Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = tube theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 514 KiB  
Article
Which Factors Affect Online Video Views and Subscriptions? Reference-Dependent Consumer Preferences in the Social Media Market
by Myoungjin Oh, Kyuho Maeng and Jungwoo Shin
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 197; https://doi.org/10.3390/jtaer20030197 - 4 Aug 2025
Abstract
In the attention-driven environment of online video platforms, understanding the factors that influence content selection and channel subscriptions is crucial for creators, marketers, and platform managers. This study investigates how thumbnails, view counts, video length, genre, and the number of advertisements affect user [...] Read more.
In the attention-driven environment of online video platforms, understanding the factors that influence content selection and channel subscriptions is crucial for creators, marketers, and platform managers. This study investigates how thumbnails, view counts, video length, genre, and the number of advertisements affect user decision-making on YouTube. Grounded in random utility theory and reference-dependent preference theory, this study conducted a choice experiment with 525 respondents and employed a combined model of rank-ordered and binary logit methods to analyze viewing and subscription behaviors. The results indicate a significant preference for thumbnails with subtitles and shorter videos. Notably, we found evidence of reference-dependent effects, whereby a higher-than-expected number of ads decreased viewing probability, while a lower-than-expected number significantly increased subscription probability. This study advances our understanding of the factors that influence user behavior on social media, specifically in terms of viewing and subscribing, and empirically supports prospect theory in the online advertising market. Our findings offer both theoretical and practical insights into optimizing video content and monetization strategies in competitive social media markets. Full article
Show Figures

Figure 1

35 pages, 10845 KiB  
Article
Study on Axial Compression Performance of CFRP-Aluminum Alloy Laminated Short Tubes
by Xiaoqun Luo, Yanheng Li, Li Wang and Xiaonong Guo
Materials 2025, 18(15), 3480; https://doi.org/10.3390/ma18153480 - 24 Jul 2025
Viewed by 230
Abstract
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the [...] Read more.
CFRP possesses the advantages of lightweight and high strength, but its cost is relatively high, and its ductility is insufficient; aluminum alloys have a relatively low cost and good ductility. This paper develops a CFRP-aluminum alloy laminated tube (CFRP-AL tube), which combines the advantages of CFRP and aluminum alloy. Such composite components have broad application prospects in the field of spatial structures. The CFRP-AL tubes were studied by experimental, numerical, and theoretical research on their axial compression performance in this paper. Firstly, the standard tensile test was carried out on 6061-T6 aluminum alloy. Combining the test results and references, the Johnson–Cook hardening model parameters of aluminum alloy were determined. The tensile test of CFRP was conducted to determine its material parameters. Based on composite material mechanics and fracture mechanics, a composite progressive damage model for the CFRP-AL tube was established. Secondly, axial compression tests were carried out on 27 CFRP-AL tubes and 3 aluminum alloy tubes with a small slenderness ratio. The test results show that the typical failure mode of CFRP-AL tubes with small slenderness ratios is strength failure, and the ultimate bearing capacity rises by 11~31% compared to aluminum alloy tubes. Thirdly, a user material subroutine capable of simulating CFRP failure was developed. Based on the user material subroutine, the effect of the initial imperfection, the fiber layer angle, the fiber layer thickness, the slenderness ratio, the diameter-thickness ratio and the CFRP volume ratio were discussed. And the failure mechanism and response of the CFRP-AL tubes under the axial compression were obtained. Finally, based on the strength theory, the formula predicting the bearing capacity of the strength failure was established, and the results of the formula were in a good agreement with the experimental and numerical results. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 6991 KiB  
Article
Comparing the Accuracy of Soil Moisture Estimates Derived from Bulk and Energy-Resolved Gamma Radiation Measurements
by Sonia Akter, Johan Alexander Huisman and Heye Reemt Bogena
Sensors 2025, 25(14), 4453; https://doi.org/10.3390/s25144453 - 17 Jul 2025
Viewed by 302
Abstract
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost [...] Read more.
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost counter-tube detector. Since this detector type provides a bulk GR response across a wide energy range, EGR signals are influenced by several confounding factors, e.g., soil radon emanation, biomass. To what extent these confounding factors deteriorate the accuracy of SM estimates obtained from EGR is not fully understood. Therefore, the aim of this study was to compare the accuracy of SM estimates from EGR with those from reference 40K GR (1460 keV) measurements which are much less influenced by these factors. For this, a Geiger–Mueller counter (G–M), which is commonly used for EGR monitoring, and a gamma spectrometer were installed side by side in an agricultural field equipped with in situ sensors to measure reference SM and a meteorological station. The EGRG–M and spectrometry-based 40K measurements were related to reference SM using a functional relationship derived from theory. We found that daily SM can be predicted with an RMSE of 3.39 vol. % from 40K using the theoretical value of α = 1.11 obtained from the effective ratio of GR mass attenuation coefficients for the water and solid phase. A lower accuracy was achieved for the EGRG–M measurements (RMSE = 6.90 vol. %). Wavelet coherence analysis revealed that the EGRG–M measurements were influenced by radon-induced noise in winter. Additionally, biomass shielding had a stronger impact on EGRG–M than on 40K GR estimates of SM during summer. In summary, our study provides a better understanding on the lower prediction accuracy of EGRG–M and suggests that correcting for biomass can improve SM estimation from the bulk EGR data of operational radioactivity monitoring networks. Full article
(This article belongs to the Special Issue Sensors in Smart Irrigation Systems)
Show Figures

