Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition
Abstract
:1. Introduction
1.1. Main Role of VEGFR-2 in Cancer: Involvement in Tumor Proliferation and Migration Across Cancer Types
1.2. Overview of the VPF/VEGF Family and Their Key Functions
1.3. Structural Features and Activation Mechanism of VEGFR-2
1.4. Key Elements Involved in VEGFR-2 Inhibition
1.5. Structural Significance of Sulfonamide Moiety and Its Role in Various Diseases
2. New Sulfonamide-Based VEGFR-2 Derivatives
2.1. Sulfonamide Derivatives with Unsubstituted Amine Group
2.1.1. Sulfonamide-Linked Schiff Bases
2.1.2. Isatin-Based Sulfonamides
2.1.3. Quinazoline Sulfonamide Derivatives
2.1.4. 1,5-Diaryl-1,2,4-Triazole-Tethered Sulfonamide Derivatives
2.2. N-Substituded Sulfonamides
2.2.1. Sulfonamide–Triazole–Glycoside Hybrid Derivatives
2.2.2. N-(4-(6-amino-5-cyano-4-(3-fluorophenyl)pyridin-2-yl)phenyl)-4-methylbenzenesulfonamide
2.2.3. N-(substituted)-4-(thiazolo [4,5-b]quinoxalin-2(3H)-ylideneamino)-benzenesulfonamide Derivatives
2.2.4. Sulfamoyl-Substituted Hydrazone and Pyrazolidinedione Derivatives
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Abbreviations
ATP | Adenosine Triphosphate |
CA | Carbonic Anhydrase |
CNS | Central Nervous System |
CK | Creatine Kinase |
EC | Extracellular |
EGFR | Epidermal Growth Factor Receptor |
HepG2 | Hepatoblastoma cell line, human liver cancer cell line |
IC | Intracellular |
Ig | Immunoglobulin |
LDH | Lactate Dehydrogenase |
MCF-7 | Michigan Cancer Foundation-7, human breast cancer cell line |
NSCLC | Non-Small-Cell Lung Cancer |
PIGF | Placenta Growth Factor |
RTK | Receptor Tyrosine Kinase |
TM | Transmembrane |
TNF-a | Tumor Necrosis Factor Alpha |
VEGF | Vascular Endothelial Growth Factor |
VEGF-A | Vascular Endothelial Growth Factor-A |
VEGF-B | Vascular Endothelial Growth Factor-B |
VEGF-C | Vascular Endothelial Growth Factor-C |
VEGF-D | Vascular Endothelial Growth Factor-D |
VEGFR-2 | Vascular Endothelial Growth Factor Receptor-2 |
VPF | Vascular Permeability Factor |
WHO | World Health Organization |
References
- Alanazi, M.M.; Eissa, I.H.; Alsaif, N.A.; Obaidullah, A.J.; Alanazi, W.A.; Alasmari, A.F.; Albassam, H.; Elkady, H.; Elwan, A. Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. J. Enzym. Inhib. Med. Chem. 2021, 36, 1760–1782. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-J.; Zhao, H.-C.; Hou, S.-J.; Zhang, H.-J.; Cheng, L.; Yuan, S.; Zhang, L.-R.; Song, J.; Zhang, S.-Y.; Chen, S.-W. Recent development of multi-target VEGFR-2 inhibitors for the cancer therapy. Bioorg. Chem. 2023, 133, 106425. [Google Scholar] [CrossRef] [PubMed]
