Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = tropomyosin receptor kinase A (TRKA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4725 KiB  
Article
Interaction of Erdosteine with TrkA Signaling Pathways: Implications for Analgesia
by Nicoletta Marchesi, Stefano Govoni, Clive P. Page, Luda Diatchenko, Alessia Pascale, Piercarlo Fantucci, Jacopo Vertemara, Silvia Natoli and Massimo Allegri
Int. J. Mol. Sci. 2025, 26(9), 4079; https://doi.org/10.3390/ijms26094079 - 25 Apr 2025
Viewed by 922
Abstract
Thiol-containing drugs may interact with a region of tropomyosin receptor kinase A (TrkA), potentially inhibiting its activation by nerve growth factor (NGF). This action has been linked to potential analgesic activities. Here, we describe the ability of erdosteine, a thiolic compound classified as [...] Read more.
Thiol-containing drugs may interact with a region of tropomyosin receptor kinase A (TrkA), potentially inhibiting its activation by nerve growth factor (NGF). This action has been linked to potential analgesic activities. Here, we describe the ability of erdosteine, a thiolic compound classified as a mucolytic agent, to bind to the TrkA receptor sequence in silico and its in vitro effects on TrkA activation induced by NGF in cultured human neuroblastoma cells. Our results show that erdosteine and its metabolite, Met-1, bind to the TrkA receptor pocket, involving the primary TrkA residues Glu331, Arg347, His298, and His297. Furthermore, Met-1 has the ability to reduce the disulfide bridge between Cys300 and Cys345 of TrkA. In vitro measurement of TrkA autophosphorylation following NGF activation confirmed that erdosteine and Met-1 interfere with NGF-induced TrkA activation, leading to a consequent loss of the molecular recognition and spatial reorganization necessary for the induction of the autophosphorylation process. This effect was inhibited by low millimolar concentrations of the two compounds, reaching a maximal inhibition (around 40%) after 24 h of exposure to 1 mM erdosteine, and then plateauing. These findings suggest that erdosteine can act as a TrkA antagonist, thus indicating that this drug may have potential as an analgesic via a novel non-opioid mechanism of action operating through NGF signaling inhibition at the level of TrkA. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

23 pages, 6915 KiB  
Review
Pyrazolo[1,5-a]pyrimidine as a Prominent Framework for Tropomyosin Receptor Kinase (Trk) Inhibitors—Synthetic Strategies and SAR Insights
by Amol T. Mahajan, Shivani, Ashok Kumar Datusalia, Carmine Coluccini, Paolo Coghi and Sandeep Chaudhary
Molecules 2024, 29(15), 3560; https://doi.org/10.3390/molecules29153560 - 29 Jul 2024
Cited by 2 | Viewed by 3775
Abstract
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their [...] Read more.
Tropomyosin receptor kinases (Trks) are transmembrane receptor tyrosine kinases named TrkA, TrkB, and TrkC and encoded by the NTRK1, NTRK2, and NTRK3 genes, respectively. These kinases have attracted significant attention and represent a promising therapeutic target for solid tumor treatment due to their vital role in cellular signaling pathways. First-generation TRK inhibitors, i.e., Larotrectinib sulfate and Entrectinib, received clinical approval in 2018 and 2019, respectively. However, the use of these inhibitors was significantly limited because of the development of resistance due to mutations. Fortunately, the second-generation Trk inhibitor Repotrectinib (TPX-0005) was approved by the FDA in November 2023, while Selitrectinib (Loxo-195) has provided an effective solution to this issue. Another macrocycle-based analog, along with many other TRK inhibitors, is currently in clinical trials. Two of the three marketed drugs for NTRK fusion cancers feature a pyrazolo[1,5-a] pyrimidine nucleus, prompting medicinal chemists to develop numerous novel pyrazolopyrimidine-based molecules to enhance clinical applications. This article focuses on a comprehensive review of chronological synthetic developments and the structure–activity relationships (SAR) of pyrazolo[1,5-a]pyrimidine derivatives as Trk inhibitors. This article will also provide comprehensive knowledge and future directions to the researchers working in the field of medicinal chemistry by facilitating the structural modification of pyrazolo [1,5-a]pyrimidine derivatives to synthesize more effective novel chemotherapeutics as TRK inhibitors. Full article
Show Figures