Figure 1

21 pages, 4916 KiB  
Article
Fracture Competitive Propagation and Fluid Dynamic Diversion During Horizontal Well Staged Hydraulic Fracturing
by Yujie Yan, Yanling Wang, Hui Li, Qianren Wang and Bo Wang
Processes 2025, 13(7), 2252; https://doi.org/10.3390/pr13072252 - 15 Jul 2025
Viewed by 278
Abstract
This study addresses the challenge of non-uniform fracture propagation in multi-cluster staged fracturing of horizontal wells by proposing a three-dimensional dynamic simulation method for temporary plugging fracturing, grounded in a fully coupled fluid–solid damage theory framework. A Tubing-CZM (cohesive zone model) coupling model [...] Read more.
This study addresses the challenge of non-uniform fracture propagation in multi-cluster staged fracturing of horizontal wells by proposing a three-dimensional dynamic simulation method for temporary plugging fracturing, grounded in a fully coupled fluid–solid damage theory framework. A Tubing-CZM (cohesive zone model) coupling model was developed to enable real-time interaction computation of flow distribution and fracture propagation. Focusing on the Xinjiang X Block reservoir, this research systematically investigates the influence mechanisms of reservoir properties, engineering parameters (fracture spacing, number of perforation clusters, perforation friction), and temporary plugging parameters on fracture propagation morphology and fluid allocation. Our key findings include the following. (1) Increasing fracture spacing from 10 m to 20 m enhances intermediate fracture length by 38.2% and improves fracture width uniformity by 21.5%; (2) temporary plugging reduces the fluid intake heterogeneity coefficient by 76% and increases stimulated reservoir volume (SRV) by 32%; (3) high perforation friction (7.5 MPa) significantly optimizes fracture uniformity compared to low-friction (2.5 MPa) scenarios, balancing flow allocation ratios between edge and central fractures. The proposed dynamic flow diversion control criteria and quantified temporary plugging design standards provide critical theoretical foundations and operational guidelines for optimizing unconventional reservoir fracturing. Full article
(This article belongs to the Special Issue Complex Fluid Dynamics Modeling and Simulation, 2nd Edition)
Show Figures

