Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = tumuli

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8228 KiB  
Article
Mapping Young Lava Rises (Stony Rises) Across an Entire Basalt Flow Using Remote Sensing and Machine Learning
by Shaye Fraser, Mariela Soto-Berelov, Lucas Holden, John Webb and Simon Jones
Remote Sens. 2025, 17(12), 2004; https://doi.org/10.3390/rs17122004 - 10 Jun 2025
Viewed by 433
Abstract
Lava rises, locally known as stony rises, are Pliocene–Holocene volcanic landforms occurring throughout the Victorian Volcanic Plain (VVP) in Victoria, Australia. Stony rises are not only important to understanding the geological history of Victoria but are culturally significant to Aboriginal Australians and have [...] Read more.
Lava rises, locally known as stony rises, are Pliocene–Holocene volcanic landforms occurring throughout the Victorian Volcanic Plain (VVP) in Victoria, Australia. Stony rises are not only important to understanding the geological history of Victoria but are culturally significant to Aboriginal Australians and have ecological importance. Currently, the mapping of stony rises is manually performed at a case study level rather than a landscape level. Remote sensing technologies such as LiDAR data, satellite imagery, and aerial imagery allow for the mapping of stony rises from an aerial perspective. This paper aims to map stony rises using remotely sensed and geophysical data at a landscape level on a younger lava flow (~42,000 years old) within the Victorian Volcanic Plain (the Warrion Hill and Red Rock Volcanic Complex) by utilizing an object based random forest machine learning approach. The results show that stony rises were successfully identified in the landscape to an accuracy of 78.9%, with 2716 potential new stony rises identified. Out of 34 predictor variables, we found the most important variables to be slope gradient, local elevation, DEM of Difference (change in height), Normalized Difference Water Index (NDWI), Clay Mineral Ratio, the concentration of radiometric elements (Potassium, Thorium, and Uranium), Total Magnetic Intensity, and Ecological Vegetation Class (EVC). The results from this study highlight the ability to detect a volcanic landform at a landscape scale using an ensemble of predictor variables that include topographic, spectral information and geophysical data. This lays the foundation towards a uniform approach for mapping stony rises throughout the VVP and similar landforms (such as tumuli) worldwide. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

14 pages, 11614 KiB  
Article
Beneficial Soil Fungi Isolated from Tropical Fruit Crop Systems for Enhancing Yield and Growth in Dragon Fruit in Ecuador
by Yoansy Garcia, Danilo Valdez, Daniel Ponce de Leon, Hypatia Urjilez, Jaime Santos-Pinargote and Daniel Mancero-Castillo
Int. J. Plant Biol. 2025, 16(2), 62; https://doi.org/10.3390/ijpb16020062 - 5 Jun 2025
Viewed by 427
Abstract
Rhizospheric fungi are emerging as a critical research component in dragon fruit (Hylocereus spp.) production systems. Introducing beneficial non-native fungi is increasingly common due to their positive effects on plant growth, yield, and pathogen suppression. However, this practice may disrupt soil microbial [...] Read more.
Rhizospheric fungi are emerging as a critical research component in dragon fruit (Hylocereus spp.) production systems. Introducing beneficial non-native fungi is increasingly common due to their positive effects on plant growth, yield, and pathogen suppression. However, this practice may disrupt soil microbial communities, and commercial isolates often show limited adaptation to local conditions. This study aimed to identify native beneficial soil fungi associated with dragon fruit cultivation on the Ecuadorian coast and evaluate their effect on commercial production. Fungal isolates from four dragon fruit plantations were identified using microscopy and genetic sequencing (ITS, EF-1α, and beta-tubulin). The selected fungi were isolates closely related to Talaromyces tumuli, Trichoderma asperellum, and Paecilomyces lagunculariae. All isolates were tested for pathogenicity using detached cladode assays at the laboratory, and non-phytopathogenic monomorphic cultures were further evaluated in the field under a randomized complete block design consisting of T. asperellum, Talaromyces tumuli, a combination of both, and a water control. The combination of T. asperellum and Talaromyces spp. showed a favorable trend in terms of the plants’ vegetative development. However, inoculating Talaromyces tumuli into the commercial plants exhibited a slow response during the first 20 days of the field evaluations. Still, it resulted in a significant increase in the fruit’s diameter and weight, with increases of 88.23% and 67.64%, respectively, compared to those in the control. T. asperellum presented a lower number of fruits per plant, although it showed an increase in fruit diameter and weight. In conclusion, using the native beneficial fungi T. asperellum and T. tumuli contributes positively to the dragon fruit production system. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

