Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = trophoblast adhesion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5672 KiB  
Article
Multiplex Immunofluorescence Reveals Therapeutic Targets EGFR, EpCAM, Tissue Factor, and TROP2 in Triple-Negative Breast Cancer
by T. M. Mohiuddin, Wenjie Sheng, Chaoyu Zhang, Marwah Al-Rawe, Svetlana Tchaikovski, Felix Zeppernick, Ivo Meinhold-Heerlein and Ahmad Fawzi Hussain
Int. J. Mol. Sci. 2025, 26(15), 7430; https://doi.org/10.3390/ijms26157430 - 1 Aug 2025
Viewed by 232
Abstract
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to [...] Read more.
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to characterize molecular and clinicopathological features and to assess the expression and therapeutic potential of four key surface markers: epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), tissue factor (TF), and trophoblast cell surface antigen (TROP2). Multiplex immunofluorescence (mIF) demonstrated elevated EGFR and TROP2 expression in the majority of samples. Significant positive correlations were observed between EGFR and TF, as well as between TROP2 and both TF and EpCAM. Expression analyses revealed increased EGFR and TF levels with advancing tumor stage, whereas EpCAM expression declined in advanced-stage tumors. TROP2 and TF expression were significantly elevated in higher-grade tumors. Additionally, EGFR and EpCAM levels were significantly higher in patients with elevated Ki-67 indices. Binding specificity assays using single-chain variable fragment (scFv-SNAP) fusion proteins confirmed robust targeting efficacy, particularly for EGFR and TROP2. These findings underscore the therapeutic relevance of EGFR and TROP2 as potential biomarkers and targets in TNBC. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

28 pages, 50380 KiB  
Review
Changes in Epithelial Cell Polarity and Adhesion Guide Human Endometrial Receptivity: How In Vitro Systems Help to Untangle Mechanistic Details
by Irmgard Classen-Linke, Volker U. Buck, Anna K. Sternberg, Matthias Kohlen, Liubov Izmaylova and Rudolf E. Leube
Biomolecules 2025, 15(8), 1057; https://doi.org/10.3390/biom15081057 - 22 Jul 2025
Viewed by 425
Abstract
Tissue remodeling of human endometrium occurs during the menstrual cycle to prepare for embryo adhesion and invasion. The ovarian steroid hormones 17β-estradiol and progesterone control the menstrual cycle to achieve the receptive state during the “window of implantation” (WOI). Here, we focus on [...] Read more.
Tissue remodeling of human endometrium occurs during the menstrual cycle to prepare for embryo adhesion and invasion. The ovarian steroid hormones 17β-estradiol and progesterone control the menstrual cycle to achieve the receptive state during the “window of implantation” (WOI). Here, we focus on the human endometrial epithelium and its changes in polarity, adhesion, cytoskeletal organization and the underlying extracellular matrix enabling embryo implantation. The adhesion and invasion of the trophoblast via the apical plasma membrane of epithelial cells is a unique cell biological process, which is coupled to partial epithelial–mesenchymal transition (EMT). Given the fundamental species differences during implantation, we restrict the review mainly to the human situation and focus on cell culture systems to study the interaction between human trophoblast and endometrial cells. We summarize current knowledge based on the relatively scarce in vivo data and the steadily growing in vitro observations using various cell culture systems. Full article
Show Figures

Figure 1

27 pages, 7011 KiB  
Review
Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows
by Gregory A. Johnson, Thainá Minela, Heewon Seo, Fuller W. Bazer, Robert C. Burghardt, Guoyao Wu, Ky G. Pohler, Claire Stenhouse, Joe W. Cain, Zachary K. Seekford and Dallas R. Soffa
Biomolecules 2025, 15(7), 1037; https://doi.org/10.3390/biom15071037 - 17 Jul 2025
Viewed by 542
Abstract
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial [...] Read more.
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial stroma, the differentiation of the trophoblast, cell-to-cell and tissue-to-tissue signaling through hormones, cytokines, and extracellular vesicles, and the alteration of the maternal immune system. This review focuses on implantation in pigs, sheep, and cows. These species share with mice/rats and humans/primates the key events of early embryonic development, pregnancy recognition, and the establishment of functional placentation. However, there are differences between the pregnancies of livestock and other species that make livestock unique biomedical models for the study of pregnancy and cell biology in general. Pig, sheep, and cow conceptuses (embryo/fetus and associated placental membranes) elongate prior to implantation, displaying central implantation, extended periods of conceptus attachment to the uterus, and epitheliochorial (pigs) and synepitheliochorial (sheep and cows) placentation. This review will discuss what is understood about how the trophoblast and extraembryonic endoderm of pig, sheep, and cow conceptuses elongate, and how a major goal of current in vitro models is to achieve conceptus elongation. It will then examine the adhesion cascade for conceptus implantation that initiates early placental development in pigs, sheep, and cows. Finally, it will conclude with a brief overview of early placental development in pigs, sheep, and cows, with a listing of some important “omics” studies that have been published. Full article
Show Figures