Figure 1

16 pages, 9182 KiB  
Article
Analysis of the Energy Loss Characteristics of a Francis Turbine Under Off-Design Conditions with Sand-Laden Flow Based on Entropy Generation Theory
by Xudong Lu, Kang Xu, Zhongquan Wang, Yu Xiao, Yaogang Xu, Changjiu Huang, Jiayang Pang and Xiaobing Liu
Water 2025, 17(13), 2002; https://doi.org/10.3390/w17132002 - 3 Jul 2025
Viewed by 282
Abstract
To investigate the impact of sand-laden flow on energy loss in Francis turbines, this study integrates entropy generation theory with numerical simulations conducted using ANSYS CFX. The mixture multiphase flow model and the SST k-ω turbulence model are employed to simulate the solid–liquid [...] Read more.
To investigate the impact of sand-laden flow on energy loss in Francis turbines, this study integrates entropy generation theory with numerical simulations conducted using ANSYS CFX. The mixture multiphase flow model and the SST k-ω turbulence model are employed to simulate the solid–liquid two-phase flow throughout the entire flow passage of the turbine at the Gengda Hydropower Station (Minjiang River Basin section, 103°17′ E and 31°06′ N). The energy loss characteristics under different off-design conditions are analyzed on the basis of the average sediment concentration during the flood season (2.9 kg/m3) and a median particle diameter of 0.058 mm. The results indicate that indirect entropy generation and wall entropy generation are the primary contributors to total energy loss, while direct entropy generation accounts for less than 1%. As the guide vane opening increases, the proportion of wall entropy generation initially rises and then decreases, while the total indirect entropy generation exhibits a non-monotonic trend dominated by the flow pattern in the draft tube. Entropy generation on the runner walls increases steadily with larger openings, whereas entropy generation on the draft tube walls first decreases and then increases. The variation in entropy generation on the guide vanes remains relatively small. These findings provide technical support for the optimal design and operation of turbines in sediment-rich rivers. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

18 pages, 5149 KiB  
Article
Construction of Transport Channels by HNTs@ZIF-67 Composites in a Mixed-Matrix Membrane for He/CH4 Separation
by Jiale Zhang, Huixin Dong, Fei Guo, Huijun Yi, Xiaobin Jiang, Gaohong He and Wu Xiao
Membranes 2025, 15(7), 197; https://doi.org/10.3390/membranes15070197 - 30 Jun 2025
Viewed by 428
Abstract
In this work, HNTs@ZIF-67 composites were synthesized using the in situ growth method and incorporated into 6FDA-TFMB to prepare mixed-matrix membranes (MMMs). Scanning electron microscope (SEM) and transmission electron microscope (TEM) proved that the HNTs@ZIF-67 composite not only retained the hollow structure of [...] Read more.
In this work, HNTs@ZIF-67 composites were synthesized using the in situ growth method and incorporated into 6FDA-TFMB to prepare mixed-matrix membranes (MMMs). Scanning electron microscope (SEM) and transmission electron microscope (TEM) proved that the HNTs@ZIF-67 composite not only retained the hollow structure of HNTs, but also formed a continuous ZIF-67 transport layer on the surface of HNTs. The results of gas permeability experiments showed that with the increase in HNTs@ZIF-67 incorporation, the He permeability and He/CH4 selectivity of MMMs showed a trend of increasing first and then decreasing. When the loading is 5 wt%, the He permeability and He/CH4 selectivity of MMMs reach 116 Barrer and 305, which are 22.11% and 79.41% higher than the pure 6FDA-TFMB membrane. The results of density functional theory (DFT) and Monte Carlo (MC) calculations reveal that He diffuses more easily inside ZIF-67, HNTs and 6FDA-TFMB than CH4, and ZIF-67 shows larger adsorption energy with He than HNTs and 6FDA-TFMB, indicating that He is easily adsorbed by ZIF-67 in MMMs. Based on experimental and molecular simulation results, the mechanism of HNTs@ZIF-67 improving the He/CH4 separation performance of MMMs was summarized. With the advantage of a smaller molecular kinetic diameter, He can diffuse through ZIF-67 on the tube orifice of HNTs@ZIF-67 and enter the HNTs’ hollow tube for rapid transmission. At the same time, He can also be rapidly transferred in the continuous ZIF-67 transport channel layer, which improves the He permeability and the He/CH4 selectivity of MMMs. Full article
(This article belongs to the Special Issue High-Performance Composite Membrane for Gas Separation and Capture)
Show Figures

