The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization
Abstract
:1. Introduction
2. Relevant Sections
2.1. Growth Differentiation Factor (GDF-9)
2.2. Bone Morphogenetic Protein (BMP-15)
2.3. Bone Morphogenetic Protein (BMP-4)
2.4. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN)
3. Interaction between Proteins
3.1. Interaction between GDF-9 and BMP-15
3.2. Interaction between BMP-4 and EMMPRIN
4. Conclusions
Funding
Conflicts of Interest
References
- Valdes, G.; Corthorn, J. Review: The angiogenic and vasodilatory utero-placental network. Placenta 2011, 32 (Suppl. 2), S170–S175. [Google Scholar] [CrossRef] [PubMed]
- Mandala, M.; Osol, G. Physiological Remodeling of the Maternal Uterine Circulation during Pregnancy. Basic. Clin. Pharmacol. Toxicol. 2012, 110, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.C.; Huang, F.J.; Lin, Y.C.; Kung, F.T.; Hsieh, C.H.; Huang, H.W.; Tan, P.H.; Chang, S.Y. The predictive value of using a combined Z-score and day 3 embryo morphology score in the assessment of embryo survival on day 5. Hum. Reprod. 2003, 18, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, Q.Y. Evaluation of oocyte quality: Morphological, cellular and molecular predictors. Reprod. Fertil. Dev. 2007, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rienzi, L.; Ubaldi, F.M.; Iacobelli, M.; Minasi, M.G.; Romano, S.; Ferrero, S.; Sapienza, F.; Baroni, E.; Litwicka, K.; Greco, E. Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil. Steril. 2008, 90, 1692–1700. [Google Scholar] [CrossRef]
- de Sutter, P.; Dozortsev, D.; Qian, C.; Dhont, M. Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Hum. Reprod. 1996, 11, 595–597. [Google Scholar] [CrossRef]
- Xia, P. Intracytoplasmic sperm injection: Correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum. Reprod. 1997, 12, 1750–1755. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, A.L.; Lindenberg, S. Morphology of in-vitro matured oocytes: Impact on fertility potential and embryo quality. Hum. Reprod. 2001, 16, 1714–1718. [Google Scholar] [CrossRef] [PubMed]
- Balaban, B.; Urman, B.; Sertac, A.; Alatas, C.; Aksoy, S.; Mercan, R. Oocyte morphology does not affect fertilization rate, embryo quality and implantation rate after intracytoplasmic sperm injection. Hum. Reprod. 1998, 13, 3431–3433. [Google Scholar] [CrossRef]
- Balaban, B.; Urman, B. Effect of oocyte morphology on embryo development and implantation. Reprod. Biomed. Online 2006, 12, 608–615. [Google Scholar] [CrossRef]
- Revelli, A.; delle Piane, L.; Casano, S.; Molinari, E.; Massobrio, M.; Rinaudo, P. Follicular fluid content and oocyte quality: From single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 2009, 4, 7–40. [Google Scholar] [CrossRef]
- Burge, G.C.; Hanson, M.A.; Slater-Jefferies, J.L.; Lillycrop, K.A. Epigenetic regulation of transcription: A mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br. J. Nutr. 2007, 97, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Leroy, J.L.M.R.; Vanholder, T.; Delanghe, J.R.; Opsomer, G.; Van Soom, A.; Bols, P.E.J.; Dewulf, J.; de Kruif, A. Metabolic changes in follicular fluid of the dominant follicle in high-yielding dairy cows early postpartum. Theriogenology 2004, 62, 1131–1143. [Google Scholar] [CrossRef]
- Tong, Z.; Guo, J.; Glen, R.C.; Morrell, N.W.; Li, W. A Bone Morphogenetic Protein (BMP)-derived Peptide Based on the Type I Receptor-binding Site Modifies Cell-type Dependent BMP Signalling. Sci. Rep. 2019, 9, 13446. [Google Scholar] [CrossRef] [PubMed]
- Lochab, A.K.; Extavour, C.G. Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Dev. Biol. 2017, 427, 258–269. [Google Scholar] [CrossRef]
- Dong, J.; Albertini, D.F.; Nishimori, K.; Kumar, T.R.; Lu, N. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996, 383, 531–535. [Google Scholar] [CrossRef]