Figure 1

13 pages, 6156 KiB  
Article
Nerve Growth Factor Signaling Modulates the Expression of Glutaminase in Dorsal Root Ganglion Neurons during Peripheral Inflammation
by Vikramsingh Gujar, Radhika D. Pande, Bhalchandra M. Hardas and Subhas Das
Int. J. Mol. Sci. 2024, 25(11), 6053; https://doi.org/10.3390/ijms25116053 - 31 May 2024
Cited by 3 | Viewed by 1864
Abstract
Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal [...] Read more.
Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal root ganglion (DRG) neuronal cell bodies during chronic peripheral inflammation, but the mechanism for this GLS elevation is yet to be fully characterized. It has been well established that, after nerve growth factor (NGF) binds to its high-affinity receptor tropomyosin receptor kinase A (TrkA), a retrograde signaling endosome is formed. This endosome contains the late endosomal marker Rab7GTPase and is retrogradely transported via axons to the cell soma located in the DRG. This complex is responsible for regulating the transcription of several critical nociceptive genes. Here, we show that this retrograde NGF signaling mediates the expression of GLS in DRG neurons during the process of peripheral inflammation. We disrupted the normal NGF/TrkA signaling in adjuvant-induced arthritic (AIA) Sprague Dawley rats by the pharmacological inhibition of TrkA or blockade of Rab7GTPase, which significantly attenuated the expression of GLS in DRG cell bodies. The results indicate that NGF/TrkA signaling is crucial for the production of glutamate and has a vital role in the development of neurogenic inflammation. In addition, our pain behavioral data suggest that Rab7GTPase can be a potential target for attenuating peripheral inflammatory pain. Full article
(This article belongs to the Special Issue Cytokines in Immune Diseases)
Show Figures

Figure 1

35 pages, 14402 KiB  
Article
Molecular Characterization and Inhibition of a Novel Stress-Induced Mitochondrial Protecting Role for Misfolded TrkAIII in Human SH-SY5Y Neuroblastoma Cells
by Lucia Cappabianca, Marianna Ruggieri, Michela Sebastiano, Maddalena Sbaffone, Ilaria Martelli, Pierdomenico Ruggeri, Monica Di Padova, Antonietta Rosella Farina and Andrew Reay Mackay
Int. J. Mol. Sci. 2024, 25(10), 5475; https://doi.org/10.3390/ijms25105475 - 17 May 2024
Cited by 2 | Viewed by 2269
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals [...] Read more.
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumors that originate from cells of neural crest origin committed to the sympathoadrenal progenitor cell lineage. Stress- and drug-resistance mechanisms drive post-therapeutic relapse and metastatic progression, the characterization and inhibition of which are major goals in improving therapeutic responses. Stress- and drug-resistance mechanisms in NBs include alternative TrkAIII splicing of the neurotrophin receptor tropomyosin-related kinase A (NTRK1/TrkA), which correlates with post-therapeutic relapse and advanced-stage metastatic disease. The TrkAIII receptor variant exerts oncogenic activity in NB models by mechanisms that include stress-induced mitochondrial importation and activation. In this study, we characterize novel targetable and non-targetable participants in this pro-survival mechanism in TrkAIII-expressing SH-SY5Y NB cells, using dithiothreitol (DTT) as an activator and a variety of inhibitors by regular and immunoprecipitation Western blotting of purified mitochondria and IncuCyte cytotoxicity assays. We report that stress-induced TrkAIII misfolding initiates this mechanism, resulting in Grp78, Ca2+-calmodulin, adenosine ribosylating factor (Arf) and Hsp90-regulated mitochondrial importation. TrkAIII imported into inner mitochondrial membranes is cleaved by Omi/high temperature requirement protein A2 (HtrA2) then activated by a mechanism dependent upon calmodulin kinase II (CaMKII), alpha serine/threonine kinase (Akt), mitochondrial Ca2+ uniporter and reactive oxygen species (ROS), involving inhibitory mitochondrial protein tyrosine phosphatase (PTPase) oxidation, resulting in phosphoinositide 3 kinase (PI3K) activation of mitochondrial Akt, which enhances stress resistance. This novel pro-survival function for misfolded TrkAIII mitigates the cytotoxicity of mitochondrial Ca2+ homeostasis disrupted during integrated stress responses, and is prevented by clinically approved Trk and Akt inhibitors and also by inhibitors of 78kDa glucose regulated protein (Grp78), heat shock protein 90 (Hsp90), Ca2+-calmodulin and PI3K. This identifies Grp78, Ca2+-calmodulin, Hsp90, PI3K and Akt as novel targetable participants in this mechanism, in addition to TrkAIII, the inhibition of which has the potential to enhance the stress-induced elimination of TrkAIII-expressing NB cells, with the potential to improve therapeutic outcomes in NBs that exhibit TrkAIII expression and activation. Full article
(This article belongs to the Special Issue Research Progress in Molecular and Cellular Therapy of Cancer)
Show Figures