- Eissa, I.H.; Yousef, R.G.; Elkady, H.; Elkaeed, E.B.; Alsfouk, A.A.; Husein, D.Z.; Ibrahim, I.M.; Elhendawy, M.A.; Godfrey, M.; Metwaly, A.M. Design, semi-synthesis, anti-cancer assessment, docking, MD simulation, and DFT studies of novel theobromine-based derivatives as VEGFR-2 inhibitors and apoptosis inducers. Comput. Biol. Chem. 2023, 107, 107953. [Google Scholar] [CrossRef]
- Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front. Cell Dev. Biol. 2020, 8, 599281. [Google Scholar] [CrossRef]
- Patel, S.A.; Nilsson, M.B.; Le, X.; Cascone, T.; Jain, R.K.; Heymach, J.V. Molecular Mechanisms and Future Implications of VEGF/VEGFR in Cancer Therapy. Clin. Cancer Res. 2023, 29, 30–39. [Google Scholar] [CrossRef]
- Lian, L.; Li, X.L.; Xu, M.D.; Li, X.M.; Wu, M.Y.; Zhang, Y.; Tao, M.; Li, W.; Shen, X.M.; Zhou, C.; et al. VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer 2019, 19, 479–489. [Google Scholar] [CrossRef]
- Nkoana, J.K.; More, G.K.; Mphahlele, M.J.; Elhenawy, A.A. Synthesis and in vitro exploration of the 8-carbo substituted 5-methoxyflavones as anti-breast and anti-lung cancer agents targeting protein kinases (VEGFR-2 & EGFR). Bioorg. Chem. 2024, 153, 107875. [Google Scholar] [CrossRef]
- Nagy, J.A.; Dvorak, A.M.; Dvorak, H.F. VEGF-A and the Induction of Pathological Angiogenesis. Annu. Rev. Pathol. Mech. Dis. 2007, 2, 251–275. [Google Scholar] [CrossRef]
- Peach, C.J.; Mignone, V.W.; Arruda, M.A.; Alcobia, D.C.; Hill, S.J.; Kilpatrick, L.E.; Woolard, J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int. J. Mol. Sci. 2018, 19, 1264. [Google Scholar] [CrossRef]
- Nash, A.D.; Baca, M.; Wright, C.; Scotney, P.D. The biology of vascular endothelial growth factor-B (VEGF-B). Pulm. Pharmacol. Ther. 2006, 19, 61–69. [Google Scholar] [CrossRef]
- Li, X.; Lee, C.; Tang, Z.; Zhang, F.; Arjunan, P.; Li, Y.; Hou, X.; Kumar, A.; Dong, L. VEGF-B. Cell Adhes. Migr. 2009, 3, 322–327. [Google Scholar] [CrossRef]
- Li, X. VEGF-B: A thing of beauty. Cell Res. 2010, 20, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-C.; Chang, Y.-W.; Hong, C.-C.; Yu, Y.-H.; Su, J.-L. The Role of the VEGF-C/VEGFRs Axis in Tumor Progression and Therapy. Int. J. Mol. Sci. 2012, 14, 88–107. [Google Scholar] [CrossRef]
- Stacker, S.; Achen, M. Emerging Roles for VEGF-D in Human Disease. Biomolecules 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Ribatti, D. The discovery of the placental growth factor and its role in angiogenesis: A historical review. Angiogenesis 2008, 11, 215–221. [Google Scholar] [CrossRef]
- Newell, L.F.; Holtan, S.G. Placental growth factor: What hematologists need to know. Blood Rev. 2017, 31, 57–62. [Google Scholar] [CrossRef]
- Takahashi, S. Vascular Endothelial Growth Factor (VEGF), VEGF Receptors and Their Inhibitors for Antiangiogenic Tumor Therapy. Biol. Pharm. Bull. 2011, 34, 1785–1788. [Google Scholar] [CrossRef]