31 pages, 35674 KiB  
Article
Discussion Points of the Remote Sensing Study and Integrated Analysis of the Archaeological Landscape of Rujm el-Hiri
by Olga Khabarova, Michal Birkenfeld and Lev V. Eppelbaum
Remote Sens. 2024, 16(22), 4239; https://doi.org/10.3390/rs16224239 - 14 Nov 2024
Viewed by 7270
Abstract
Remote sensing techniques provide crucial insights into ancient settlement patterns in various regions by uncovering previously unknown archaeological sites and clarifying the topological features of known ones. Meanwhile, in the northern part of the Southern Levant, megalithic structures remain largely underexplored with these [...] Read more.
Remote sensing techniques provide crucial insights into ancient settlement patterns in various regions by uncovering previously unknown archaeological sites and clarifying the topological features of known ones. Meanwhile, in the northern part of the Southern Levant, megalithic structures remain largely underexplored with these methods. This study addresses this gap by analyzing the landscape around Rujm el-Hiri, one of the most prominent Southern Levantine megaliths dated to the Chalcolithic/Early Bronze Age, for the first time. We discuss the type and extent of the archaeological remains identified in satellite images within a broader context, focusing on the relationships between landscapes and these objects and the implications of their possible function. Our analysis of multi-year satellite imagery covering the 30 km region surrounding the Sea of Galilee reveals several distinct patterns: 40–90-m-wide circles and thick walls primarily constructed along streams, possibly as old as Rujm el-Hiri itself; later-period linear thin walls forming vast rectangular fields and flower-like clusters of ~ 20 m diameter round-shaped fences found in wet areas; tumuli, topologically linked to the linear walls and flower-like fences. Although tumuli share similar forms and likely construction techniques, their spatial distribution, connections to other archaeological features, and the statistical distribution in their sizes suggest that they might serve diverse functions. The objects and patterns identified may be used for further training neural networks to analyze their spatial properties and interrelationships. Most archaeological structures in the region were reused long after their original construction. This involved adding new features, building walls over older ones, and reshaping the landscape with new objects. Rujm el-Hiri is a prime example of such a complex sequence. Geomagnetic analysis shows that since the entire region has rotated over time, the Rujm el-Hiri’s location shifted from its original position for tens of meters for the thousands of years of the object’s existence, challenging theories of the alignment of its walls with astronomical bodies and raising questions regarding its possible identification as an observatory. Full article
(This article belongs to the Section Remote Sensing for Geospatial Science)
Show Figures

