multi-Correlation-Scale Measurement Matrices in Ghost Imaging via Sparsity Constraints. Appl. Opt. 2014, 53, 2924–2928. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, H.; Liu, B.; Song, L. Hybrid Speckle-Pattern Compressive Computational Ghost Imaging. Acta Opt. Sin. 2016, 36, 0911001. [Google Scholar] [CrossRef]
- Wang, X.; Tao, Y.; Yang, F.; Zhang, Y. An Effective Compressive Computational Ghost Imaging with Hybrid Speckle Pattern. Opt. Commun. 2020, 454, 124470. [Google Scholar] [CrossRef]
- Martienssen, W.; Spiller, E. Coherence and Fluctuations in Light Beams. Am. J. Phys. 1964, 32, 919–926. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Zhong, T. A Comprehensive Review of Optical Diffusers: Progress and Prospects. Nanoscale 2023, 15, 1484–1492. [Google Scholar] [CrossRef]
- Zhu, X.; Engelberg, J.; Remennik, S.; Zhou, B.; Pedersen, J.N.; Uhd Jepsen, P.; Levy, U.; Kristensen, A. Resonant Laser Printing of Optical Metasurfaces. Nano Lett. 2022, 22, 2786–2792. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 1-4831-0320-X. [Google Scholar]
- Glauber, R.J. The Quantum Theory of Optical Coherence. Phys. Rev. 1963, 130, 2529. [Google Scholar] [CrossRef] [Green Version]
- Ragy, S.; Adesso, G. Nature of Light Correlations in Ghost Imaging. Sci. Rep. 2012, 2, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, P.-A.; Toninelli, E.; Gregory, T.; Padgett, M.J. Ghost Imaging Using Optical Correlations. Laser Photonics Rev. 2018, 12, 1700143. [Google Scholar] [CrossRef] [Green Version]
Sequence | Pattern I | Pattern II | Pattern III | Pattern IV | Pattern V | |||||
---|---|---|---|---|---|---|---|---|---|---|
Aperture | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Type-one (μm) | 36 | 36 | 42 | 42 | 48 | 48 | 54 | 54 | 60 | 60 |
Type-two (μm) | 36 | 60 | 42 | 60 | 48 | 60 | 54 | 60 | 60 | 60 |
Sequence | Pattern I | Pattern II | Pattern III | Pattern IV | Pattern V | Pattern VI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Apertures | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Type-1 (μm) | 30 | 30 | 36 | 36 | 42 | 42 | 48 | 48 | 54 | 54 | 60 | 60 |
Type-2 (μm) | 30 | 36 | 36 | 36 | 42 | 36 | 48 | 36 | 54 | 36 | 60 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, T.; Sun, Z.; Oh, S.; Spielmann, C. Image-Enhanced Pseudo-Thermal Ghost Imaging with Hybrid Speckle Pattern. Photonics 2023, 10, 709. https://doi.org/10.3390/photonics10070709
Tian T, Sun Z, Oh S, Spielmann C. Image-Enhanced Pseudo-Thermal Ghost Imaging with Hybrid Speckle Pattern. Photonics. 2023; 10(7):709. https://doi.org/10.3390/photonics10070709
Chicago/Turabian StyleTian, Tong, Zhe Sun, Sukyoon Oh, and Christian Spielmann. 2023. "Image-Enhanced Pseudo-Thermal Ghost Imaging with Hybrid Speckle Pattern" Photonics 10, no. 7: 709. https://doi.org/10.3390/photonics10070709
APA StyleTian, T., Sun, Z., Oh, S., & Spielmann, C. (2023). Image-Enhanced Pseudo-Thermal Ghost Imaging with Hybrid Speckle Pattern. Photonics, 10(7), 709. https://doi.org/10.3390/photonics10070709