Figure 1

21 pages, 2149 KiB  
Article
The Efficacy of Targeted Monoclonal IgA Antibodies Against Pancreatic Ductal Adenocarcinoma
by Léon Raymakers, Elsemieke M. Passchier, Meggy E. L. Verdonschot, Mitchell Evers, Chilam Chan, Karel C. Kuijpers, G. Mihaela Raicu, I. Quintus Molenaar, Hjalmar C. van Santvoort, Karin Strijbis, Martijn P. W. Intven, Lois A. Daamen, Jeanette H. W. Leusen and Patricia A. Olofsen
Cells 2025, 14(9), 632; https://doi.org/10.3390/cells14090632 - 24 Apr 2025
Viewed by 1082
Abstract
The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this [...] Read more.
The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this can be further enhanced by blocking the myeloid immune checkpoint CD47. In this study, we investigated the potential of this therapeutic strategy for PDAC. We determined the expression of tumor-associated antigens (TAAs) on PDAC cell lines and fresh patient samples, and the results showed that the TAAs epithelial cell adhesion molecule (EpCAM), trophoblast cell surface antigen 2 (TROP2) and mucin-1 (MUC1), as well as CD47 were consistently expressed on PDAC. In line with this, we showed that IgA mAbs against EpCAM can activate neutrophils to lyse various PDAC cell lines and tumor cells, which can be augmented by addition of CD47 blockade. In addition, we observed that neutrophils were present in patient tumors and expressed the receptor for IgA. In conclusion, our results indicate that a combination of IgA mAb with CD47 blockade is a promising preclinical treatment strategy for PDAC, which merits further investigation. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

15 pages, 1340 KiB  
Review
Epithelial–Mesenchymal Transitions Leading to Conceptus Adhesion in Ruminants: Early Pregnancy Events in Cattle
by Mohamed Samy Yousef and Kazuhiko Imakawa
Int. J. Mol. Sci. 2025, 26(8), 3772; https://doi.org/10.3390/ijms26083772 - 16 Apr 2025
Viewed by 650
Abstract
Trophoblast–endometrium interactions play a critical role in the processes of conceptus elongation, attachment, and adhesion, followed by placental development during early pregnancy in ruminants. The attachment between uterine epithelium and trophoblast cells, which is epithelial in nature, requires epithelial to mesenchymal transition (EMT), [...] Read more.
Trophoblast–endometrium interactions play a critical role in the processes of conceptus elongation, attachment, and adhesion, followed by placental development during early pregnancy in ruminants. The attachment between uterine epithelium and trophoblast cells, which is epithelial in nature, requires epithelial to mesenchymal transition (EMT), where the fetal trophoblasts come into contact with maternal epithelial cells without fully invading the maternal tissues. Understanding the early developmental period driving EMT processes in utero in ruminants is fundamental to improving fertility through the prevention of early pregnancy failure and enhancing overall reproductive efficiency in livestock. This review highlights the key events necessary for the early conceptus to progress properly towards firm adhesion with the endometrium, focusing on trophoblast–endometrium interactions. This field holds the potential to elucidate molecular and cellular mechanisms associated with trophoblast and endometrium attachment and adhesion, leading to reduced early embryonic losses and enhanced economic sustainability by developing effective reproductive management strategies. Full article
Show Figures