Figure 1

25 pages, 13923 KiB  
Article
The Spacetimes of the Scythian Dead: Rethinking Burial Mounds, Visibility, and Social Action in the Eurasian Iron Age and Beyond
by James A. Johnson
Arts 2024, 13(3), 87; https://doi.org/10.3390/arts13030087 - 14 May 2024
Cited by 1 | Viewed by 2647
Abstract
The Eurasian Iron Age Scythians, in all their regional iterations, are known for their lavish burials found in various kinds of tumuli. These tumuli, of varying sizes, are located throughout the Eurasian steppe. Based, at least partially, on the amounts and types of [...] Read more.
The Eurasian Iron Age Scythians, in all their regional iterations, are known for their lavish burials found in various kinds of tumuli. These tumuli, of varying sizes, are located throughout the Eurasian steppe. Based, at least partially, on the amounts and types of grave goods found within these mounds, the Scythians are usually modeled as militant, patriarchal mobile pastoralists, with rigid social structures. Yet, such interpretations are also due to accounts of Scythian lifeways provided by “classical” societies from the Greeks to the Persians, who saw the Scythians largely as barbarians, much like their neighbors to the north of the Greeks, the “Celts”. Despite recent interrogations of the barbarian trope, and the opportunity to dissect the classic formula of large mounds = elevated status, I contend that many studies on Scythian mortuary practices remain monolithic and under-theorized, especially by Western scholars. Drawing upon different conceptual and methodological frameworks, I present alternative, multi-scalar understandings of Scythian mortuary landscapes. Utilizing a spacetime-oriented, dialogical approach supplemented with geographic information systems, I interrogate how and why various meanings and experiences may have intersected in these protean Scythian landscapes of the dead, rather than reducing them to monolithic symbolic proxies of ideological status. Full article
Show Figures

Figure 1

15 pages, 4367 KiB  
Article
Buddhist Cultural Exchange between Paekche and Ancient Japan: A Comparative Analysis of the Archaeological Remains from the Wooden Pagoda Site at Asukadera and Śarīra Reliquaries from Paekche Temple Sites
by Byongho Lee and Isahaya Naoto
Religions 2024, 15(5), 523; https://doi.org/10.3390/rel15050523 - 24 Apr 2024
Viewed by 2028
Abstract
This article provides a critical review of the results of the Asuka Historical Museum’s excavation of the Asukadera wooden pagoda site in Japan since 2015, and its implications for Buddhist cultural exchange in East Asia. The second section examines the Asuka Historical Museum’s [...] Read more.
This article provides a critical review of the results of the Asuka Historical Museum’s excavation of the Asukadera wooden pagoda site in Japan since 2015, and its implications for Buddhist cultural exchange in East Asia. The second section examines the Asuka Historical Museum’s categorization and scientific analysis of the beads, pearls, horse gear, earrings, gold and silver artifacts, mica, and śarīra containers. We assert that most objects excavated from the Asukadera wooden pagoda site are relics from the Asuka era (538–710), when the pagoda was first established in 593, and only a limited number of artifacts, such as the śarīra [relics] container, were added after the wooden pagoda was burned down in 1196. The third section compares the archeological remains from the Asukadera wooden pagoda site and the reliquary objects from the Paekche Wanghŭng-sa site (577) and Mirŭk-sa site (639), which have been conventionally considered to be its models. What the relics from these three historical sites have in common is that they include clothing accessories nobles wore as they participated in the Buddhist rituals of enshrining the śarīra in a wooden pagoda. However, some differences in the metallic craft items, such as crowns and belts, were still found between Paekche and Japan, which was due to the difference in costume styles in the respective countries at the time. Also, horse gear and lamellar armor unearthed from Asukadera sites was not found in Paekche temple sites, but is similar to earlier Japanese kofun (megalithic tumuli) grave goods, which provides evidence that as Buddhism was transferred to Japan from Paekche, it was not accepted in completely the same form. Full article
(This article belongs to the Section Religions and Humanities/Philosophies)
Show Figures