Figure 1

10 pages, 2267 KiB  
Article
N-Acetylcysteine Antagonizes NGF Activation of TrkA through Disulfide Bridge Interaction, an Effect Which May Contribute to Its Analgesic Activity
by Stefano Govoni, Piercarlo Fantucci, Nicoletta Marchesi, Jacopo Vertemara, Alessia Pascale, Massimo Allegri, Laura Calvillo and Emilio Vanoli
Int. J. Mol. Sci. 2024, 25(1), 206; https://doi.org/10.3390/ijms25010206 - 22 Dec 2023
Cited by 5 | Viewed by 2404
Abstract
N-acetylcysteine (NAC), a mucolytic agent and an antidote to acetaminophen intoxication, has been studied in experimental conditions and trials exploring its analgesic activity based on its antioxidant and anti-inflammatory properties. The purpose of this study is to investigate additional mechanisms, namely, the inhibition [...] Read more.
N-acetylcysteine (NAC), a mucolytic agent and an antidote to acetaminophen intoxication, has been studied in experimental conditions and trials exploring its analgesic activity based on its antioxidant and anti-inflammatory properties. The purpose of this study is to investigate additional mechanisms, namely, the inhibition of nerve growth factor (NGF) and the activation of the Tropomyosin receptor kinase A (TrkA) receptor, which is responsible for nociception. In silico studies were conducted to evaluate dithiothreitol and NAC’s interaction with TrkA. We also measured the autophosphorylation of TrkA in SH-SY5Y cells via ELISA to assess NAC’s in vitro activity against NGF-induced TrkA activation. The in silico and in vitro tests show that NAC interferes with NGF-induced TrkA activation. In particular, NAC breaks the disulfide-bound Cys 300–345 of TrkA, perturbing the NGF-TrkA interaction and producing a rearrangement of the binding site, inducing a consequent loss of their molecular recognition and spatial reorganization, which are necessary for the induction of the autophosphorylation process. The latter was inhibited by 40% using 20 mM NAC. These findings suggest that NAC could have a role as a TrkA antagonist, an action that may contribute to the activity and use of NAC in various pain states (acute, chronic, nociplastic) sustained by NGF hyperactivity and/or accompanied by spinal cord sensitization. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 1310 KiB  
Article
Benzenesulfonamide Analogs: Synthesis, Anti-GBM Activity and Pharmacoprofiling
by Akshaya Murugesan, Saravanan Konda Mani, Ramesh Thiyagarajan, Suresh Palanivel, Atash V. Gurbanov, Fedor I. Zubkov and Meenakshisundaram Kandhavelu
Int. J. Mol. Sci. 2023, 24(15), 12276; https://doi.org/10.3390/ijms241512276 - 31 Jul 2023
Cited by 4 | Viewed by 2135
Abstract
The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives [...] Read more.
The tropomyosin receptor kinase A (TrkA) family of receptor tyrosine kinases (RTKs) emerge as a potential target for glioblastoma (GBM) treatment. Benzenesulfonamide analogs were identified as kinase inhibitors possessing promising anticancer properties. In the present work, four known and two novel benzenesulfonamide derivatives were synthesized, and their inhibitory activities in TrkA overexpressing cells, U87 and MEF cells were investigated. The cytotoxic effect of benzenesulfonamide derivatives and cisplatin was determined using trypan blue exclusion assays. The mode of interaction of benzenesulfonamides with TrkA was predicted by docking and structural analysis. ADMET profiling was also performed for all compounds to calculate the drug likeness property. Appropriate QSAR models were developed for studying structure–activity relationships. Compound 4-[2-(4,4-dimethyl-2,6-dioxocyclohexylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfon-amide (AL106) and 4-[2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)hydrazinyl]-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzenesulfonamide (AL107) showed acceptable binding energies with the active sites for human nerve growth factor receptor, TrkA. Here, AL106 was identified as a potential anti-GBM compound, with an IC50 value of 58.6 µM with a less toxic effect in non-cancerous cells than the known chemotherapeutic agent, cisplatin. In silico analysis indicated that AL106 formed prominent stabilizing hydrophobic interactions with Tyr359, Ser371, Ile374 and charged interactions with Gln369 of TrkA. Furthermore, in silico analysis of all benzenesulfonamide derivatives revealed that AL106 has good pharmacokinetics properties, drug likeness and toxicity profiles, suggesting the compound may be suitable for clinical trial. Thus, benzenesulfonamide analog, AL106 could potentially induce GBM cell death through its interaction with TrkA and might be an attractive strategy for developing a drug targeted therapy to treat glioblastoma. Full article
(This article belongs to the Special Issue New Agents and Novel Drugs Use for the Oncological Diseases Treatment)
Show Figures