- Reang, J.; Sharma, V.; Yadav, V.; Tonk, R.K.; Majeed, J.; Sharma, A.; Sharma, P.C. Redefining the significance of quinoline containing compounds as potent VEGFR-2 inhibitors for cancer therapy. Med. Chem. Res. 2024, 33, 1079–1099. [Google Scholar] [CrossRef]
- Sarabipour, S.; Ballmer-Hofer, K.; Hristova, K. VEGFR-2 conformational switch in response to ligand binding. eLife 2016, 5, e13876. [Google Scholar] [CrossRef]
- Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007, 19, 2003–2012. [Google Scholar] [CrossRef]
- King, C.; Hristova, K. Direct measurements of VEGF–VEGFR2 binding affinities reveal the coupling between ligand binding and receptor dimerization. J. Biol. Chem. 2019, 294, 9064–9075. [Google Scholar] [CrossRef] [PubMed]
- Chandler, K.B.; Leon, D.R.; Meyer, R.D.; Rahimi, N.; Costello, C.E. Site-Specific N-Glycosylation of Endothelial Cell Receptor Tyrosine Kinase VEGFR-2. J. Proteome Res. 2017, 16, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huang, Z.; Bai, Z.; Xie, R.; Sun, L.; Lin, K. Development And Strategies Of VEGFR-2/KDR Inhibitors. Future Med. Chem. 2012, 4, 1839–1852. [Google Scholar] [CrossRef]
- Modi, S.J.; Kulkarni, V.M. Exploration of structural requirements for the inhibition of VEGFR-2 tyrosine kinase: Binding site analysis of type II, ‘DFG-out’ inhibitors. J. Biomol. Struct. Dyn. 2022, 40, 5712–5727. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, W. The Emerging Regulation of VEGFR-2 in Triple-Negative Breast Cancer. Front. Endocrinol. 2015, 6, 159. [Google Scholar] [CrossRef]
- Pavlakovic, H.; Becker, J.; Albuquerque, R.; Wilting, J.; Ambati, J. Soluble VEGFR-2: An antilymphangiogenic variant of VEGF receptors. Ann. N. Y. Acad. Sci. 2010, 1207, E7–E15. [Google Scholar] [CrossRef]
- Roskoski, R. VEGF receptor protein–tyrosine kinases: Structure and regulation. Biochem. Biophys. Res. Commun. 2008, 375, 287–291. [Google Scholar] [CrossRef]
- Abdullaziz, M.A.; Abdel-Mohsen, H.T.; El Kerdawy, A.M.; Ragab, F.A.F.; Ali, M.M.; Abu-bakr, S.M.; Girgis, A.S.; El Diwani, H.I. Design, synthesis, molecular docking and cytotoxic evaluation of novel 2-furybenzimidazoles as VEGFR-2 inhibitors. Eur. J. Med. Chem. 2017, 136, 315–329. [Google Scholar] [CrossRef]
- Sanphanya, K.; Wattanapitayakul, S.K.; Phowichit, S.; Fokin, V.V.; Vajragupta, O. Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach. Bioorg. Med. Chem. Lett. 2013, 23, 2962–2967. [Google Scholar] [CrossRef]
- Abdallah, A.E.; Eissa, S.I.; Al Ward, M.M.S.; Mabrouk, R.R.; Mehany, A.B.M.; El-Zahabi, M.A. Design, synthesis and molecular modeling of new quinazolin-4(3H)-one based VEGFR-2 kinase inhibitors for potential anticancer evaluation. Bioorg. Chem. 2021, 109, 104695. [Google Scholar] [CrossRef]