Figure 1

22 pages, 3554 KiB  
Article
Plant Diversity in Archaeological Sites and Its Bioindication Values for Nature Conservation: Assessments in the UNESCO Site Etruscan Necropolis of Tarquinia (Italy)
by Giulio Zangari, Flavia Bartoli, Fernando Lucchese and Giulia Caneva
Sustainability 2023, 15(23), 16469; https://doi.org/10.3390/su152316469 - 30 Nov 2023
Cited by 8 | Viewed by 1757
Abstract
In archaeological sites, plants can be a risk for monument conservation. However, in these sites, a refugium for plant biodiversity is often detected, such as in the UNESCO site Etruscan necropolis of “Monterozzi” in Tarquinia, which still holds a Special Protection Area for [...] Read more.
In archaeological sites, plants can be a risk for monument conservation. However, in these sites, a refugium for plant biodiversity is often detected, such as in the UNESCO site Etruscan necropolis of “Monterozzi” in Tarquinia, which still holds a Special Protection Area for bats. In this site, we previously evaluated the positive and negative effects of vascular plants on the conservation of the hypogeal tombs. To contribute in assessing the role of archaeological sites in supporting plant diversity and interpreting its bioindication values for nature conservation, we analyse in this relevant place the floristic interest and richness and the plant communities growing on tumuli, trampled, and less disturbed areas. The results revealed the presence of several plants with high naturalistic interest, such as the community’s representative of synanthropic and natural Mediterranean grasslands, which arise both from the present and the past uses of the area. The high naturalistic values of the site are also assessed, considering its remarkable richness of species/area compared with the well-known archaeological sites of Rome. These findings further indicate that plant diversity needs to be considered in planning management activities in archaeological sites to also protect their natural values. Full article
(This article belongs to the Special Issue Sustainability in Cultural Heritage Conservation)
Show Figures

Figure 1

29 pages, 30220 KiB  
Article
Lava Flow Hazard and Its Implication in Geopark Development for the Active Harrat Khaybar Intracontinental Monogenetic Volcanic Field, Saudi Arabia
by Károly Németh and Mohammed Rashad Moufti
Land 2023, 12(3), 705; https://doi.org/10.3390/land12030705 - 18 Mar 2023
Cited by 3 | Viewed by 5571
Abstract
Harrat Khaybar is an active monogenetic volcanic field in western Saudi Arabia that hosts spectacular monogenetic volcanoes and a Holocene volcanic cone with extensive lava fields. The volcanic region is a subject of intensive land use development, especially along tourism ventures, where the [...] Read more.
Harrat Khaybar is an active monogenetic volcanic field in western Saudi Arabia that hosts spectacular monogenetic volcanoes and a Holocene volcanic cone with extensive lava fields. The volcanic region is a subject of intensive land use development, especially along tourism ventures, where the volcanic features are the key elements to utilize for increasing visitation rates to the region. The youngest eruption is suspected to be Holocene and occurred fewer than 5000 years ago based on the cross-cutting relationship between the youngest lava flows and archaeological sites. Lava flows are typical, from pāhoehoe to ‘a‘ā types with great diversity of transitional textural forms. Here, we recorded typical transitional lava flow surface textures from the youngest flows identified by digital-elevation-model-based terrain analysis, satellite imagery, and direct field observations. We performed lava flow simulations using the Q-LavHA plug-in within the QGIS environment. Lava flow simulations yielded satisfactory results if we applied eruptions along fissures, long simulation distances, and ~5 m lava flow thickness. In these simulations, the upper flow regimes were reconstructed well, but long individual lava flows were not possible to simulate, suggesting that morphological steps likely promoted lava ponding, inflation, and sudden deflation by releasing melts further along shallow syneruptive valley networks. Full article
Show Figures