Figure 1

29 pages, 3410 KiB  
Review
HOXA10 and HOXA11 in Human Endometrial Benign Disorders: Unraveling Molecular Pathways and Their Impact on Reproduction
by Lorin-Manuel Pîrlog, Andrada-Adelaida Pătrășcanu, Mara-Diana Ona, Andreea Cătană and Ioana Cristina Rotar
Biomolecules 2025, 15(4), 563; https://doi.org/10.3390/biom15040563 - 10 Apr 2025
Cited by 2 | Viewed by 1605
Abstract
HOX genes, a family of conserved transcription factors, are critical for reproductive tract development and endometrial functionality. This review highlights the molecular underpinnings of HOXA10/HOXA11 in reproductive health and their dysregulation in benign pathologies associated with infertility, such as endometriosis, adenomyosis, and endometrial [...] Read more.
HOX genes, a family of conserved transcription factors, are critical for reproductive tract development and endometrial functionality. This review highlights the molecular underpinnings of HOXA10/HOXA11 in reproductive health and their dysregulation in benign pathologies associated with infertility, such as endometriosis, adenomyosis, and endometrial polyps. These genes are dynamically regulated by estrogen and progesterone, with peak expression during the secretory phase of the menstrual cycle when implantation takes place. The molecular mechanisms underlying their action include the modulation of extracellular matrix (ECM) remodeling via metalloproteinases, cytokines like leukemia inhibitory factor, and cell adhesion molecules such as β3-integrin, all of which are essential for the differentiation of epithelial and stromal cells, as well as for trophoblast invasion. Aberrant HOX gene expression, driven by DNA hypermethylation or altered histone acetylation, compromises endometrial receptivity and implantation. For instance, reduced HOXA10 expression in endometriosis stems from hypermethylation and chronic inflammation, disrupting immune modulation and cytokine signaling. Similarly, adenomyosis alters HOXA11-regulated ECM remodeling and β3-integrin expression, impairing embryo attachment. Furthermore, regulatory pathways involving vitamin D and retinoic acid offer promising therapeutic avenues pathways, as they enhance HOXA10/HOXA11 expression and endometrial receptivity. This review underscores the critical molecular roles of HOXA10/HOXA11 genes as biomarkers and therapeutic targets to optimize fertility outcomes and address reproductive pathologies. Full article
Show Figures

Figure 1

17 pages, 6291 KiB  
Article
CTNNB1 and CDH1 Regulate Trophoblast Cell Adhesion and Junction Formation in Yak Placental Tissue at Different Gestational Stages
by Bohao Zhang, Chen Song, Bin Zhou, Junjun Zhang, Weitao Dong, Yong Zhang, Xingxu Zhao and Quanwei Zhang
Animals 2025, 15(6), 876; https://doi.org/10.3390/ani15060876 - 19 Mar 2025
Viewed by 697
Abstract
Yaks (Bos grunniens), which are distributed across the Tibetan Plateau and other high-altitude regions, are vital livestock that provide essential resources for local herders and have significant economic and ecological value [...] Full article
Show Figures

