Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (316)

Search Parameters:
Keywords = tumor-derived endothelial cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2268 KiB  
Article
Hydnocarpin, a Natural Flavonolignan, Induces the ROS-Mediated Apoptosis of Ovarian Cancer Cells and Reprograms Tumor-Associated Immune Cells
by Jae-Yoon Kim, Yejin Kim, Soo-Yeon Woo, Jin-Ok Kim, Hyunsoo Kim, So-Ri Son, Dae Sik Jang and Jung-Hye Choi
Antioxidants 2025, 14(7), 846; https://doi.org/10.3390/antiox14070846 - 10 Jul 2025
Viewed by 476
Abstract
Ovarian cancer, the most lethal form of gynecological cancer worldwide with a poor prognosis, is largely driven by an immunosuppressive tumor microenvironment. In this study, we investigated the anticancer effects of hydnocarpin, a natural flavonolignan derived from the flowers of Pueraria lobata, [...] Read more.
Ovarian cancer, the most lethal form of gynecological cancer worldwide with a poor prognosis, is largely driven by an immunosuppressive tumor microenvironment. In this study, we investigated the anticancer effects of hydnocarpin, a natural flavonolignan derived from the flowers of Pueraria lobata, focusing on its effects on ovarian cancer and tumor-associated immune cells, including ovarian cancer-stimulated macrophages (MQs) and T cells. Hydnocarpin exhibited potent cytotoxicity against multiple ovarian cancer cell lines but only minimal toxicity against normal ovarian surface epithelial cells. Mechanistically, hydnocarpin triggered caspase-dependent apoptosis, as evidenced by the activation of caspase-9 and -3, with limited involvement of caspase-8, indicating the activation of the intrinsic apoptotic pathway. Experimental data implicated reactive oxygen species generation as a key mediator of hydnocarpin cytotoxicity, and reactive oxygen species inhibition significantly inhibited this cytotoxicity. In addition to its direct tumoricidal effects, hydnocarpin reprogrammed the tumor-associated immune cells, ovarian cancer-stimulated macrophages and T cells, by downregulating the levels of M2 MQ markers and pro-tumoral factors (matrix metalloproteinase-2/9, C–C motif chemokine ligand 5, transforming growth factor-β, and vascular endothelial growth factor) and enhancing MQ phagocytosis. Additionally, hydnocarpin promoted T-cell activation (interferon-γ and interleukin-2) and reduced the expression levels of immune evasion markers (CD80, CD86, and VISTA). Overall, this study demonstrated the dual anti-tumor effects of hydnocarpin on both ovarian cancer cells and immunosuppressive immune components in the tumor microenvironment, highlighting its potential as a novel therapeutic candidate for ovarian cancer. Full article
Show Figures

Graphical abstract

22 pages, 7820 KiB  
Article
Patient-Derived Gastric Cancer Assembloid Model Integrating Matched Tumor Organoids and Stromal Cell Subpopulations
by Irit Shapira-Netanelov, Olga Furman, Dikla Rogachevsky, Galia Luboshits, Yael Maizels, Dmitry Rodin, Igor Koman and Gabriela A. Rozic
Cancers 2025, 17(14), 2287; https://doi.org/10.3390/cancers17142287 - 9 Jul 2025
Viewed by 614
Abstract
Background/Purpose: Conventional three-dimensional in vitro tumor models often fail to fully capture the complexity of the tumor microenvironment, particularly the diverse populations of cancer-associated fibroblasts that contribute to poor prognosis and treatment resistance. The purpose of this study is to develop a [...] Read more.
Background/Purpose: Conventional three-dimensional in vitro tumor models often fail to fully capture the complexity of the tumor microenvironment, particularly the diverse populations of cancer-associated fibroblasts that contribute to poor prognosis and treatment resistance. The purpose of this study is to develop a patient-specific gastric cancer assembloid model that integrates tumor epithelial cells with matched stromal cell subtypes, each derived using tailored growth media to enhance cancer preclinical research and advance personalized therapeutic strategies. Methods: Tumor tissue was dissociated, and cells expanded in media for organoids, mesenchymal stem cells, fibroblasts, or endothelial cells. The resulting tumor-derived subpopulations were co-cultured in an optimized assembloid medium supporting each cell type’s growth. Biomarker expression was assessed by immunofluorescence staining, and transcriptomic profiles were analyzed by RNA sequencing. Drug responsiveness was evaluated using cell viability assays following treatment with various therapeutic agents. Results: The optimized co-culture conditions yielded assembloids that closely mimicked the cellular heterogeneity of primary tumors, confirmed by the expression of epithelial and stromal markers. Compared to monocultures, the assembloids showed higher expression of inflammatory cytokines, extracellular matrix remodeling factors, and tumor progression-related genes across different organoids and stromal ratios. Drug screening revealed patient- and drug-specific variability. While some drugs were effective in both organoid and assembloid models, others lost efficacy in the assembloids, highlighting the critical role of stromal components in modulating drug responses. Conclusions: This assembloid system offers a robust platform to study tumor–stroma interactions, identify resistance mechanisms, and accelerate drug discovery and personalized therapeutic strategies for gastric cancer. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