Figure 1

8 pages, 6270 KiB  
Proceeding Paper
Geodiversity and Its Implication for Geoconservation of the Youngest Eruptive Sites of Western Samoa
by Károly Németh
Proceedings 2023, 87(1), 33; https://doi.org/10.3390/IECG2022-13751 - 30 Nov 2022
Viewed by 1509
Abstract
The last volcanic eruption in Western Samoa, which occurred between 1905 and 1911, produced a complex scoria and lava spatter cone and an extensive lava field that destroyed Sale’aula village, near the Pacific coast. This eruption, referred to as the Matavanu eruption, also [...] Read more.
The last volcanic eruption in Western Samoa, which occurred between 1905 and 1911, produced a complex scoria and lava spatter cone and an extensive lava field that destroyed Sale’aula village, near the Pacific coast. This eruption, referred to as the Matavanu eruption, also produced pahoehoe-type lava flows with superbly preserved surface textures, tumuli, and some littoral explosion craters in its distal lava field. The unique nature of the location meant that it was selected as one of the first of the 100 IUGS Geological Heritage Sites, in October 2022. The region has been under an investigation that aims to document the geoheritage elements of the location, estimate its geodiversity, and explore the potential to develop a geopark together with local communities. All this work intends to provide a firm knowledge base to identify effective geoconservation strategies. While the youngest eruptive products after over 100 years of revegetation are restricted to a coastal zone, previous research has demonstrated that other young volcanic eruptions also took place in northern Savai’i in 1760 and 1902. In this study, we provide further data based on a systematic evaluation of SENTINEL satellite imagery, in combination with an ALOS-PALSAR and SRTM 30-m resolution digital terrain model-based calculation of morphometric elements, to demonstrate that the young volcanic landscape in northern Savai’i has great volcanic geodiversity and the entire region should be considered for specific geoconservation strategies. The young volcanic landforms of scoria cones in the high-altitude regions of the island, along with extensive and commonly tube-fed lava flows which have invaded the northern region of Savai’i, pose a volcanic hazard to the region. Hence, volcanic geoheritage can be the core element to enforce strong community volcanic hazard resilience. The newly proposed Samoa Geopark Project is the perfect avenue to achieve this. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Geosciences)
Show Figures

Figure 1

35 pages, 23663 KiB  
Article
Geomorphological Classification of Monogenetic Volcanoes and Its Implication to Tectonic Stress Orientation in the Middle Atlas Volcanic Field (Morocco)
by Mohammed Benamrane, Károly Németh, Mohamed Jadid and El Hassan Talbi
Land 2022, 11(11), 1893; https://doi.org/10.3390/land11111893 - 25 Oct 2022
Cited by 8 | Viewed by 5946
Abstract
The Middle Atlas Volcanic Field (MAVF) covers an area of 1500 km2, with a total erupted volume of solid products (e.g., Dense Rock Equivalent or DRE) estimated to be more than 80 km3. The MAVF comprises 87 monogenetic basaltic [...] Read more.
The Middle Atlas Volcanic Field (MAVF) covers an area of 1500 km2, with a total erupted volume of solid products (e.g., Dense Rock Equivalent or DRE) estimated to be more than 80 km3. The MAVF comprises 87 monogenetic basaltic volcanoes of Tertiary-Quaternary age as scoria cones (71%) and maars (29%). These monogenetic basaltic volcanoes have various morphologies (e.g., circular, semi-elliptic, elliptic in map views). They can be isolated or form clustered monogenetic complexes. They are largely grouped in the Middle Atlas, in an intraplate geotectonic context forming two distinct major alignments (N160–170° and N40–50°), each closely associated with regional structural elements. By the best estimates, the preserved bulk pyroclastic products do not exceed 0.7 km3, and they show large textural and componentry diversity (e.g., bedded/unbedded, coarse/fine, dense/scoriaceous fallout and pyroclastic density current deposit, etc.). Lava flows also demonstrate great variety of preserved surface textures, including pāhoehoe, ‘a’ā, and clastogenic types. Morphostructural features of lava flows linked to lava flow dynamics have also been recognized, and the presence of hornitos, columnar jointed basaltic flow units, lava tubes, tumuli, and clastogenic lava flows have been recognized and mapped. Some half-sectioned dykes expose interior parts of magmatic shallow feeding pipes. The current morphology of the volcanoes of the MAVF reflects various syn- and post-eruptive processes, including (1) erosional features due to weathering, (2) gravitational instability during and after volcanic activity, (3) vegetation impact, and (4) successive burial of lava flows. The documented volcanic features of this typical monogenetic volcanic field form the core of the region’s geoheritage elements and are considered to be unique in the new African geoheritage context. Hence, they will likely form the basis of future geotourism, geoeducation, and geoconservation ventures. Full article
Show Figures