Figure 1

20 pages, 4942 KiB  
Article
Universal First-Trimester Screening Biomarkers for Diagnosis of Preeclampsia and Placenta Accreta Spectrum
by Angelika V. Timofeeva, Ivan S. Fedorov, Alla M. Tarasova, Yuliya V. Sukhova, Vyacheslav G. Kolod’ko, Tatiana Yu. Ivanets and Gennady T. Sukhikh
Biomolecules 2025, 15(2), 228; https://doi.org/10.3390/biom15020228 - 4 Feb 2025
Cited by 1 | Viewed by 1467
Abstract
Background: Disruptions in epigenetic mechanisms regulating placentation, particularly imbalances in the levels of small non-coding RNAs, contribute to various pregnancy complications, including preeclampsia (PE) and placenta accreta spectrum (PAS). Given that abnormal trophoblast differentiation, invasiveness, and angiogenesis—reduced in PE and excessive in PAS—are [...] Read more.
Background: Disruptions in epigenetic mechanisms regulating placentation, particularly imbalances in the levels of small non-coding RNAs, contribute to various pregnancy complications, including preeclampsia (PE) and placenta accreta spectrum (PAS). Given that abnormal trophoblast differentiation, invasiveness, and angiogenesis—reduced in PE and excessive in PAS—are central to the pathogenesis of these conditions, this study aimed to identify universal circulating piRNAs and their targets. Methods: Small RNA deep sequencing, quantitative reverse transcription combined with real-time polymerase chain reaction, magnetic bead-based multiplex immunoassay, ELISA, and Western blotting were employed to quantify circulating piRNAs and proteins in the blood serum of pregnant women during the 11th–14th weeks of gestation. Results: Statistically significant negative correlations were identified between PE- and PAS-associated piRNAs (hsa_piR_019122, hsa_piR_020497, hsa_piR_019949, and piR_019675) and several molecules, including Endoglin, IL-18, VEGF-A, VEGF-C, Angiopoietin-2, sFASL, HB-EGF, TGFα, and Clusterin. These molecules are involved in processes such as angiogenesis, inflammation, the epithelial–mesenchymal transition, cell proliferation, adhesion, and apoptosis. A first-trimester pregnancy screening algorithm was developed using logistic regression models based on Clusterin concentration and the levels of hsa_piR_020497, hsa_piR_019949, piR_019675, and hsa_piR_019122. Conclusions: The proposed screening tool for early pregnancy monitoring may enable the prediction of PE or PAS in the first trimester, allowing timely interventions to reduce maternal and perinatal morbidity and mortality. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 1204 KiB  
Review
Antibody–Drug Conjugates in Non-Small Cell Lung Cancer: State of the Art and Future Perspectives
by Carol Zanchetta, Lorenzo De Marchi, Marianna Macerelli, Giacomo Pelizzari, Jacopo Costa, Giuseppe Aprile and Francesco Cortiula
Int. J. Mol. Sci. 2025, 26(1), 221; https://doi.org/10.3390/ijms26010221 - 30 Dec 2024
Cited by 3 | Viewed by 2933
Abstract
Antibody–drug conjugates (ADCs) represent one of the most promising and rapidly emerging anti-cancer therapies because they combine the cytotoxic effect of the conjugate payload and the high selectivity of the monoclonal antibody, which binds a specific membrane antigen expressed by the tumor cells. [...] Read more.
Antibody–drug conjugates (ADCs) represent one of the most promising and rapidly emerging anti-cancer therapies because they combine the cytotoxic effect of the conjugate payload and the high selectivity of the monoclonal antibody, which binds a specific membrane antigen expressed by the tumor cells. In non-small cell lung cancer (NSCLC), ADCs are being investigated targeting human epidermal growth factor receptor 2 (HER2), human epidermal growth factor receptor 3 (HER3), trophoblast cell surface antigen 2 (TROP2), Mesenchymal–epithelial transition factor (c-MET), and carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). To date, Trastuzumab deruxtecan is the only ADC that has been approved by the FDA for the treatment of patients with NSCLC, but several ongoing studies, both using ADCs as monotherapy and combined with other therapies, are investigating the efficacy of new ADCs. In this review, we describe the structures and mechanism of action of different ADCs; we present the evidence derived from the main clinical trials investigating ADCs’ efficacy, focusing also on related toxicity; and, finally, we discuss future perspectives in terms of toxicity management, possible biomarkers, and the identification of resistance mechanisms. Full article
(This article belongs to the Special Issue New Molecular Advances in Lung Cancer)
Show Figures