17 pages, 44923 KiB  
Article
Inhibition of PCSK9 Attenuates Liver Endothelial Cell Activation Induced by Colorectal Cancer Stem Cells During Liver Metastasis
by Ander Martin, Daniela Gerovska, Marcos J. Arauzo-Bravo, Maitane Duarte García-Escudero, Helena García García, Iratxe Bañares, Naroa Fontal, Geraldine Siegfried, Serge Evrad, Simon Pernot, Abdel-Majid Khatib and Iker Badiola
Cancers 2025, 17(12), 1977; https://doi.org/10.3390/cancers17121977 - 13 Jun 2025
Viewed by 758
Abstract
Background: Colorectal cancer (CRC) is among the most prevalent and lethal cancers globally, with liver metastasis representing the leading cause of CRC-related mortality. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has recently gained attention due to its overexpression in colorectal tumor tissues and its [...] Read more.
Background: Colorectal cancer (CRC) is among the most prevalent and lethal cancers globally, with liver metastasis representing the leading cause of CRC-related mortality. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has recently gained attention due to its overexpression in colorectal tumor tissues and its potential role in driving metastatic progression. This aims to investigate the involvement of PCSK9 in the liver metastatic niche, focusing on its effects on liver sinusoidal endothelial cells (LSECs), key components of the liver microenvironment. Methods: LSECs were stimulated with conditioned media derived from differentiated colorectal cancer cells and cancer stem cells (CSCs), the latter generated by reprogramming SW620 and CT26 cell lines. RNA sequencing was used to profile gene expression in LSECs. PCSK9 mRNA and protein levels were quantified by qPCR and Western blotting, respectively. PCSK9 expression in CRC liver metastases was evaluated by immunofluorescent staining. Results: PCSK9 was detected in both human and murine LSECs and significantly upregulated following exposure to CSC-conditioned media. Immunofluorescent staining confirmed PCSK9 expression in LSECs within CRC liver metastases. Total RNA sequencing revealed that a pre-treatment of LSECs with the PCSK9 inhibitor PF-06446864 prior to CSC stimulation seems to reduce the expression of microRNAs linked to cell migration and proliferation. Functional assays demonstrated that CSC-conditioned media enhanced LSEC proliferation and migration, effects reversed by PCSK9 inhibition. Conclusions: PCSK9 promotes the activation of LSECs in response to colorectal CSCs, contributing to a pro-metastatic phenotype. These findings highlight PCSK9 as a potential therapeutic target in colorectal liver metastasis. Full article
Show Figures

Figure 1

18 pages, 1010 KiB  
Review
Molecular Mechanisms of Lymph Node Metastasis in Gallbladder Cancer: Insights into the Tumor Microenvironment
by Qingyu Tang, Yichen Guan, Yubo Ma, Qi Li and Zhimin Geng
Biomedicines 2025, 13(6), 1372; https://doi.org/10.3390/biomedicines13061372 - 4 Jun 2025
Viewed by 932
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy with a propensity for lymph node metastasis (LNM), which significantly worsens prognosis. This review explores the molecular mechanisms underlying LNM in GBC, focusing on the roles of vascular endothelial growth factors (VEGFs), chemokines, cancer-associated fibroblasts [...] Read more.
Gallbladder cancer (GBC) is a highly aggressive malignancy with a propensity for lymph node metastasis (LNM), which significantly worsens prognosis. This review explores the molecular mechanisms underlying LNM in GBC, focusing on the roles of vascular endothelial growth factors (VEGFs), chemokines, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), hypoxia-inducible factors (HIFs), and non-coding RNAs (ncRNAs) in shaping the tumor microenvironment (TME). Unique features of GBC, such as its bile-rich microenvironment and hypoxia-driven lymphangiogenesis, are highlighted. We discuss how these factors promote lymphangiogenesis, immune evasion, and extracellular matrix (ECM) remodeling, collectively facilitating LNM. Potential therapeutic targets, including VEGF-C/D pathways, matrix metalloproteinase (MMP) inhibitors, and immune-modulating therapies, are also reviewed. Future research integrating single-cell omics and patient-derived organoid models is essential for advancing precision medicine in GBC. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