Figure 1

18 pages, 2711 KiB  
Article
Talaromyces santanderensis: A New Cadmium-Tolerant Fungus from Cacao Soils in Colombia
by Beatriz E. Guerra Sierra, Luis A. Arteaga-Figueroa, Susana Sierra-Pelaéz and Javier C. Alvarez
J. Fungi 2022, 8(10), 1042; https://doi.org/10.3390/jof8101042 - 1 Oct 2022
Cited by 13 | Viewed by 4559
Abstract
Inorganic pollutants in Colombian cocoa (Theobroma cacao L.) agrosystems cause problems in the production, quality, and exportation of this raw material worldwide. There has been an increased interest in bioprospecting studies of different fungal species focused on the biosorption of heavy metals. [...] Read more.
Inorganic pollutants in Colombian cocoa (Theobroma cacao L.) agrosystems cause problems in the production, quality, and exportation of this raw material worldwide. There has been an increased interest in bioprospecting studies of different fungal species focused on the biosorption of heavy metals. Furthermore, fungi constitute a valuable, profitable, ecological, and efficient natural soil resource that could be considered in the integrated management of cadmium mitigation. This study reports a new species of Talaromyces isolated from a cocoa soil sample collected in San Vicente de Chucurí, Colombia. T. santanderensis is featured by Lemon Yellow (R. Pl. IV) mycelium on CYA, mono-to-biverticillade conidiophores, and acerose phialides. T. santanderensis is distinguished from related species by its growth rate on CYAS and powdery textures on MEA, YES and OA, high acid production on CREA and smaller conidia. It is differentiated from T. lentulus by its growth rate on CYA medium at 37 °C without exudate production, its cream (R. PI. XVI) margin on MEA, and dense sporulation on YES and CYA. Phylogenetic analysis was performed using a polyphasic approach, including different phylogenetic analyses of combined and individual ITS, CaM, BenA, and RPB2 gene sequences that indicate that it is new to science and is named Talaromyces santanderensis sp. nov. This new species belongs to the Talaromyces section and is closely related to T. lentulus, T. soli, T. tumuli, and T. pratensis (inside the T. pinophilus species complex) in the inferred phylogeny. Mycelia growth of the fungal strains was subjected to a range of 0–400 mg/kg Cd and incorporated into malt extract agar (MEA) in triplicates. Fungal radial growth was recorded every three days over a 13-day incubation period and In vitro cadmium tolerance tests showed a high tolerance index (0.81) when the mycelium was exposed to 300 mg/kg of Cd. Results suggest that T. santanderensis showed tolerance to Cd concentrations that exceed the permissible limits for contaminated soils, and it is promising for its use in bioremediation strategies to eliminate Cd from highly contaminated agricultural soils. Full article
Show Figures

Figure 1

12 pages, 4377 KiB  
Article
Ground-Penetrating Radar and Photogrammetric Investigation on Prehistoric Tumuli at Parabita (Lecce, Italy) Performed with an Unconventional Use of the Position Markers
by Raffaele Persico, Emanuele Colica, Tiziana Zappatore, Claudio Giardino and Sebastiano D’Amico
Remote Sens. 2022, 14(5), 1280; https://doi.org/10.3390/rs14051280 - 5 Mar 2022
Cited by 8 | Viewed by 2847
Abstract
In this contribution, we propose ground-penetrating radar (GPR) investigation performed close and on some prehistoric tumuli, locally called “piccole specchie”, in the countryside around the town of Parabita (Lecce), within the Salento peninsula (southern Italy). In order to perform the GPR [...] Read more.
In this contribution, we propose ground-penetrating radar (GPR) investigation performed close and on some prehistoric tumuli, locally called “piccole specchie”, in the countryside around the town of Parabita (Lecce), within the Salento peninsula (southern Italy). In order to perform the GPR investigation on the tumuli, an unconventional method of data acquisition was exploited, involving, consequently, some non-conventional data processing steps. Photogrammetric survey was also performed, and 3D digital models of the prehistoric tumuli were created. The investigations have revealed some anomalies under two out of three investigated tumuli, which were interpreted as prehistoric tombs. Full article
(This article belongs to the Special Issue Sensors & Methods in Cultural Heritage)
Show Figures