Graphical abstract

1 pages, 170 KiB  
Abstract
The Nerve-Growth Factor Signaling in Gender-Related Cancers
by Marzia Di Donato, Giovanni Galasso, Gustavo Cernera, Antimo Migliaccio and Gabriella Castoria
Biol. Life Sci. Forum 2023, 21(1), 4; https://doi.org/10.3390/blsf2023021004 - 17 Mar 2023
Viewed by 1048
Abstract
The nerve-growth factor (NGF) was initially identified as a promoter of neuronal survival and differentiation. As such, it has captured the interest of neurobiologists for a long time. Nowadays, NGF is considered a multifaceted molecule with pleiotropic effects in quite divergent cell types, [...] Read more.
The nerve-growth factor (NGF) was initially identified as a promoter of neuronal survival and differentiation. As such, it has captured the interest of neurobiologists for a long time. Nowadays, NGF is considered a multifaceted molecule with pleiotropic effects in quite divergent cell types, including hormone-dependent cancer cells. Many tumors exhibit derangements of nerve-growth factor and its receptors, including the tropomyosin receptor kinase A (TrkA). This receptor is frequently expressed in triple-negative breast cancers (TNBC), as well as prostate cancers (PC), although its role in the pathogenesis and aggressiveness of these diseases is still under investigation. We now report that the treatment of TNBC as well as PC-derived cells with NGF triggers the proliferation and survival of these cells. Simultaneously, NGF fosters cell motility and induces invasiveness in these cells by acting on the release of metalloproteases-9 (MMP-9). The somatic knockdown of TrkA or its pharmacologic inhibition by the specific inhibitor GW441756 impair these effects. A strong reduction in TNBC or PC-derived spheroid size is observed upon GW441756 treatment. The relevance of our studies is based on the novelty that further exploration of NGF pathway derangements in gender-related cancers will likely offer innovative targets and treatment opportunities in the clinical management of TNBC as well as PC patients. Full article
12 pages, 1408 KiB  
Review
A, B, C’s of Trk Receptors and Their Ligands in Ocular Repair
by Akash Gupta, Jeremias G. Galletti, Zhiyuan Yu, Kevin Burgess and Cintia S. de Paiva
Int. J. Mol. Sci. 2022, 23(22), 14069; https://doi.org/10.3390/ijms232214069 - 15 Nov 2022
Cited by 8 | Viewed by 3540
Abstract
Neurotrophins are a family of closely related secreted proteins that promote differentiation, development, and survival of neurons, which include nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4. All neurotrophins signal through tropomyosin receptor kinases (TrkA, TrkB, and TrkC) which are more [...] Read more.
Neurotrophins are a family of closely related secreted proteins that promote differentiation, development, and survival of neurons, which include nerve growth factor (NGF), brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4. All neurotrophins signal through tropomyosin receptor kinases (TrkA, TrkB, and TrkC) which are more selective to NGF, brain-derived neurotrophic factor, and neurotrophin-3, respectively. NGF is the most studied neurotrophin in the ocular surface and a human recombinant NGF has reached clinics, having been approved to treat neurotrophic keratitis. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 are less studied neurotrophins in the ocular surface, even though brain-derived neurotrophic factor is well characterized in glaucoma, retina, and neuroscience. Recently, neurotrophin analogs with panTrk activity and TrkC selectivity have shown promise as novel drugs for treating dry eye disease. In this review, we discuss the biology of the neurotrophin family, its role in corneal homeostasis, and its use in treating ocular surface diseases. There is an unmet need to investigate parenteral neurotrophins and its analogs that activate TrkB and TrkC selectively. Full article
Show Figures