29 pages, 3898 KiB  
Article
Bone Marrow Myeloid–Lymphatic Progenitors Expand Tumor Lymphatic Vasculature Through Cell Fusion
by Shaswati Athaiya, Lisa Volk-Draper, Emma Cox, Kathy Robinson, Natalya Zinkevich and Sophia Ran
Cancers 2025, 17(11), 1804; https://doi.org/10.3390/cancers17111804 - 28 May 2025
Viewed by 667
Abstract
Background: Bone marrow (BM)-derived myeloid–lymphatic endothelial cell progenitors (M-LECPs) promote formation of tumor lymphatics that are responsible for metastasis to lymph nodes. The regenerative capacity of BM progenitors to other lineages is mediated through cell fusion, a process that delivers a pro-mitotic message [...] Read more.
Background: Bone marrow (BM)-derived myeloid–lymphatic endothelial cell progenitors (M-LECPs) promote formation of tumor lymphatics that are responsible for metastasis to lymph nodes. The regenerative capacity of BM progenitors to other lineages is mediated through cell fusion, a process that delivers a pro-mitotic message directly to division-restricted cells. This suggested that M-LECPs might use a similar mechanism to induce division of lymphatic endothelial cells (LECs). Methods: To test this hypothesis, we determined expression of fusogenic markers in M-LECP produced in vitro and recruited to human or mouse tumors in vivo as well as quantified their fusion with LECs in both settings. Fusion in vivo was determined in female chimera mice grafted with male BM that have been implanted with MDA-MB-231 or EMT6 breast tumors. Co-staining for Y-chromosome and LEC-specific markers allowed us to quantify tumor lymphatic vessels fused with BM progenitors. Results: We found that both tumor-recruited and in-vitro-produced M-LECPs expressed multiple fusogenic regulators and possessed a significant fusogenic activity towards cultured and vessel-lining LECs. Y-chromosomes, a marker of fusion, were detected in nearly half of tumor lymphatics and were associated with mitotic division, vessel formation, and node metastasis. Both in vitro and in vivo assays showed dependency of fusion on Th2 and Toll-like receptor-4 (TLR4) pathways. Conclusions: This novel mechanism of tumor lymphatic formation triggered by fusion with BM myeloid–lymphatic progenitors suggests a variety of new targets for inhibition of metastatic spread. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

13 pages, 1080 KiB  
Article
3-Deoxysappanchalcone Inhibited High Mobility Group Box Protein 1-Mediated Severe Inflammatory Responses
by Jinhee Lee, Gyuri Han and Jong-Sup Bae
Pharmaceuticals 2025, 18(5), 731; https://doi.org/10.3390/ph18050731 - 16 May 2025
Cited by 1 | Viewed by 444
Abstract
Background/Objectives: Phytochemicals are increasingly recognized for their therapeutic potential in treating various diseases, including vascular disorders. High mobility group box 1 (HMGB1), a key mediator of late-stage sepsis, triggers the release of proinflammatory cytokines, leading to inflammation and systemic complications. Elevated plasma levels [...] Read more.
Background/Objectives: Phytochemicals are increasingly recognized for their therapeutic potential in treating various diseases, including vascular disorders. High mobility group box 1 (HMGB1), a key mediator of late-stage sepsis, triggers the release of proinflammatory cytokines, leading to inflammation and systemic complications. Elevated plasma levels of HMGB1 impair diagnosis and prognosis while worsening outcomes in inflammatory conditions. 3-deoxysappanchalcone (3-DSC), a compound derived from Biancaea sappan (L.) Tod., has demonstrated anti-influenza and anti-allergic effects, though its role in HMGB1-mediated severe vascular inflammation remains unclear. This study hypothesized that 3-DSC could modulate lipopolysaccharide-induced HMGB1 activity and its downstream inflammatory pathways in human umbilical vein endothelial cells (HUVECs). Methods: In vitro and in vivo permeability; cell viability, adhesion, and excavation of leukocytes; the development of cell adhesion molecules; and lastly, the production of proinflammatory substances were investigated on human endothelial cells and mouse disease models to investigate the efficacy of 3-DSC in inflammatory conditions. Results: Experiments revealed that 3-DSC inhibited HMGB1 translocation from HUVECs, reduced neutrophil adhesion and extravasation, suppressed HMGB1 receptor formation, and blocked nuclear factor-κB (NF-κB) activation and tumor necrosis factor-α (TNF-α) synthesis. Conclusions: These findings suggest that 3-DSC effectively mitigates HMGB1-driven inflammation, offering promise as a therapeutic candidate for inflammatory diseases. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