Figure 1

18 pages, 6144 KiB  
Article
Hybrid MSRM-Based Deep Learning and Multitemporal Sentinel 2-Based Machine Learning Algorithm Detects Near 10k Archaeological Tumuli in North-Western Iberia
by Iban Berganzo-Besga, Hector A. Orengo, Felipe Lumbreras, Miguel Carrero-Pazos, João Fonte and Benito Vilas-Estévez
Remote Sens. 2021, 13(20), 4181; https://doi.org/10.3390/rs13204181 - 19 Oct 2021
Cited by 47 | Viewed by 7358
Abstract
This paper presents an algorithm for large-scale automatic detection of burial mounds, one of the most common types of archaeological sites globally, using LiDAR and multispectral satellite data. Although previous attempts were able to detect a good proportion of the known mounds in [...] Read more.
This paper presents an algorithm for large-scale automatic detection of burial mounds, one of the most common types of archaeological sites globally, using LiDAR and multispectral satellite data. Although previous attempts were able to detect a good proportion of the known mounds in a given area, they still presented high numbers of false positives and low precision values. Our proposed approach combines random forest for soil classification using multitemporal multispectral Sentinel-2 data and a deep learning model using YOLOv3 on LiDAR data previously pre-processed using a multi–scale relief model. The resulting algorithm significantly improves previous attempts with a detection rate of 89.5%, an average precision of 66.75%, a recall value of 0.64 and a precision of 0.97, which allowed, with a small set of training data, the detection of 10,527 burial mounds over an area of near 30,000 km2, the largest in which such an approach has ever been applied. The open code and platforms employed to develop the algorithm allow this method to be applied anywhere LiDAR data or high-resolution digital terrain models are available. Full article
Show Figures

Graphical abstract

19 pages, 3052 KiB  
Article
Vegetation Cover and Tumuli’s Shape as Affecting Factors of Microclimate and Biodeterioration Risk for the Conservation of Etruscan Tombs (Tarquinia, Italy)
by Giulia Caneva, Simone Langone, Flavia Bartoli, Adele Cecchini and Carlo Meneghini
Sustainability 2021, 13(6), 3393; https://doi.org/10.3390/su13063393 - 19 Mar 2021
Cited by 17 | Viewed by 3575
Abstract
The conservation of underground tombs is affected by several physical-chemical and biological factors, which could be reduced by insulating systems able to maintain the microclimatic stability also decreasing the biodeterioration risk. In Mediterranean areas, wild ephemeral plants, which reduce their cover during the [...] Read more.
The conservation of underground tombs is affected by several physical-chemical and biological factors, which could be reduced by insulating systems able to maintain the microclimatic stability also decreasing the biodeterioration risk. In Mediterranean areas, wild ephemeral plants, which reduce their cover during the hot season, seem unsuitable for reducing summer overheating. In this study, we wish to assess the influence of vegetation cover and of overlaying soil, after the establishment of an evergreen turf of a cultivar of Cynodon dactylon, on two tombs in the Etruscan Necropolis of Monterozzi, covered by linear-shaped tumuli. Therefore, we evaluated for 10 months the thermo-hygrometric values of these tombs, together with two tombs as controls. We also evaluated the different tumuli’s morphologies and the related received solar radiation. Results confirmed that late summer and early autumn as critical microclimatic periods for the risk factors of hypogeal paintings when peaks of superficial temperature occur. A positive influence of vegetation cover on maintaining constant humidity and internal temperatures was detected, but the mounds orientation, as well as soil depth, seems to have a relevant role. Considering the naturalistic features of the area and the related cultural ecosystem services, a careful selection of wild plants is suggested. Full article
Show Figures