Figure 1

18 pages, 971 KiB  
Systematic Review
Expression and Signaling Pathways of Nerve Growth Factor (NGF) and Pro-NGF in Breast Cancer: A Systematic Review
by Francesco Bruno, Domenico Arcuri, Francesca Vozzo, Antonio Malvaso, Alberto Montesanto and Raffaele Maletta
Curr. Oncol. 2022, 29(11), 8103-8120; https://doi.org/10.3390/curroncol29110640 - 27 Oct 2022
Cited by 17 | Viewed by 5513
Abstract
Breast cancer represents the most common type of cancer and is the leading cause of death due to cancer among women. Thus, the prevention and early diagnosis of breast cancer is of primary urgency, as well as the development of new treatments able [...] Read more.
Breast cancer represents the most common type of cancer and is the leading cause of death due to cancer among women. Thus, the prevention and early diagnosis of breast cancer is of primary urgency, as well as the development of new treatments able to improve its prognosis. Nerve Growth Factor (NGF) is a neurotrophic factor involved in the regulation of neuronal functions through the binding of the Tropomyosin receptor kinase A (TrkA) and the Nerve Growth Factor receptor or Pan-Neurotrophin Receptor 75 (NGFR/p75NTR). In addition, its precursor (pro-NGF) can extert biological activity by forming a trimeric complex with NGFR/p75NTR and sortilin, or by binding to TrkA receptors with low affinity. Several examples of in vitro and in vivo evidence show that NGF is both synthesized and released by breast cancer cells, and has mitogen, antiapoptotic and angiogenic effects on these cells through the activation of different signaling cascades that involve TrkA and NGFR/p75NTR receptors. Conversely, pro-NGF signaling has been related to breast cancer invasion and metastasis. Other studies suggested that NGF and its receptors could represent a good diagnostic and prognostic tool, as well as promising therapeutic targets for breast cancer. In this paper, we comprehensively summarize and systematically review the current experimental evidence on this topic. INPLASY ID: INPLASY2022100017. Full article
(This article belongs to the Collection New Insights into Breast Cancer Diagnosis and Treatment)
Show Figures

Figure 1

16 pages, 6530 KiB  
Article
NGF Prevents Loss of TrkA/VEGFR2 Cells, and VEGF Isoform Dysregulation in the Retina of Adult Diabetic Rats
by Elena Fico, Pamela Rosso, Viviana Triaca, Marco Segatto, Alessandro Lambiase and Paola Tirassa
Cells 2022, 11(20), 3246; https://doi.org/10.3390/cells11203246 - 15 Oct 2022
Cited by 11 | Viewed by 2372
Abstract
Among the factors involved in diabetic retinopathy (DR), nerve growth factor (NGF) and vascular endothelial growth factor A (VEGFA) have been shown to affect both neuronal survival and vascular function, suggesting that their crosstalk might influence DR outcomes. To address this question, the [...] Read more.
Among the factors involved in diabetic retinopathy (DR), nerve growth factor (NGF) and vascular endothelial growth factor A (VEGFA) have been shown to affect both neuronal survival and vascular function, suggesting that their crosstalk might influence DR outcomes. To address this question, the administration of eye drops containing NGF (ed-NGF) to adult Sprague Dawley rats receiving streptozotocin (STZ) intraperitoneal injection was used as an experimental paradigm to investigate NGF modulation of VEGFA and its receptor VEGFR2 expression. We show that ed-NGF treatment prevents the histological and vascular alterations in STZ retina, VEGFR2 expression decreased in GCL and INL, and preserved the co-expression of VEGFR2 and NGF-tropomyosin-related kinase A (TrkA) receptor in retinal ganglion cells (RGCs). The WB analysis confirmed the NGF effect on VEGFR2 expression and activation, and showed a recovery of VEGF isoform dysregulation by suppressing STZ-induced VEGFA121 expression. Reduction in inflammatory and pro-apoptotic intracellular signals were also found in STZ+NGF retina. These findings suggest that ed-NGF administration might favor neuroretina protection, and in turn counteract the vascular impairment by regulating VEGFR2 and/or VEGFA isoform expression during the early stages of the disease. The possibility that an increase in the NGF availability might contribute to the switch from the proangiogenic/apoptotic to the neuroprotective action of VEGF is discussed. Full article
Show Figures