- Escudier, B.; Worden, F.; Kudo, M. Sorafenib: Key lessons from over 10 years of experience. Expert Rev. Anticancer Ther. 2019, 19, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; Gannon, A.; Figlin, R.A. Sunitinib: Ten Years of Successful Clinical Use and Study in Advanced Renal Cell Carcinoma. Oncologist 2017, 22, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Majithia, N.; Grothey, A. Regorafenib in the treatment of colorectal cancer. Expert Opin. Pharmacother. 2016, 17, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Aref, M.; Mohamed, A.; Dahab, M.; El-Zahabi, M.A. An Overview of Quinoline Derivatives as Anti-Cancer Agents. Al-Azhar J. Pharm. Sci. 2023, 68, 130–158. [Google Scholar] [CrossRef]
- Scott, E.N.; Meinhardt, G.; Jacques, C.; Laurent, D.; Thomas, A.L. Vatalanib: The clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours. Expert Opin. Investig. Drugs 2007, 16, 367–379. [Google Scholar] [CrossRef]
- Abdallah, A.E.; Mabrouk, R.R.; Elnagar, M.R.; Farrag, A.M.; Kalaba, M.H.; Sharaf, M.H.; El-Fakharany, E.M.; Bakhotmah, D.A.; Elkaeed, E.B.; Al Ward, M.M.S. New Series of VEGFR-2 Inhibitors and Apoptosis Enhancers: Design, Synthesis and Biological Evaluation. Drug Des. Dev. Ther. 2022, 16, 587–606. [Google Scholar] [CrossRef]
- Moradi, M.; Mousavi, A.; Emamgholipour, Z.; Giovannini, J.; Moghimi, S.; Peytam, F.; Honarmand, A.; Bach, S.; Foroumadi, A. Quinazoline-based VEGFR-2 inhibitors as potential anti-angiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur. J. Med. Chem. 2023, 259, 115626. [Google Scholar] [CrossRef]
- Elmaaty, A.A.; Darwish, K.M.; Chrouda, A.; Boseila, A.A.; Tantawy, M.A.; Elhady, S.S.; Shaik, A.B.; Mustafa, M.; Al-Karmalawy, A.A. In Silico and in Vitro Studies for Benzimidazole Anthelmintics Repurposing as VEGFR-2 Antagonists: Novel Mebendazole-Loaded Mixed Micelles with Enhanced Dissolution and Anticancer Activity. ACS Omega 2022, 7, 875–899. [Google Scholar] [CrossRef]
- Supuran, C. Special Issue: Sulfonamides. Molecules 2017, 22, 1642. [Google Scholar] [CrossRef]
- Song, J.; Gao, Q.L.; Wu, B.-W.; Li, D.; Shi, L.; Zhu, T.; Lou, J.F.; Jin, C.Y.; Zhang, Y.B.; Zhang, S.Y.; et al. Novel tertiary sulfonamide derivatives containing benzimidazole moiety as potent anti-gastric cancer agents: Design, synthesis and SAR studies. Eur. J. Med. Chem. 2019, 183, 111731. [Google Scholar] [CrossRef]
- Wan, Y.; Fang, G.; Chen, H.; Deng, X.; Tang, Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem. 2021, 226, 113837. [Google Scholar] [CrossRef] [PubMed]
- Shaldam, M.A.; Abdulla, M.H.; Angeli, A.; Hefny, S.M.; El-Labbad, E.M.; Bin Obeed, A.; Alhassan, N.S.; Supuran, C.T.; Eldehna, W.M.; Tawfik, H.O. Novel sulfonamide-tethered Schiff bases as anti-proliferative agents with VEGFR-2 inhibitory activity: Synthesis, biological assessment, and molecular dynamic simulations. J. Mol. Struct. 2024, 1309, 138148. [Google Scholar] [CrossRef]