25 pages, 1135 KiB  
Review
Targeting Redox Signaling Through Exosomal MicroRNA: Insights into Tumor Microenvironment and Precision Oncology
by Moon Nyeo Park, Myoungchan Kim, Soojin Lee, Sojin Kang, Chi-Hoon Ahn, Trina Ekawati Tallei, Woojin Kim and Bonglee Kim
Antioxidants 2025, 14(5), 501; https://doi.org/10.3390/antiox14050501 - 22 Apr 2025
Viewed by 1434
Abstract
Reactive oxygen species (ROS) play a dual role in cancer progression, acting as both signaling molecules and drivers of oxidative damage. Emerging evidence highlights the intricate interplay between ROS, microRNAs (miRNAs), and exosomes within the tumor microenvironment (TME), forming a regulatory axis that [...] Read more.
Reactive oxygen species (ROS) play a dual role in cancer progression, acting as both signaling molecules and drivers of oxidative damage. Emerging evidence highlights the intricate interplay between ROS, microRNAs (miRNAs), and exosomes within the tumor microenvironment (TME), forming a regulatory axis that modulates immune responses, angiogenesis, and therapeutic resistance. In particular, oxidative stress not only stimulates exosome biogenesis but also influences the selective packaging of redox-sensitive miRNAs (miR-21, miR-155, and miR-210) via RNA-binding proteins such as hnRNPA2B1 and SYNCRIP. These miRNAs, delivered through exosomes, alter gene expression in recipient cells and promote tumor-supportive phenotypes such as M2 macrophage polarization, CD8+ T-cell suppression, and endothelial remodeling. This review systematically explores how this ROS–miRNA–exosome axis orchestrates communication across immune and stromal cell populations under hypoxic and inflammatory conditions. Particular emphasis is placed on the role of NADPH oxidases, hypoxia-inducible factors, and autophagy-related mechanisms in regulating exosomal output. In addition, we analyze the therapeutic relevance of natural products and herbal compounds—such as curcumin, resveratrol, and ginsenosides—which have demonstrated promising capabilities to modulate ROS levels, miRNA expression, and exosome dynamics. We further discuss the clinical potential of leveraging this axis for cancer therapy, including strategies involving mesenchymal stem cell-derived exosomes, ferroptosis regulation, and miRNA-based immune modulation. Incorporating insights from spatial transcriptomics and single-cell analysis, this review provides a mechanistic foundation for the development of exosome-centered, redox-modulating therapeutics. Ultimately, this work aims to guide future research and drug discovery efforts toward integrating herbal medicine and redox biology in the fight against cancer. Full article
Show Figures