Figure 1

23 pages, 4376 KiB  
Article
Sensory Neuron-Specific Deletion of Tropomyosin Receptor Kinase A (TrkA) in Mice Abolishes Osteoarthritis (OA) Pain via NGF/TrkA Intervention of Peripheral Sensitization
by InSug O-Sullivan, Ranjan Kc, Gurjit Singh, Vaskar Das, Kaige Ma, Xin Li, Fackson Mwale, Gina Votta-Velis, Benjamin Bruce, Arivarasu Natarajan Anbazhagan, Andre J. van Wijnen and Hee-Jeong Im
Int. J. Mol. Sci. 2022, 23(20), 12076; https://doi.org/10.3390/ijms232012076 - 11 Oct 2022
Cited by 15 | Viewed by 3274
Abstract
Tropomyosin receptor kinase A (TrkA/NTRK1) is a high-affinity receptor for nerve growth factor (NGF), a potent pain mediator. NGF/TrkA signaling elevates synovial sensory neuronal distributions in the joints and causes osteoarthritis (OA) pain. We investigated the mechanisms of pain transmission as to whether [...] Read more.
Tropomyosin receptor kinase A (TrkA/NTRK1) is a high-affinity receptor for nerve growth factor (NGF), a potent pain mediator. NGF/TrkA signaling elevates synovial sensory neuronal distributions in the joints and causes osteoarthritis (OA) pain. We investigated the mechanisms of pain transmission as to whether peripheral sensory neurons are linked to the cellular plasticity in the dorsal root ganglia (DRG) and are critical for OA hyperalgesia. Sensory neuron-specific deletion of TrkA was achieved by tamoxifen injection in 4-week-old TrkAfl/fl;NaV1.8CreERT2 (Ntrk1 fl/fl;Scn10aCreERT2) mice. OA was induced by partial medial meniscectomy (PMM) in 12-week-old mice, and OA-pain-related behavior was analyzed for 12 weeks followed by comprehensive histopathological examinations. OA-associated joint pain was markedly improved without cartilage protection in sensory-neuron-specific conditional TrkA knock-out (cKO) mice. Alleviated hyperalgesia was associated with suppression of the NGF/TrkA pathway and reduced angiogenesis in fibroblast-like synovial cells. Elevated pain transmitters in the DRG of OA-induced mice were significantly diminished in sensory-neuron-specific TrkA cKO and global TrkA cKO mice. Spinal glial activity and brain-derived neurotropic factor (BDNF) were significantly increased in OA-induced mice but were substantially eliminated by sensory-neuron-specific deletion. Our results suggest that augmentation of NGF/TrkA signaling in the joint synovium and the peripheral sensory neurons facilitate pro-nociception and centralized pain sensitization. Full article
(This article belongs to the Special Issue Osteoarthritis 2.0: From Molecular Pathways to Therapeutic Advances)
Show Figures