- Shaldam, M.A.; Almahli, H.; Angeli, A.; Badi, R.M.; Khaleel, E.F.; Zain-Alabdeen, A.I.; Elsayed, Z.M.; Elkaeed, E.B.; Salem, R.; Supuran, C.T.; et al. Discovery of sulfonamide-tethered isatin derivatives as novel anticancer agents and VEGFR-2 inhibitors. J. Enzym. Inhib. Med. Chem. 2023, 38, 2203389. [Google Scholar] [CrossRef]
- Ghorab, M.M.; Soliman, A.M.; El-Adl, K.; Hanafy, N.S. New quinazoline sulfonamide derivatives as potential anticancer agents: Identifying a promising hit with dual EGFR/VEGFR-2 inhibitory and radiosensitizing activity. Bioorg Chem. 2023, 140, 106791. [Google Scholar] [CrossRef]
- Elsawi, A.E.; Elbadawi, M.M.; Nocentini, A.; Almahli, H.; Giovannuzzi, S.; Shaldam, M.; Salem, R.; Ibrahim, T.M.; Abdel-Aziz, H.A.; Supuran, C.T.; et al. 1,5-Diaryl-1,2,4-triazole Ureas as New SLC-0111 Analogues Endowed with Dual Carbonic Anhydrase and VEGFR-2 Inhibitory Activities. J. Med. Chem. 2023, 66, 10558–10578. [Google Scholar] [CrossRef]
- Abbas, H.A.S.; Nossier, E.S.; El-Manawaty, M.A.; El-Bayaa, M.N. New sulfonamide-based glycosides incorporated 1,2,3-triazole as cytotoxic agents through VEGFR-2 and carbonic anhydrase inhibitory activity. Sci Rep. 2024, 14, 13028. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Santali, E.Y. Discovery of pyridine-sulfonamide hybrids as a new scaffold for the development of potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg. Chem. 2021, 111, 104842. [Google Scholar] [CrossRef]
- El-Hazek, R.M.M.; Zaher, N.H.; El-Gazzar, M.G.M.; Fadel, N.A.; El-Sabbagh, W.A. Novel VEGFR2 inhibitors with thiazoloquinoxaline scaffold targeting hepatocellular carcinoma with lower cardiotoxic impact. Sci. Rep. 2023, 13, 13907. [Google Scholar] [CrossRef]
- Sayed, A.M.; Taher, F.A.; Abdel-Samad, M.R.K.; El-Gaby, M.S.A.; El-Adl, K.; Saleh, N.M. Design, synthesis, molecular docking, in silico ADMET profile and anticancer evaluations of sulfonamide endowed with hydrazone-coupled derivatives as VEGFR-2 inhibitors. Bioorg. Chem. 2021, 108, 104669. [Google Scholar] [CrossRef]
Drug | Structure | Year of Approval | References |
---|---|---|---|
Sorafenib | 2005 | Escudier, B. et al. [31] | |
Sunitinib | 2006 | Motzer, R.J. et al. [32] | |
Regorafenib | 2012 | Majithia, N. et al. [33] | |
Tivozanib | 2021 | Aref, M. et al. [34] | |
Vatalanib | Phase III clinical trial | Scott, E.N. et al. [35] |
Compound | MTT Assay Against Human Tumor Cell Lines HepG2 and MCF-7 (IC50) | CA IX and CA XII Inhibition | KI | VEGFR-2 Inhibition | IC50 |
---|---|---|---|---|---|
1 | 0.15 μM and 0.09 μM, respectively | KI > 100 µM | 23.1 ± 0.75 nM | ||
2 | 0.15 μM and 0.26 μM, respectively | KI > 100 µM | 31.1 ± 0.75 nM | ||
3 | 1.55 μM and 1.11 μM, respectively | KI > 100 µM | 40.1 ± 0.90 nM | ||