Figure 1

20 pages, 3517 KiB  
Article
The Clinical Relevance of Epithelial-to-Mesenchymal Transition Hallmarks: A Cut-Off-Based Approach in Healthy and Cancerous Cell Lines
by Maria Cristina Rapanotti, Elisa Cugini, Maria Giovanna Scioli, Tonia Cenci, Silvia Anzillotti, Martina Puzzuoli, Alessandro Terrinoni, Amedeo Ferlosio, Anastasia De Luca and Augusto Orlandi
Int. J. Mol. Sci. 2025, 26(8), 3617; https://doi.org/10.3390/ijms26083617 - 11 Apr 2025
Viewed by 632
Abstract
The atypical activation of the epithelial-to-mesenchymal transition represents one of the main mechanisms driving cancer cell dissemination. It enables epithelial cancer cells to detach from the primary tumor mass and gain survival advantages in the bloodstream, significantly contributing to the spread of circulating [...] Read more.
The atypical activation of the epithelial-to-mesenchymal transition represents one of the main mechanisms driving cancer cell dissemination. It enables epithelial cancer cells to detach from the primary tumor mass and gain survival advantages in the bloodstream, significantly contributing to the spread of circulating tumor cells. Notably, epithelial-to-mesenchymal transition is not a binary process but rather leads to the formation of a wide range of cell subpopulations characterized by the simultaneous expression of both epithelial and mesenchymal markers. Therefore, analyzing the modulation of EMT hallmarks during the conversion from healthy cells to metastatic cancer cells, which acquire stem mesenchymal characteristics, is of particular interest. This study investigates the expression of a panel of epithelial-to-mesenchymal transition-related genes in healthy cells, primary and metastatic cancer cells, and in mesenchymal cell lines, derived from various tissues, including the lung, colon, pancreas, skin, and neuro-ectoderm, with the aim of identifying potential cut-off values for assessing cancer aggressiveness. Interestingly, we found that the expression levels of CDH1, which encodes the epithelial marker E-cadherin, CDH5, encoding vascular endothelial cadherin, and the epithelial-to-mesenchymal transition-transcription factor ZEB1, effectively distinguished primary from metastatic cancer cells. Additionally, our data suggest a tissue-specific signature in the modulation of epithelial-to-mesenchymal transition markers during cancer progression. Overall, our results underscore the importance of investigating epithelial-to-mesenchymal transition as a tissue-specific process to identify the most suitable markers acting as potential indicators of disease aggressiveness and therapeutic responsiveness. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cells Differentiation in Health and Disease)
Show Figures

Figure 1

20 pages, 4100 KiB  
Article
Ultrasound-Assisted Synthesis of Substituted Chalcone-Linked 1,2,3-Triazole Derivatives as Antiproliferative Agents: In Vitro Antitumor Activity and Molecular Docking Studies
by Manuel Cáceres, Víctor Kesternich, Marcia Pérez-Fehrmann, Mariña Castroagudin, Ronald Nelson, Víctor Quezada, Philippe Christen, Alejandro Castro-Alvarez and Juan G. Cárcamo
Int. J. Mol. Sci. 2025, 26(7), 3389; https://doi.org/10.3390/ijms26073389 - 4 Apr 2025
Viewed by 819
Abstract
The synthesis of (E)-1-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenyl-2-propen-1-one derivatives was carried out in two steps, using benzylic chloride derivatives as starting material. The structural determination of intermediates and final products was performed by spectroscopic methods: infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass [...] Read more.
The synthesis of (E)-1-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-3-phenyl-2-propen-1-one derivatives was carried out in two steps, using benzylic chloride derivatives as starting material. The structural determination of intermediates and final products was performed by spectroscopic methods: infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass spectrometry (IR, NMR, and MS). In vitro evaluation of cytotoxic activity on adherent and non-adherent cells showed that triazole chalcones exhibited significant activity against three of the five cell lines studied: non-Hodgkin lymphoma U937, glioblastoma multiform tumor T98G, and gallbladder cancer cells Gb-d1. In contrast, the cytotoxic activity observed for cervical cancer HeLa and gallbladder adenocarcinoma G-415 was considerably lower. Additionally, in the cell lines where activity was observed, some compounds demonstrated an In vitro inhibitory effect superior to that of the control, paclitaxel. Molecular docking studies revealed specific interactions between the synthesized ligands and therapeutic targets in various cell lines. In U937 cells, compounds 4a and 4c exhibited significant inhibition of vascular endothelial growth factor receptor (VEGFR) kinase, correlating with their biological activity. This effect was attributed to favorable interactions with key residues in the binding site. In T98G cells, compounds 4r and 4w showed affinity for transglutaminase 2 (TG2) protein, driven by their ability to form hydrophobic interactions. In Gb-d1 cells, compounds 4l and 4p exhibited favorable interactions with mitogen-activated protein kinase (MEK) protein, similar to those observed with the known inhibitor selumetinib. In HeLa cells, compounds 4h and 4g showed activity against dihydrofolate reductase (DHFR) protein, driven by hydrogen bonding interactions and favorable aromatic ring orientations. On the other hand, compounds 4b and 4t exhibited no activity, likely due to unfavorable interactions related to halogen substitutions in the aromatic rings. Full article
(This article belongs to the Special Issue Advances in Organic Synthesis in Drug Discovery)
Show Figures