Figure 1

17 pages, 582 KiB  
Review
Investigating the Imperative Role of microRNAs Expression in Human Embryo Implantation: A Narrative Review Based on Recent Evidence
by Anastasios Potiris, Sofoklis Stavros, Ioanna Zouganeli, Nikolaos Machairiotis, Eirini Drakaki, Athanasios Zikopoulos, Ismini Anagnostaki, Athanasios Zachariou, Angeliki Gerede, Ekaterini Domali and Peter Drakakis
Biomedicines 2024, 12(11), 2618; https://doi.org/10.3390/biomedicines12112618 - 15 Nov 2024
Cited by 3 | Viewed by 1778
Abstract
Background/Objectives: Embryo implantation is a highly complex process that requires the precise regulation of numerous molecules to be orchestrated successfully. Micro RNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a crucial role in the regulation of embryo implantation. This [...] Read more.
Background/Objectives: Embryo implantation is a highly complex process that requires the precise regulation of numerous molecules to be orchestrated successfully. Micro RNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a crucial role in the regulation of embryo implantation. This article aims to summarize the key findings of the literature regarding the role of miRNAs in human embryo implantation, emphasizing their involvement in critical stages such as decidualization, endometrial receptivity and trophoblast adhesion. Methods: This review includes primary research articles from the past decade. The studies utilize a range of experimental methodologies, including gene expression analysis and in vitro studies. Results: MicroRNAs, like miR-320a, miR-149, and miR30d secreted by preimplantation embryos and blastocysts significantly influence endometrial receptivity by promoting essential cellular processes, such as cell migration and trophoblast cell attachment, while others—miR17-5p, miR-193-3p, miR-372, and miR-542-3p—secreted from the endometrium regulate the decidualization phase. During the apposition and adhesion phases, miRNAs play a complex role by promoting, for example, miR-23b-3p, and inhibiting—as do miR-29c and miR-519d-3p—important biological pathways of these stages. During invasion, miR-26a-5p and miR-125-5p modulate important genes. Conclusions: This review underscores the critical impact of miRNAs in the regulation of embryo implantation and early pregnancy. The ability of miRNAs to modulate gene expression at various stages of reproduction presents promising therapeutic avenues for improving assisted reproductive technologies outcomes and addressing infertility. Further research into miRNA-based diagnostic tools and therapeutic strategies is essential to enhance our understanding of their role in reproductive health and to exploit their potential for clinical applications. Full article
Show Figures

Figure 1

21 pages, 306 KiB  
Article
Analysis of ICAM-1 rs3093030, VCAM-1 rs3783605, and E-Selectin rs1805193 Polymorphisms in African Women Living with HIV and Preeclampsia
by Samukelisiwe Sibiya, Zinhle Pretty Mlambo, Mbuso Herald Mthembu, Nompumelelo P. Mkhwanazi and Thajasvarie Naicker
Int. J. Mol. Sci. 2024, 25(19), 10860; https://doi.org/10.3390/ijms251910860 - 9 Oct 2024
Viewed by 1885
Abstract
Intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin are cell adhesion molecules that play a significant role in inflammation and are implicated in the pathophysiology of preeclampsia development and HIV infection. More specifically, the immune expression of ICAM-1, VCAM-1, and E-selectin [...] Read more.
Intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin are cell adhesion molecules that play a significant role in inflammation and are implicated in the pathophysiology of preeclampsia development and HIV infection. More specifically, the immune expression of ICAM-1, VCAM-1, and E-selectin within cyto- and syncytiotrophoblast cells are dysregulated in preeclampsia, indicating their role in defective placentation. This study investigates the associations of ICAM-1, VCAM-1, and E-selectin gene variants (rs3093030, rs3783605, and rs1805193, respectively) with preeclampsia comorbid with HIV infection in women of African ancestry. It also examines the susceptibility to preeclampsia development and the effect of highly active antiretroviral therapy (HAART). A total of 405 women were enrolled in this study. Out of these women, 204 were preeclamptic and 201 were normotensive. Clinical characteristics were maternal age, weight, blood pressure (systolic and diastolic), and gestational age. Whole blood was collected, DNA was extracted, and genotyping of the ICAM-1 (rs3093030 C>T), VCAM-1(rs3783605 A>G), and E-selectin (rs1805193 A>C) gene polymorphisms was performed. Comparisons were made using the Chi-squared test. Our results demonstrated that preeclamptic women exhibited a higher frequency of analyzed variants, in contrast to those with the duality of preeclampsia and HIV infection. Additionally, the C allele of the ICAM-1 (rs3093030 C>T) and G allele of the VCAM-1 (rs3783605 A>G) genes were found to have a greater role in the co-morbidity and may be considered as a risk factor for preeclampsia development in women of African ancestry. In contrast, the SNP of rs1805193 of the E-selectin gene indicated that A>C was only significantly associated with HIV infection and not with preeclampsia. These findings highlight a strong association of the rs3093030 SNP of the ICAM-1 gene and of the VCAM-1 rs3783605 gene with the development of preeclampsia, indicating their role in the defective trophoblast invasion of preeclampsia. Sub-group analysis further reveals an association of the AA genotype with late-onset preeclampsia, a less severe form of disease indicating differing genetic predispositions between early and late-onset forms. Full article
16 pages, 3269 KiB  
Article
Galectin-8 Contributes to Human Trophoblast Cell Invasion
by Janko Legner, Milica Jovanović Krivokuća, Aleksandra Vilotić, Andrea Pirković, Mirjana Nacka-Aleksić and Žanka Bojić-Trbojević
Int. J. Mol. Sci. 2024, 25(18), 10096; https://doi.org/10.3390/ijms251810096 - 20 Sep 2024
Cited by 2 | Viewed by 1737
Abstract
Galectins are a class of lectins that are extensively expressed in all organisms. Galectins are involved in a range of functions, including early development, tissue regeneration, cancer and inflammation. It has been shown that galectin-8 is expressed in the villous and extravillous trophoblast [...] Read more.
Galectins are a class of lectins that are extensively expressed in all organisms. Galectins are involved in a range of functions, including early development, tissue regeneration, cancer and inflammation. It has been shown that galectin-8 is expressed in the villous and extravillous trophoblast (EVT) cells of the human placenta; however, its physiological role in pregnancy establishment has not been elucidated. Taking these factors into account, we investigated the functional role of galectin-8 in HTR-8/SVneo cells—a human EVT cell line—and human primary cytotrophoblast cells isolated from a first-trimester placenta. We analyzed the effects of recombinant human galectin-8 (rh galectin-8) on the adhesion, migration and invasion of HTR-8/SVneo cells. We used qPCR, cell-based ELISA (cELISA) and gelatin zymography to study the effects of galectin-8 on mediators of these processes, such as integrin subunits alpha-1 and beta-1 and matrix metalloproteinases (MMPs)-2 and -9, on the mRNA and protein levels. Further, we studied the effects of galectin-8 on primary cytotrophoblast cells’ invasion. Galectin-8 stimulated the adhesion, migration and invasion of HTR-8/SVneo cells, as well as the invasion of primary cytotrophoblasts. In addition, the MMP-2 and -9 levels were increased, while the expression of integrins alpha-1 and beta-1 was not affected. Galectin-8 has the ability to positively affect EVTs’ invasion, so it can be considered a significant factor in the trophoblast cell invasion process. Full article
(This article belongs to the Special Issue Galectins (Gals))
Show Figures