Figure 1

17 pages, 11953 KiB  
Article
Using Geophysics to Characterize a Prehistoric Burial Mound in Romania
by Alexandru Hegyi, Dragoș Diaconescu, Petru Urdea, Apostolos Sarris, Michał Pisz and Alexandru Onaca
Remote Sens. 2021, 13(5), 842; https://doi.org/10.3390/rs13050842 - 24 Feb 2021
Cited by 15 | Viewed by 3860
Abstract
A geophysical investigation was carried across the M3 burial mound from Silvașu de Jos —Dealu Țapului, a tumuli necropolis in western Romania, where the presence of the Yamnaya people was certified archaeologically. For characterizing the inner structure of the mound, two conventional geophysical [...] Read more.
A geophysical investigation was carried across the M3 burial mound from Silvașu de Jos —Dealu Țapului, a tumuli necropolis in western Romania, where the presence of the Yamnaya people was certified archaeologically. For characterizing the inner structure of the mound, two conventional geophysical methods have been used: a geomagnetic survey and electrical resistivity tomography (ERT). The results allowed the mapping of the central features of the mound and the establishment of the relative stratigraphy of the mantle, which indicated at least two chronological phases. Archaeological excavations performed in the central part of the mound accurately validated the non-invasive geophysical survey and offered a valuable chronological record of the long-forgotten archaeological monument. Geophysical approaches proved to be an invaluable instrument for the exploration of the monument and suggest a fast constructive tool for the investigation of the entire necropolis which currently has a number of distinct mounds. Full article
(This article belongs to the Special Issue Signal and Image Processing for Remote Sensing)
Show Figures

Graphical abstract

25 pages, 2660 KiB  
Review
Biological Risk for Hypogea: Shared Data from Etruscan Tombs in Italy and Ancient Tombs of the Baekje Dynasty in Republic of Korea
by Giulia Caneva, Daniela Isola, Hyun Ju Lee and Yong Jae Chung
Appl. Sci. 2020, 10(17), 6104; https://doi.org/10.3390/app10176104 - 2 Sep 2020
Cited by 35 | Viewed by 5167
Abstract
Biological growth represents one of the main threats for the conservation of subterranean cultural heritage. Knowledge of the conditions which favour the various taxonomic groups is important in delineating their control methods. Combining our experience regarding hypogea in Italy and the Republic of [...] Read more.
Biological growth represents one of the main threats for the conservation of subterranean cultural heritage. Knowledge of the conditions which favour the various taxonomic groups is important in delineating their control methods. Combining our experience regarding hypogea in Italy and the Republic of Korea, we aim to perform a critical review and comparison of the Biodeterioration Patterns (BPs) found, the materials used, and the conservative treatments applied. For this purpose, we focused on Etruscan tombs (Italy, 7th to 3th century BC) and the ancient tombs of the Baekje Dynasty (Republic of Korea, 6th to 7th centuries AD), most of which have been designated UNESCO World Heritage Sites, collecting original and bibliographic data as well as official documents. Results highlight the rich biodiversity of the bacterial and fungal species. Phototrophs were observed only in niches with sufficient light and the development of roots was also detected. Changes in humidity and temperature, the nature of the soil, nutrient accumulation, and vegetation above the hypogea along with human activities explain the different BPs. The effects of biocide treatments are also discussed, such as the emergence of dangerous fungal species. The shared data also enhance the role of overlaying tumuli and vegetation as well as protective barriers to reduce biological risk. Full article
(This article belongs to the Special Issue Microbial Communities in Cultural Heritage and Their Control)
Show Figures

Figure 1

Back to TopTop