Figure 1

23 pages, 1871 KiB  
Review
Microgravity and Cellular Biology: Insights into Cellular Responses and Implications for Human Health
by Nelson Adolfo López Garzón, María Virginia Pinzón-Fernández, Jhan S. Saavedra T., Humberto A. Nati-Castillo, Marlon Arias-Intriago, Camila Salazar-Santoliva and Juan S. Izquierdo-Condoy
Int. J. Mol. Sci. 2025, 26(7), 3058; https://doi.org/10.3390/ijms26073058 - 27 Mar 2025
Cited by 2 | Viewed by 1852
Abstract
Microgravity, defined by minimal gravitational forces, represents a unique environment that profoundly influences biological systems, including human cells. This review examines the effects of microgravity on biological processes and their implications for human health. Microgravity significantly impacts the immune system by disrupting key [...] Read more.
Microgravity, defined by minimal gravitational forces, represents a unique environment that profoundly influences biological systems, including human cells. This review examines the effects of microgravity on biological processes and their implications for human health. Microgravity significantly impacts the immune system by disrupting key mechanisms, such as T cell activation, cytokine production, and macrophage differentiation, leading to increased susceptibility to infections. In cancer biology, it promotes the formation of spheroids in cancer stem cells and thyroid cancer cells, which closely mimic in vivo tumor dynamics, providing novel insights for oncology research. Additionally, microgravity enhances tissue regeneration by modulating critical pathways, including Hippo and PI3K-Akt, thereby improving stem cell differentiation into hematopoietic and cardiomyocyte lineages. At the organ level, microgravity induces notable changes in hepatic metabolism, endothelial function, and bone mechanotransduction, contributing to lipid dysregulation, vascular remodeling, and accelerated bone loss. Notably, cardiomyocytes derived from human pluripotent stem cells and cultured under microgravity exhibit enhanced mitochondrial biogenesis, improved calcium handling, and advanced structural maturation, including increased sarcomere length and nuclear eccentricity. These advancements enable the development of functional cardiomyocytes, presenting promising therapeutic opportunities for treating cardiac diseases, such as myocardial infarctions. These findings underscore the dual implications of microgravity for space medicine and terrestrial health. They highlight its potential to drive advances in regenerative therapies, oncology, and immunological interventions. Continued research into the biological effects of microgravity is essential for protecting astronaut health during prolonged space missions and fostering biomedical innovations with transformative applications on Earth. Full article
Show Figures

Figure 1

10 pages, 4621 KiB  
Article
Lymphangiogenesis in the Deepest Invasive Areas of Human Early-Stage Colorectal Cancer
by Masaharu Tanaka, Qian Zhou, Minako Ohnishi, Miho Kandori, Ami Itou, Yuki Kitadai, Hidehiko Takigawa, Shiro Oka, Akiko Kimoto, Fumio Shimamoto and Yasuhiko Kitadai
Int. J. Mol. Sci. 2025, 26(7), 2919; https://doi.org/10.3390/ijms26072919 - 24 Mar 2025
Viewed by 717
Abstract
Tumor-associated macrophages (TAMs) are known to induce epithelial–mesenchymal transition (EMT) and angiogenesis in areas with a high density of accumulation in the submucosal (SM) layer. However, lymphatic vessels, which are important routes for lymph node metastasis, have rarely been analyzed, and their relationship [...] Read more.
Tumor-associated macrophages (TAMs) are known to induce epithelial–mesenchymal transition (EMT) and angiogenesis in areas with a high density of accumulation in the submucosal (SM) layer. However, lymphatic vessels, which are important routes for lymph node metastasis, have rarely been analyzed, and their relationship to TAM accumulation is unknown. In this study, paraffin-embedded sections from 11 cases of human early-stage colorectal cancer (SM invasive carcinoma) were stained with CD34 antibody for vascular endothelium and podoplanin antibody for lymphatic endothelium at the deepest, central, and marginal sites of tumor invasion. Tumor blood vessels increased in the deepest invasive areas, and a positive correlation was observed between the number of TAMs and tumor blood vessels. Interestingly, lymphatic vessels with CD34-positive endothelial cells (CD34-positive lymphatic vessels) were observed within the tumor. The number of CD34-positive lymphatic vessels was significantly higher in the metastasis-positive group. These results suggest that abnormalities in the vascular and lymphatic systems are observed from the early stage of colorectal cancer development and that VEGF-A derived from TAMs is important for tumor angiogenesis. In addition, CD34-positive lymphatic vessels observed in the deepest areas of tumor invasion have not been reported in Japan, with initial reports indicating that they are neoplastic lymphatic vessels. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Figure 1