Reference: Staurosporine | 10.42 μM (HepG2) 3.10 μM (MCF-7) | Reference: Acetazolamide | 0.025 µM (CA IX) 0.006 µM (CA XII) | Reference: Sorafenib | 29.7 ± 0.17 nM |
Compound | Sulforhodamine B Colorimetric Assay Against T47D Breast Cancer Cells (IC50) | CA I, CA II, and CA IX Inhibition | KI | VEGFR-2 Inhibition | IC50 |
---|---|---|---|---|---|
4 | 10.40 ± 0.47 μM | KI > 100 µM | 30.10 ± 0.31 nM | ||
5 | 3.59 ± 0.16 μM | KI > 100 µM | 23.10 ± 0.41 nM | ||
7 | 5.45 ± 0.24 μM | KI > 100 µM | 56.70 ± 0.72 nM | ||
9 | 1.83 ± 0.08 μM | KI > 100 µM | 63.40 ± 0.72 nM | ||
Reference: Doxorubicin | 2.26 ± 0.10 μM | Reference: Acetazolamide | 0.25 (CA I) 0.012 (CA II) 0.026 (CA IX) | Reference: Sorafenib | 29.70 ± 0.17 nM |
Compound | MTT Assay Against Human Tumor Cell Lines HepG2, MCF-7, HCT-116, and A549 (IC50) | VEGFR-2 and EGFRT790M Inhibition | IC50 |
---|---|---|---|
12 | 0.1163 ± 0.02, 0.4092 ± 0.02, 0.1985 ± 0.02, and 1.8986 ± 0.25 μM, respectively | 0.2193 ± 0.02 μM and NT, respectively | |
14 | 0.1707 ± 0.02, 0.4620 ± 0.02, 0.3792 ± 0.02, and 0.4511 ± 0.05 μM, respectively | 0.2510 ± 0.02 and 0.3898 ± 0.02 μM, respectively | |
15 | 0.2232 ± 0.02, 0.6939 ± 0.07, 0.5872 ± 0.05, and 0.7887 ± 0.07 μM, respectively | 0.3931 ± 0.02 and 0.6615 ± 0.05 μM, respectively | |
17 | 1.1923 ± 0.10, 0.1781 ± 0.02, 0.1451 ± 0.01, and 1.7428 ± 0.15 μM, respectively | 0.0984 ± 0.01 μM and NT, respectively | |
22 | 0.3076 ± 0.02, 0.4029 ± 0.05, 1.1217 ± 0.15, and 0.8211 ± 0.07 μM, respectively | 0.2174 ± 0.02 and 0.3516 ± 0.02 μM, respectively | |
23 | 0.3425 ± 0.02, 0.0977 ± 0.01, 0.2000 ± 0.02, and 0.5134 ± 0.05 μM, respectively | 0.0523 ± 0.01 and 0.0728 ± 0.01 μM, respectively | |
24 | 0.1952 ± 0.02, 0.3618 ± 0.02, 0.3202 ± 0.02, and 1.1600 ± 0.25 μM, respectively | 0.1921 ± 0.02 μM and NT, respectively | |
Reference: Sorafenib and Erlotinib | 0.400 ± 0.03 (HepG2) and 0.773 ± 0.07 μM (HepG2), respectively 0.404 ± 0.03 (MCF-7) and 0.549 ± 0.05 μM (MCF-7), respectively 0.558 ± 0.05 (HCT-116) and 0.820 ± 0.06 μM (HCT-116), respectively 0.505 ± 0.05 (A549) and 0.1391 ± 0.01 (A549), respectively | Reference: Sorafenib (VEGFR-2) and Erlotinib (EGFRT790M) | 0.1400 ± 0.01 and 0.2420 ± 0.02 μM, respectively |
Compound | MTT Assay Against Human Tumor Cell Lines MCF-7 and T47D (IC50) | hCA IX and hCA XII Inhibition | KI | VEGFR-2 Inhibition | IC50 |
---|---|---|---|---|---|
25 | 0.66 ± 0.04 and 4.51 ± 0.2 μM, respectively | KI: 8.3 and 4.7 nM, respectively | 26.3 ± 0.4 nM | ||
26 | 10.9 ± 0.62 and 17.9 ± 0.78 μM, respectively | KI: 67.2 and 61.0 nM, respectively | 96.2 ± 2 nM | ||
Reference: Staurosporine | 3.18 ± 0.18 (MCF-7) and 7.12 ± 0.31 μM (T47D) | Reference: Acetazolamide | 25.0 (hCA IX) and 5.7 nM (hCA XII) | Reference: Sunitinib | 39.7 ± 2 nM |