Figure 1

16 pages, 3144 KiB  
Article
JND4135, a New Type II TRK Inhibitor, Overcomes TRK xDFG and Other Mutation Resistance In Vitro and In Vivo
by Jie Wang, Yang Zhou, Xia Tang, Xiuwen Yu, Yongjin Wang, Shingpan Chan, Xiaojuan Song, Zhengchao Tu, Zhimin Zhang, Xiaoyun Lu, Zhang Zhang and Ke Ding
Molecules 2022, 27(19), 6500; https://doi.org/10.3390/molecules27196500 - 1 Oct 2022
Cited by 3 | Viewed by 3489
Abstract
The tropomyosin receptor kinases (TRKs) have been validated as effective targets in anticancer drug discovery. Two first-generation TRK inhibitors have been approved into market and displayed an encouraging therapeutic response in cancer patients harboring TRK fusion proteins. However, acquired resistance mediated by secondary [...] Read more.
The tropomyosin receptor kinases (TRKs) have been validated as effective targets in anticancer drug discovery. Two first-generation TRK inhibitors have been approved into market and displayed an encouraging therapeutic response in cancer patients harboring TRK fusion proteins. However, acquired resistance mediated by secondary TRK mutations especially in the xDFG motif remains an unsolved challenge in the clinic. Herein, we report the preclinical pharmacological results of JND4135, a new type II pan-TRK inhibitor, in overcoming TRK mutant resistance, including the xDFG mutations in vitro and in vivo. At a low nanomolar level, JND4135 displays a strong activity against wild-type TRKA/B/C and secondary mutations involving xDFG motif substitutions in kinase assays and cellular models; occupies the TRK proteins for an extended time; and has a slower dissociation rate than other TRK inhibitors. Moreover, by intraperitoneal injection, JND4135 exhibits tumor growth inhibition (TGI) of 81.0% at a dose of 40 mg/kg in BaF3-CD74-TRKA-G667C mice xenograft model. Therefore, JND4135 can be considered as a lead compound for drug discovery overcoming the resistance of TRK inhibitor drugs mediated by xDFG mutations. Full article
Show Figures

Figure 1

22 pages, 917 KiB  
Review
Osteoarthritis Pain
by Huan Yu, Tianwen Huang, William Weijia Lu, Liping Tong and Di Chen
Int. J. Mol. Sci. 2022, 23(9), 4642; https://doi.org/10.3390/ijms23094642 - 22 Apr 2022
Cited by 113 | Viewed by 16580
Abstract
Joint pain is the hallmark symptom of osteoarthritis (OA) and the main reason for patients to seek medical assistance. OA pain greatly contributes to functional limitations of joints and reduced quality of life. Although several pain-relieving medications are available for OA treatment, the [...] Read more.
Joint pain is the hallmark symptom of osteoarthritis (OA) and the main reason for patients to seek medical assistance. OA pain greatly contributes to functional limitations of joints and reduced quality of life. Although several pain-relieving medications are available for OA treatment, the current intervention strategy for OA pain cannot provide satisfactory pain relief, and the chronic use of the drugs for pain management is often associated with significant side effects and toxicities. These observations suggest that the mechanisms of OA-related pain remain undefined. The current review mainly focuses on the characteristics and mechanisms of OA pain. We evaluate pathways associated with OA pain, such as nerve growth factor (NGF)/tropomyosin receptor kinase A (TrkA), calcitonin gene-related peptide (CGRP), C–C motif chemokine ligands 2 (CCL2)/chemokine receptor 2 (CCR2) and tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), the NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome, and the Wnt/β-catenin signaling pathway. In addition, animal models currently used for OA pain studies and emerging preclinical studies are discussed. Understanding the multifactorial components contributing to OA pain could provide novel insights into the development of more specific and effective drugs for OA pain management. Full article
(This article belongs to the Special Issue Bone and Cartilage Biology)
Show Figures