22 pages, 3057 KiB  
Review
Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition
by Eleftherios Charissopoulos and Eleni Pontiki
Biomedicines 2025, 13(4), 772; https://doi.org/10.3390/biomedicines13040772 - 21 Mar 2025
Viewed by 884
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2), a tyrosine kinase receptor (TKR), plays a crucial role in angiogenesis and is overexpressed in most cancers. It is important for tumor angiogenesis, facilitating essential angiogenic cellular processes, such as promoting endothelial cell survival, proliferation, migration, and [...] Read more.
Vascular endothelial growth factor receptor-2 (VEGFR-2), a tyrosine kinase receptor (TKR), plays a crucial role in angiogenesis and is overexpressed in most cancers. It is important for tumor angiogenesis, facilitating essential angiogenic cellular processes, such as promoting endothelial cell survival, proliferation, migration, and vascular permeability. Consequently, VEGFR-2 has become one of the main targets for anti-angiogenic therapy, with its inhibition serving as a crucial strategy for developing new drugs to mitigate angiogenesis-dependent cancers. Small-molecule drugs targeting VEGFR-2, approved by the USFDA, are exhibiting the development of drug resistance during chemotherapy, with cardiac-related side effects being consistently reported. In conclusion, it is important to develop novel strategies to enhance the efficacy of VEGFR-2 inhibitors and eliminate their adverse effects. Multifunctional drugs that target multiple pathways present a promising strategy, enhancing efficacy while minimizing side effects. Sulfonamide derivatives are extensively used in medicinal chemistry and modern drug discovery due to their variety of pharmacological activities. The present review focuses on novel compounds endowed with potential VEGFR-2 inhibition, four of which additionally present carbonic anhydrase inhibitory activity. Full article
(This article belongs to the Special Issue Recent Advances in Drug Synthesis and Drug Discovery)
Show Figures

Figure 1

115 pages, 3101 KiB  
Review
Cross-Talk Between Cancer and Its Cellular Environment—A Role in Cancer Progression
by Eliza Turlej, Aleksandra Domaradzka, Justyna Radzka, Dominika Drulis-Fajdasz, Julita Kulbacka and Agnieszka Gizak
Cells 2025, 14(6), 403; https://doi.org/10.3390/cells14060403 - 10 Mar 2025
Cited by 3 | Viewed by 4119
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). [...] Read more.
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment. Full article
(This article belongs to the Special Issue Cell-to-Cell Crosstalk as a Target of Therapies)
Show Figures