Figure 1

21 pages, 12846 KiB  
Article
Analysis of the Energy Loss Mechanism in Hydraulic Turbines with Different Guide-Vane Numbers Based on Entropy Generation Theory
by Fengxia Shi, Denghui Zhang, Pengcheng Wang, Xiaohui Wang and Chong Feng
Processes 2025, 13(6), 1899; https://doi.org/10.3390/pr13061899 - 16 Jun 2025
Viewed by 429
Abstract
To explore the influence of guide vanes on the energy loss of hydraulic turbines, a pump characterized by a simple structure and convenient operation was selected as the research subject. Entropy generation theory was utilized to analyze entropy generation losses at different flow [...] Read more.
To explore the influence of guide vanes on the energy loss of hydraulic turbines, a pump characterized by a simple structure and convenient operation was selected as the research subject. Entropy generation theory was utilized to analyze entropy generation losses at different flow rates, with a particular emphasis on the mechanisms in the impeller and draft tube. The findings indicate that turbulent entropy production dominates energy dissipation. Under the best efficiency point (BEP), the total entropy generation loss of Z0 = 11 turbine was 7.18% and 5.76% lower than that of Z0 = 7 and Z0 = 9, respectively. The proportion of entropy generation loss in the impeller was highest under low-flow and optimal operating conditions, while the proportion of entropy generation loss in the draft tube was highest under high-flow conditions. In guide-vane-free turbines, the impeller’s high turbulent entropy generation rate was attributed to vortices and backflow caused by significant velocity gradients. For guide-vane-equipped turbines, high turbulent entropy generation rates arose from rotor–stator interactions and flow separation at blade inlets. Under high-flow-rate conditions, the entropy generation loss in the draft tube was significantly larger than that in other flow components, primarily due to vortices generated by excessive velocity circulation at the impeller outlet near the upstream draft tube flow passages, leading to high turbulent entropy generation rates. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 938 KiB  
Article
Behavioral Responses of Chrysoperla defreitasi (Neuroptera: Chrysopidae) and Myzus persicae (Hemiptera: Aphididae) to Volatile Compounds from Wild and Domesticated Ugni molinae
by Manuel Chacón-Fuentes, Leonardo Bardehle, César Burgos-Díaz, Marcelo Lizama, Daniel Martínez-Cisterna, Mauricio Opazo-Navarrete, Cristina Bravo-Reyes and Andrés Quiroz
Insects 2025, 16(6), 594; https://doi.org/10.3390/insects16060594 - 5 Jun 2025
Viewed by 702
Abstract
Domestication significantly altered the phenotypic and chemical traits of murtilla, notably reducing the emission of volatile compounds essential for plant–insect interactions. This reduction may affect the plant’s natural defense mechanisms, influencing its interactions with herbivores and predators. Therefore, this study tests whether domestication [...] Read more.
Domestication significantly altered the phenotypic and chemical traits of murtilla, notably reducing the emission of volatile compounds essential for plant–insect interactions. This reduction may affect the plant’s natural defense mechanisms, influencing its interactions with herbivores and predators. Therefore, this study tests whether domestication reduces volatile emissions in murtilla, increasing aphid preference and decreasing lacewing attraction. We selected wild ancestors (19-1, 22-1, and 23-2) from a longterm Ugni molinae germplasm bank. Crosses between these wild ancestors generated four first-generation domesticated ecotypes, 10-1, 16-16, 17-4, and 66-2, used in this study. These first-generation domesticated ecotypes were six years old at the time of the study and were used for comparisons in volatile profile and insect interaction analyses. The olfactometric preference index (OPI) for lacewing larvae and aphids revealed that wild ancestors attracted more predators than domesticated plants. For example, Ecotype 19-1 had an OPI of 1.64 for larvae and 1.49 for aphids, while Ecotype 10-1 showed lower attraction (OPI of 1.01 for larvae and 1.00 for aphids). Gas chromatography analysis identified differences in volatile organic compounds, with wild ancestor ecotypes emitting higher levels of compounds such as 2-hexanone, 1,8-cineole, and α-caryophyllene. Principal component analysis and hierarchical clustering confirmed these chemical distinctions. In olfactometer assays, lacewing larvae preferred α-caryophyllene and 2,4-dimethyl acetophenone, while aphids favored 2-hexanone and 3-hexanol. In Y-tube assays, lacewing adults showed strong attraction to α-pinene and 2,4-dimethyl acetophenone, with preferences increasing with concentration. These results indicate that domestication altered the volatile murtilla profile, reducing its attractiveness to natural predators while increasing its susceptibility to herbivores, supporting the plant domestication defense theory. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Graphical abstract