Figure 1

22 pages, 4373 KiB  
Article
ENT-A010, a Novel Steroid Derivative, Displays Neuroprotective Functions and Modulates Microglial Responses
by Canelif Yilmaz, Thanasis Rogdakis, Alessia Latorrata, Evangelia Thanou, Eleftheria Karadima, Eleni Papadimitriou, Eleni Siapi, Ka Wan Li, Theodora Katsila, Theodora Calogeropoulou, Ioannis Charalampopoulos and Vasileia Ismini Alexaki
Biomolecules 2022, 12(3), 424; https://doi.org/10.3390/biom12030424 - 9 Mar 2022
Cited by 7 | Viewed by 4416
Abstract
Tackling neurodegeneration and neuroinflammation is particularly challenging due to the complexity of central nervous system (CNS) disorders, as well as the limited drug accessibility to the brain. The activation of tropomyosin-related kinase A (TRKA) receptor signaling by the nerve growth factor (NGF) or [...] Read more.
Tackling neurodegeneration and neuroinflammation is particularly challenging due to the complexity of central nervous system (CNS) disorders, as well as the limited drug accessibility to the brain. The activation of tropomyosin-related kinase A (TRKA) receptor signaling by the nerve growth factor (NGF) or the neurosteroid dehydroepiandrosterone (DHEA) may combat neurodegeneration and regulate microglial function. In the present study, we synthesized a C-17-spiro-cyclopropyl DHEA derivative (ENT-A010), which was capable of activating TRKA. ENT-A010 protected PC12 cells against serum starvation-induced cell death, dorsal root ganglia (DRG) neurons against NGF deprivation-induced apoptosis and hippocampal neurons against Aβ-induced apoptosis. In addition, ENT-A010 pretreatment partially restored homeostatic features of microglia in the hippocampus of lipopolysaccharide (LPS)-treated mice, enhanced Aβ phagocytosis, and increased Ngf expression in microglia in vitro. In conclusion, the small molecule ENT-A010 elicited neuroprotective effects and modulated microglial function, thereby emerging as an interesting compound, which merits further study in the treatment of CNS disorders. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Neuroinflammation)
Show Figures

Figure 1

14 pages, 940 KiB  
Article
Antidepressant-like Effects of BDNF and NGF Individual Loop Dipeptide Mimetics Depend on the Signal Transmission Patterns Associated with Trk
by Armen G. Mezhlumyan, Anna V. Tallerova, Polina Y. Povarnina, Aleksey V. Tarasiuk, Nellya M. Sazonova, Tatiana A. Gudasheva and Sergey B. Seredenin
Pharmaceuticals 2022, 15(3), 284; https://doi.org/10.3390/ph15030284 - 24 Feb 2022
Cited by 9 | Viewed by 3285
Abstract
Neurotrophins are considered as an attractive target for the development of antidepressants with a novel mechanism of action. Previously, the dimeric dipeptide mimetics of individual loops of nerve growth factor, NGF (GK-6, loop 1; GK-2, loop 4) and brain-derived neurotrophic factor, BDNF (GSB-214, [...] Read more.
Neurotrophins are considered as an attractive target for the development of antidepressants with a novel mechanism of action. Previously, the dimeric dipeptide mimetics of individual loops of nerve growth factor, NGF (GK-6, loop 1; GK-2, loop 4) and brain-derived neurotrophic factor, BDNF (GSB-214, loop 1; GTS-201, loop 2; GSB-106, loop 4) were designed and synthesized. All the mimetics of NGF and BDNF in vitro after a 5–180 min incubation in a HT-22 cell culture were able to phosphorylate the tropomyosin-related kinase A (TrkA) or B (TrkB) receptors, respectively, but had different post-receptor signaling patterns. In the present study, we conduct comparative research of the antidepressant-like activity of these mimetics at acute and subchronic administration in the forced swim test in mice. Only the dipeptide GSB-106 that in vitro activates mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and phospholipase C-gamma (PLCγ) post-receptor pathways exhibited antidepressant-like activity (0.1 and 1.0 mg/kg, ip) at acute administration. At the same time, the inhibition of any one of these signaling pathways completely prevented the antidepressant-like effects of GSB-106 in the forced swim test. All the NGF mimetics were inactive after a single injection regardless of post-receptor in vitro signaling patterns. All the investigated dipeptides, except GTS-201, not activating PI3K/AKT in vitro unlike the other compounds, were active at subchronic administration. The data obtained demonstrate that the low-molecular weight BDNF mimetic GSB-106 that activates all three main post-receptor TrkB signaling pathways is the most promising for the development as an antidepressant. Full article
(This article belongs to the Special Issue Seeking New Antidepressant Agents)
Show Figures

Figure 1

Back to TopTop