Figure 1

16 pages, 1371 KiB  
Review
The Sweet Relationship between the Endometrium and Protein Glycosylation
by Linyu Zhang, Ying Feng, Yue Zhang, Xinrui Sun, Qianhong Ma and Fang Ma
Biomolecules 2024, 14(7), 770; https://doi.org/10.3390/biom14070770 - 27 Jun 2024
Viewed by 2991
Abstract
The endometrium is an important part of women’s bodies for menstruation and pregnancy. Various proteins are widely expressed on the surface of endometrial cells, and glycosylation is an important post-translational modification of proteins. Glycosylation modification is closely related not only to endometrial receptivity [...] Read more.
The endometrium is an important part of women’s bodies for menstruation and pregnancy. Various proteins are widely expressed on the surface of endometrial cells, and glycosylation is an important post-translational modification of proteins. Glycosylation modification is closely related not only to endometrial receptivity but also to common diseases related to endometrial receptivity. Glycosylation can improve endometrial receptivity, promote embryo localization and trophoblast cell adhesion and invasion, and contribute to successful implantation. Two diseases related to endometrial receptivity include endometriosis and endometrial cancer. As a common benign disease in women, endometriosis is often accompanied by an increased menstrual volume, prolonged menstrual periods, progressive and aggravated dysmenorrhea, and may be accompanied by infertility. Protein glycosylation modification of the endometrial surface indicates the severity of the disease and may be an important pathogenesis of endometriosis. In cancer, glycosylation modifications on the surface of tumor cells can be a marker to distinguish the type and severity of endometrial cancer. This review highlights the role of protein glycosylation in embryo–maternal endometrial dialogue and explores its potential mechanisms in diseases related to endometrial receptivity, which could provide a new clinical approach for their diagnosis and treatment. Full article
(This article belongs to the Collection Feature Papers in Molecular Reproduction)
Show Figures