Compound | MTT Assay Against Human Tumor Cell Lines A-549, HepG2, MCF-7, and HCT-116 (IC50) | hCA IX and hCA XII Inhibition | KI | VEGFR-2 Inhibition | IC50 |
---|---|---|---|---|---|
30 | 20.45 ± 0.28, 10.45 ± 0.13, 20.31 ± 0.66, and 32.05 ± 0.42 μM, respectively | IC50: 66 and 7.6 nM, respectively | 1.33 ± 0.10 μM | ||
31 | 19.81 ± 0.65, 8.39 ± 0.20, 21.15 ± 2.45, and 23.60 ± 0.22 μΜ, respectively | IC50: 40 and 3.2 nM, respectively | 0.38 ± 0.14 μM | ||
Reference: Doxorubicin (HepG2, MCF-7) and Sunitinib (A-549, HCT-116) | 13.76 ± 0.45 (HepG2), 17.44 ± 0.46 (MCF-7), 10.14 ± 0.50 (A-549), and 9.67 ± 0.22 μM (HCT-116) | Reference: SLC-0111 | 53 (hCA IX) 4.8 nM (hCA XII) | Reference: Sorafenib | 0.43 ± 0.10 μM |
Compound | NCI Panel Five-Dose Assay, Against 60 Lines of Human Cancer Cells | VEGFR-2 Inhibition | IC50 |
---|---|---|---|
32 | GI50 values between 1.06 and 8.92 mM | 3.62 ± 0.04 μM | |
Reference: Sorafenib | 4.58 ± 0.05 μM |
Compound | Cytotoxic Anti-Cancer Activity Against Human HepG2 Cell Line (IC50) | VEGFR-2 Inhibition | IC50 |
---|---|---|---|
33 | 4.31 μM | 61.04 ± 2.60 nM | |
34 | >100 μM | 83.35 ± 3.70 nM | |
Reference: Sorafenib | 2.97 μM | Reference: Sorafenib | 51.41 ± 2.30 nM |
Compound | MTT Assay Against Human Tumor Cell Lines HepG2, HCT-116, and MCF-7 (IC50) | VEGFR-2 Inhibition | IC50 |
---|---|---|---|
35 | 17.06 ± 1.5, 12.48 ± 1.1 and 27.48 ± 2.2 μΜ, respectively | 0.23 ± 0.03 μΜ | |
36 | 6.43 ± 0.5, 9.66 ± 0.8 and 10.57 ± 0.9 μM, respectively | 0.14 ± 0.02 μΜ | |
37 | 8.65 ± 0.7, 7.49 ± 0.6 and 14.29 ± 1.3 μM, respectively | 0.15 ± 0.02 μΜ | |
38 | 11.17 ± 1.0, 19.52 ± 1.7 and 21.65 ± 1.9 μM, respectively | 0.17 ± 0.02 μΜ | |
39 | 8.97 ± 0.7, 10.13 ± 0.9 and 13.82 ± 1.1 μΜ, respectively | 0.15 ± 0.02 μΜ | |
Reference: Sorafenib and Doxorubicin | 9.18 ± 0.6 (HepG2) and 7.94 ± 0.6 μM (HepG2), respectively 5.47 ± 0.3 (HCT-116) and 8.07 ± 0.8 μM (HCT-116), respectively 7.26 ± 0.3 (MCF-7) and 6.75 ± 0.4 μM (MCF-7), respectively | Reference: Sorafenib | 0.10 ± 0.02 μΜ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charissopoulos, E.; Pontiki, E. Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition. Biomedicines 2025, 13, 772. https://doi.org/10.3390/biomedicines13040772
Charissopoulos E, Pontiki E. Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition. Biomedicines. 2025; 13(4):772. https://doi.org/10.3390/biomedicines13040772
Chicago/Turabian StyleCharissopoulos, Eleftherios, and Eleni Pontiki. 2025. "Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition" Biomedicines 13, no. 4: 772. https://doi.org/10.3390/biomedicines13040772
APA StyleCharissopoulos, E., & Pontiki, E. (2025). Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition. Biomedicines, 13(4), 772. https://doi.org/10.3390/biomedicines13040772