25 pages, 58457 KiB  
Article
Design, Modeling, and Experimental Validation of a Bio-Inspired Rigid–Flexible Continuum Robot Driven by Flexible Shaft Tension–Torsion Synergy
by Jiaxiang Dong, Quanquan Liu, Peng Li, Chunbao Wang, Xuezhi Zhao and Xiping Hu
Biomimetics 2025, 10(5), 301; https://doi.org/10.3390/biomimetics10050301 - 8 May 2025
Viewed by 598
Abstract
This paper presents a bio-inspired rigid–flexible continuum robot driven by flexible shaft tension–torsion synergy, tackling the trade-off between actuation complexity and flexibility in continuum robots. Inspired by the muscular arrangement of octopus arms, enabling versatile multi-degree-of-freedom (DoF) movements, the robot achieves 6-DoF motion [...] Read more.
This paper presents a bio-inspired rigid–flexible continuum robot driven by flexible shaft tension–torsion synergy, tackling the trade-off between actuation complexity and flexibility in continuum robots. Inspired by the muscular arrangement of octopus arms, enabling versatile multi-degree-of-freedom (DoF) movements, the robot achieves 6-DoF motion and 1-DoF gripper opening and closing movement with only six flexible shafts, simplifying actuation while boosting dexterity. A comprehensive kinetostatic model, grounded in Cosserat rod theory, is developed; this model explicitly incorporates the coupling between the spinal rods and flexible shafts, the distributed gravitational effects of spacer disks, and friction within the guide tubes. Experimental validation using a physical prototype reveals that accounting for spacer disk gravity diminishes the maximum shape prediction error from 20.56% to 0.60% relative to the robot’s total length. Furthermore, shape perception experiments under no-load and 200 g load conditions show average errors of less than 2.01% and 2.61%, respectively. Performance assessments of the distal rigid joint showcased significant dexterity, including a 53° grasping range, 360° continuous rotation, and a pitching range from −40° to +45°. Successful obstacle avoidance and long-distance target reaching experiments further demonstrate the robot’s effectiveness, highlighting its potential for applications in medical and industrial fields. Full article
(This article belongs to the Special Issue Biologically Inspired Design and Control of Robots: Second Edition)
Show Figures

Figure 1

4 pages, 137 KiB  
Conference Report
Editorial Report—A Series of Seminars Based on K-Peritia WG1 Seminar Series: Advancing the Framework of Cultural Expertise in a Global Context
by Dina Hadad
Proceedings 2025, 116(1), 1; https://doi.org/10.3390/proceedings2025116001 - 10 Apr 2025
Viewed by 227
Abstract
This report provides an editorial account of the 2023/2024 seminar series organized by Working Group 1 (WG1) of the K-Peritia COST Action Network. The series served as a platform to explore and refine the theoretical framework of cultural expertise, addressing its applicability across [...] Read more.
This report provides an editorial account of the 2023/2024 seminar series organized by Working Group 1 (WG1) of the K-Peritia COST Action Network. The series served as a platform to explore and refine the theoretical framework of cultural expertise, addressing its applicability across diverse jurisdictions and disciplines. This editorial report, presented as part of WG1’s seminar series, has also been shared in video format on the K-Peritia YouTube channel. The report begins with an overview of K-Peritia as a network, highlighting its interdisciplinary and global focus. It then introduces WG1, emphasizing its central role in advancing theoretical discussions on cultural expertise. Finally, it presents the seminars, showcasing the themes, contributions, and insights they offered, while drawing connections between them to illustrate the evolving discourse. The K-Peritia COST Action Network is an interdisciplinary initiative that seeks to address the complexities of knowledge and expertise in a globalized world. With a focus on bridging diverse disciplines and jurisdictions, K-Peritia serves as a platform for scholars, practitioners, and policymakers to explore the interplay of cultural, legal, and social dimensions in addressing global challenges. Within this framework, Working Group 1 (WG1): Theory plays a crucial role in articulating and refining the theoretical underpinnings of cultural expertise, a pivotal concept for navigating the cultural and contextual dimensions of legal and social processes. Full article
16 pages, 1077 KiB  
Article
Non-Singular “Gauss” Black Hole from Non-Locality
by Jens Boos
Universe 2025, 11(4), 112; https://doi.org/10.3390/universe11040112 - 29 Mar 2025
Cited by 1 | Viewed by 305
Abstract
Cutting out an infinite tube around r=0 formally removes the Schwarzschild singularity, but without a physical mechanism, this procedure seems ad hoc and artificial. In this paper, we provide justification for such a mechanism by means of non-locality. Motivated by the [...] Read more.
Cutting out an infinite tube around r=0 formally removes the Schwarzschild singularity, but without a physical mechanism, this procedure seems ad hoc and artificial. In this paper, we provide justification for such a mechanism by means of non-locality. Motivated by the Gauss law, we define a suitable radius variable as the inverse of a regular non-local potential, and use this variable to model a non-singular black hole. The resulting geometry has a de Sitter core, and for generic values of the regulator, there is no inner horizon, saving this model from potential issues via mass inflation. An outer horizon only exists for masses above a critical threshold, thereby reproducing the conjectured “mass gap” for black holes in non-local theories. The geometry’s density and pressure terms decrease exponentially, thereby rendering it an almost-exact vacuum solution of the Einstein equations outside of astrophysical black holes. Its thermodynamic properties resemble those of the Hayward black hole, with the notable exception that for critical mass, the horizon radius is zero. Full article
Show Figures