Graphical abstract

15 pages, 2763 KiB  
Article
Association Between Synovial NTN4 Expression and Pain Scores, and Its Effects on Fibroblasts and Sensory Neurons in End-Stage Knee Osteoarthritis
by Ayumi Tsukada, Yui Uekusa, Etsuro Ohta, Akito Hattori, Manabu Mukai, Dai Iwase, Jun Aikawa, Yoshihisa Ohashi, Gen Inoue, Masashi Takaso and Kentaro Uchida
Cells 2025, 14(6), 395; https://doi.org/10.3390/cells14060395 - 8 Mar 2025
Cited by 3 | Viewed by 1327
Abstract
Osteoarthritis (OA) is a chronic joint disease marked by synovial inflammation, cartilage degradation, and persistent pain. Although Netrin-4 (NTN4) has been implicated in pain modulation in rheumatoid arthritis (RA), its role in OA pain remains less understood. Previous research has documented that NTN4 [...] Read more.
Osteoarthritis (OA) is a chronic joint disease marked by synovial inflammation, cartilage degradation, and persistent pain. Although Netrin-4 (NTN4) has been implicated in pain modulation in rheumatoid arthritis (RA), its role in OA pain remains less understood. Previous research has documented that NTN4 promotes axonal growth in rodent-derived neurons; however, its effects on human sensory neurons are yet to be fully explored. NTN4 also plays a multifactorial role in various non-neuronal cells, such as endothelial cells, tumor cells, and stromal cells. Nevertheless, its specific impact on synovial fibroblasts, which are key components of the synovium and have been linked to OA pain, is still unclear. This study examined the correlation between NTN4 expression levels and pain severity in OA, specifically investigating its effects on human iPSC-derived sensory neurons (iPSC-SNs) and synovial fibroblasts from OA patients. Our findings indicate a positive correlation between synovial NTN4 expression and pain severity. Recombinant human Netrin-4 (rh-NTN4) was also shown to enhance neurite outgrowth in human iPSC-SNs, suggesting a potential role in neuronal sensitization. Additionally, rh-NTN4 stimulated the production of pro-inflammatory cytokines (IL-6, IL-8) and chemokines (CXCL1, CXCL6, CXCL8) in synovium-derived fibroblastic cells, implicating it in synovial inflammation. Collectively, these results suggest that NTN4 may contribute to KOA pathology by promoting synovial inflammation and potentially sensitizing sensory neurons, thereby influencing the mechanisms of underlying pain. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

15 pages, 3827 KiB  
Article
Antagonizing the S1P-S1P3 Axis as a Promising Anti-Angiogenic Strategy
by Sofia Avnet, Emi Mizushima, Beatrice Severino, Maria Veronica Lipreri, Antonia Scognamiglio, Angela Corvino, Nicola Baldini and Margherita Cortini
Metabolites 2025, 15(3), 178; https://doi.org/10.3390/metabo15030178 - 5 Mar 2025
Cited by 1 | Viewed by 930
Abstract
Background: Angiogenesis, the process of new blood vessel formation, is critically regulated by a balance of pro- and anti-angiogenic factors. This process plays a central role in tumor progression and is modulated by tumor cells. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule acting [...] Read more.
Background: Angiogenesis, the process of new blood vessel formation, is critically regulated by a balance of pro- and anti-angiogenic factors. This process plays a central role in tumor progression and is modulated by tumor cells. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule acting via G-protein-coupled receptors (S1PR1–5), has emerged as a key mediator of vascular development and pathological angiogenesis in cancer. Consequently, targeting the S1P-S1PRs axis represents a promising strategy for antiangiogenic therapies. This study explores S1PR3 as a potential therapeutic target in osteosarcoma, the most common primary bone malignancy, which we have previously demonstrated to secrete S1P within the acidic tumor microenvironment. Methods: The effects of KRX-725-II and its derivatives, Tic-4-KRX-725-II and [D-Tic]4-KRX-725-II—pepducins acting as S1PR3 antagonists as allosteric modulators of GPCR activity—were tested on metastatic osteosarcoma cells (143B) for proliferation and migration inhibition. Anti-angiogenic activity was assessed using endothelial cells (HUVEC) through proliferation and tubulogenesis assays in 2D, alongside sprouting and migration analyses in a 3D passively perfused microfluidic chip. Results: S1PR3 inhibition did not alter osteosarcoma cell growth or migration. However, it impaired endothelial cell tubulogenesis up to 75% and sprouting up to 30% in respect to controls. Conventional 2D assays revealed reduced tubule nodes and length, while 3D microfluidic models demonstrated diminished sprouting area and maximum migration distance, indicating S1PR3’s role in driving endothelial cell differentiation. Conclusions: These findings highlight S1PR3 as a critical regulator of angiogenesis and posit its targeting as a novel anti-angiogenic strategy, particularly for aggressive, S1P-secreting tumors with pronounced metastatic potential and an acidic microenvironment. Full article
(This article belongs to the Special Issue Cell Death and Cancer Metabolism)
Show Figures

Figure 1

Back to TopTop