Figure 1

19 pages, 363 KiB  
Review
The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization
by Serafeim Fountas, Efthymia Petinaki, Stamatis Bolaris, Magdalini Kargakou, Stefanos Dafopoulos, Athanasios Zikopoulos, Efthalia Moustakli, Sotirios Sotiriou and Konstantinos Dafopoulos
J. Clin. Med. 2024, 13(13), 3775; https://doi.org/10.3390/jcm13133775 - 27 Jun 2024
Cited by 11 | Viewed by 3400
Abstract
Growth differentiation factor 9 (GDF-9) contributes to early ovarian development and oocyte survival. Higher concentrations of GDF-9 in follicular fluid (FF) are associated with oocyte nuclear maturation and optimal embryo development. In in vitro fertilization (IVF), GDF-9 affects the ability of the oocyte [...] Read more.
Growth differentiation factor 9 (GDF-9) contributes to early ovarian development and oocyte survival. Higher concentrations of GDF-9 in follicular fluid (FF) are associated with oocyte nuclear maturation and optimal embryo development. In in vitro fertilization (IVF), GDF-9 affects the ability of the oocyte to fertilize and subsequent embryonic development. Bone morphogenetic protein 15 (BMP-15) is involved in the regulation of ovarian function and affects oocyte development. During IVF, BMP-15 contributes to the formation of competent blastocysts. BMP-15 may play a role in embryo implantation by affecting endometrial receptivity. Bone morphogenetic protein 4 (BMP-4) is involved in the regulation of follicle growth and development and affects granulosa cell (GC) differentiation. In relation to IVF, BMP-4 is important for embryonic development, influences cell fate and differentiation, and plays a role in facilitating embryo–endometrial interactions during the implantation process. Extracellular matrix metalloproteinase inducer (EMMPRIN) is associated with ovulation and follicle rupture, promotes the release of mature eggs, and affects the modification of the extracellular matrix of the follicular environment. In IVF, EMMPRIN is involved in embryo implantation by modulating the adhesive properties of endometrial cells and promotes trophoblastic invasion, which is essential for pregnancy to occur. The purpose of the current article is to review the studies and recent findings of GDF-9, BMP-15, BMP-4 and EMMPRIN as fundamental factors in normal follicular development and in vitro fertilization. Full article
(This article belongs to the Special Issue Challenges in Diagnosis and Treatment of Infertility)
18 pages, 7923 KiB  
Article
An Assessment of the Mechanophysical and Hormonal Impact on Human Endometrial Epithelium Mechanics and Receptivity
by Anna K. Sternberg, Liubov Izmaylova, Volker U. Buck, Irmgard Classen-Linke and Rudolf E. Leube
Int. J. Mol. Sci. 2024, 25(7), 3726; https://doi.org/10.3390/ijms25073726 - 27 Mar 2024
Cited by 3 | Viewed by 2094
Abstract
The endometrial epithelium and underlying stroma undergo profound changes to support and limit embryo adhesion and invasion, which occur in the secretory phase of the menstrual cycle during the window of implantation. This coincides with a peak in progesterone and estradiol production. We [...] Read more.
The endometrial epithelium and underlying stroma undergo profound changes to support and limit embryo adhesion and invasion, which occur in the secretory phase of the menstrual cycle during the window of implantation. This coincides with a peak in progesterone and estradiol production. We hypothesized that the interplay between hormone-induced changes in the mechanical properties of the endometrial epithelium and stroma supports this process. To study it, we used hormone-responsive endometrial adenocarcinoma-derived Ishikawa cells growing on substrates of different stiffness. We showed that Ishikawa monolayers on soft substrates are more tightly clustered and uniform than on stiff substrates. Probing for mechanical alterations, we found accelerated stress–relaxation after apical nanoindentation in hormone-stimulated monolayers on stiff substrates. Traction force microscopy furthermore revealed an increased number of foci with high traction in the presence of estradiol and progesterone on soft substrates. The detection of single cells and small cell clusters positive for the intermediate filament protein vimentin and the progesterone receptor further underscored monolayer heterogeneity. Finally, adhesion assays with trophoblast-derived AC-1M-88 spheroids were used to examine the effects of substrate stiffness and steroid hormones on endometrial receptivity. We conclude that the extracellular matrix and hormones act together to determine mechanical properties and, ultimately, embryo implantation. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Uterine Receptivity for Embryo Implantation)
Show Figures

Figure 1

Back to TopTop