Figure 1

16 pages, 1742 KiB  
Article
Modeling and Analysis of the Transverse Surface Roughness in Hollow-Core Fibers
by Federico Melli, Kostiantyn Vasko, Lorenzo Rosa, Fetah Benabid and Luca Vincetti
Fibers 2025, 13(4), 36; https://doi.org/10.3390/fib13040036 - 27 Mar 2025
Viewed by 690
Abstract
The corrugation of the interfaces of the cross-section of hollow core fibers based on the inhibited coupling waveguiding mechanism is modeled and the impact on propagation loss analyzed. The proposed model is based on a combined use of coupled-mode theory and Azimuthal Fourier [...] Read more.
The corrugation of the interfaces of the cross-section of hollow core fibers based on the inhibited coupling waveguiding mechanism is modeled and the impact on propagation loss analyzed. The proposed model is based on a combined use of coupled-mode theory and Azimuthal Fourier Decomposition. It shows that such transverse roughness causes coupling between the core modes and the dielectric modes of the cladding and consequently an increase of the fiber loss. The model is validated by comparing theoretical and numerical results obtained by applying both deterministic and stochastic corrugations to tubular lattice and nested fibers. Scaling laws and impact of the fibers’ parameters are discussed. The model shows that the loss increase is not directly correlated to the root mean square of the stochastic roughness but only to the value of the power spectral density in specific spatial frequency ranges. In particular, the spectral components characterized by a periodicity lower than 101 of the tube circumference must have a power spectral density value lower than 0.2 nm2 to ensure a negligible effect of the transverse roughness on fibers with losses lower than 0.1 dB/Km. Full article
(This article belongs to the Special Issue Characterization and Applications of Specialty Optical Fibers)
Show Figures

Figure 1

14 pages, 3532 KiB  
Article
Public Discourse Surrounding the 2025 California Wildfires: A Sentiment and Topic Analysis of High-Engagement YouTube Comments
by Dmitry Erokhin
Geosciences 2025, 15(3), 100; https://doi.org/10.3390/geosciences15030100 - 11 Mar 2025
Viewed by 2060
Abstract
This study explores public discourse surrounding the January 2025 California wildfires by analyzing high-engagement YouTube comments. Leveraging sentiment analysis, misinformation detection, and topic modeling, this research identifies dominant emotional tones, thematic patterns, and the prevalence of misinformation in discussions. The results show a [...] Read more.
This study explores public discourse surrounding the January 2025 California wildfires by analyzing high-engagement YouTube comments. Leveraging sentiment analysis, misinformation detection, and topic modeling, this research identifies dominant emotional tones, thematic patterns, and the prevalence of misinformation in discussions. The results show a predominantly neutral to positive sentiment, with notable emotional intensity in misinformation-related comments, which were rare but impactful. The thematic analysis highlights concerns about governance, environmental issues, and conspiracy theories, including water mismanagement and diversity-related critiques. These findings provide insights for crisis communication, policymaking, and misinformation management during disasters, emphasizing the importance of aligning strategies with public concerns. Full article
Show Figures

Figure 1

23 pages, 3825 KiB  
Article
The Sustainable Fashion Value Proposition of Companies Identifying with the Zero Waste Movement
by Iwona Zdonek, Marzena Podgórska and Beata Hysa
Sustainability 2025, 17(3), 887; https://doi.org/10.3390/su17030887 - 22 Jan 2025
Cited by 2 | Viewed by 2738
Abstract
Characterized by inexpensive and readily available products, fast fashion has increased the consumption and disposal of clothing, for which criticism has been significant due to its negative environmental and social impact. Therefore, transitioning to sustainable business models (SBMs) that balance profit with corporate [...] Read more.
Characterized by inexpensive and readily available products, fast fashion has increased the consumption and disposal of clothing, for which criticism has been significant due to its negative environmental and social impact. Therefore, transitioning to sustainable business models (SBMs) that balance profit with corporate social responsibility (CSR) is critical. This study explores sustainable value propositions in Polish Zero Waste fashion businesses, addressing the gap in research on SBMs. It also employs the theory of organizational paradoxes to examine tensions between profit maximization and CSR. Data were collected from 249 Polish Zero Waste companies listed on mapazerowaste.pl and analyzed through content analysis and statistical methods. Additionally, 21 YouTube videos from 2020 to 2022 were examined to study sustainable fashion promotion. Multiple coding and categorization schemes were used to identify themes, followed by frequency analysis and correspondence analysis. Second-hand clothing emerged as the most common value proposition (120 companies), reflecting consumer trends in resale. The repair sector with cobbler and leather repair services (55 companies) also showed a strong presence, highlighting demand for tailoring and upcycling services Rental services (2 companies) remain niche due to limited consumer acceptance. Promotion efforts on YouTube focus on building awareness of fast fashion’s impacts and teaching sustainable behaviors. Sustainable value propositions, exemplified by Polish Zero Waste businesses, synthesize profit and CSR strategies, addressing organizational paradoxes. These findings inform strategies to balance financial and socio-environmental goals, with implications for policy and practice in advancing sustainable fashion. Full article
(This article belongs to the Special Issue Open Innovation in Green Products and Performance Research)
Show Figures

Figure 1

25 pages, 2703 KiB  
Article
Identifying the Impacts of Social Movement Mobilization on YouTube: Social Network Analysis
by Norhayatun Syamilah Osman, Jae-Hun Kim, Jae-Hong Park and Han-Woo Park
Information 2025, 16(1), 55; https://doi.org/10.3390/info16010055 - 15 Jan 2025
Cited by 4 | Viewed by 2582
Abstract
This study explores the potential of social media in improving education, engagement, and mobilization for climate change initiatives. Using the theoretical framework of resource mobilization and methods such as social network analysis (SNA) and bipartite networks, it examines how effective deployment of resources [...] Read more.
This study explores the potential of social media in improving education, engagement, and mobilization for climate change initiatives. Using the theoretical framework of resource mobilization and methods such as social network analysis (SNA) and bipartite networks, it examines how effective deployment of resources such as information, social capital, and organizational capabilities can help in the progression of collective movements. Social media platforms, particularly YouTube, significantly influences network structures by facilitating resource mobilization and driving essential engagement. This study extracted data from NodeXL and found that YouTube is an effective medium in disseminating climate change information and delivering educational content to a multilingual audience. Additionally, video affordances such as storytelling, audio–visual effects, and concise narratives enhance viewer interest and engagement, increasing resource mobilization effectiveness. This research offers insights into optimizing social media use for effective resource mobilization and engagement in climate change initiatives. Full article
(This article belongs to the Special Issue 2nd Edition of Information Retrieval and Social Media Mining)
Show Figures

Figure 1

Back to TopTop