- Yan, C.; Wang, P.; DeMayo, J.; DeMayo, F.J.; Elvin, J.A.; Carino, C.; Prasad, S.V.; Skinner, S.S.; Dunbar, B.S.; Dube, J.L.; et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 2001, 15, 854–866. [Google Scholar] [CrossRef]
- Nilsson, E.E.; Skinner, M.K. Bone Morphogenetic Protein-4 (BMP-4). Signaling pathways regulating gene expression that mediate oogenesis and ovulation. Mol. Cell. Endocrinol. 2004, 225, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ogren, L.; Tani, T.; Marikawa, Y. Wt1 and Sf1 are regulators of the switch between fetal and adult adrenal development. Mol. Cell. Biol. 2006, 26, 9482–9491. [Google Scholar]
- Kameda, T.; Shintani, Y.; Nakayama, Y.; Tani, M. CD147-induced cell proliferation is associated with Smad4 signal inhibition. J. Biol. Chem. 2009, 284, 29170–29179. [Google Scholar]
- Takmaz, O.; Yozgatli, D.; Ozaltin, S.; Ozbasli, E.; Kocyigit, Y.; Kuran, S.B.; Bulut, H.; Gungor, M.; Buyru, F.; Bastu, E. Can follicular Emmprin and BMP 4 levels predict ICSI outcome? J. Assist. Reprod. Genet. 2019, 36, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Dixit, H.; Rao, L.K.; Padmalatha, V.V.; Kanakavalli, M.; Deenadayal, M.; Gupta, N.; Chakrabarty, B.; Singh, L. Missense mutations in the BMP15 gene are associated with ovarian failure. Hum. Genet. 2006, 119, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Laissue, P.; Christin-Maitre, S.; Touraine, P.; Kuttenn, F.; Ritvos, O.; Aittomaki, K.; Bourcigaux, N.; Jacquesson, L.; Bouchard, P.; Frydman, R.; et al. Mutations and sequence variants in GDF9 and BMP15 in patients with premature ovarian failure. Eur. J. Endocrinol. 2006, 154, 739–744. [Google Scholar] [CrossRef]
- Zhao, H.; Qin, Y.; Kovanci, E.; Simpson, J.L.; Chen, Z.-J.; Rajkovic, A. Analyses of GDF9 mutation in 100 Chinese women with premature ovarian failure. Fertil. Steril. 2007, 88, 1474–1476. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.S.; Zhen, Z.Z.; Hoekstra, C.; Hayward, N.K.; Webb, P.M.; Whiteman, D.C.; Martin, N.G.; Boomsma, D.I.; Duffy, D.L.; Montgomery, G.W. Novel variants in growth differentiation factor 9 in mothers of dizygotic twins. J. Clin. Endocrinol. Metab. 2006, 91, 4713–4716. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, F.; McTavish, K.J.; Shimasaki, S. Integral role of GDF-9 and BMP-15 in ovarian function. Mol. Reprod. Dev. 2011, 78, 9–21. [Google Scholar] [CrossRef]
- Knight, P.G. Roles of inhibins, activins, and follistatin in the female reproductive system. Front. Neuroendocrinol. 2000, 21, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Visser, J.A.; de Jong, F.H.; Laven, J.S. Follicle-stimulating hormone and advanced follicle development in the human. Arch. Med. Res. 2003, 34, 565–571. [Google Scholar]
- La Marca, A.; Volpe, A. Anti-Müllerian hormone (AMH) in female reproduction: Is measurement of circulating AMH a useful tool? Clin. Endocrinol. 2006, 64, 603–610. [Google Scholar] [CrossRef]
- Broekmans, F.J.; Knauff, E.A.; te Velde, E.R.; Macklon, N.S.; Fauser, B.C. Female reproductive ageing: Current knowledge and future trends. Trends Endocrinol. Metab. 2007, 18, 58–65. [Google Scholar] [CrossRef]
- Otsuka, F.; Yao, Z.; Lee, T.; Yamamoto, S.; Erickson, G.F.; Shimasaki, S. Bone morphogenetic protein-15. Identification of target cells and biological functions. J. Biol. Chem. 2000, 275, 39523–39528. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Gou, X. The role of matrix metalloproteinase-2 in the remodeling of the extracellular matrix during mouse follicular development and ovulation. Reprod. Biol. Endocrinol. 2014, 12, 73. [Google Scholar]
- Juengel, J.L.; Hudson, N.L.; Whiting, L.; McNatty, K.P. Effects of immunization against BMP15 and GDF9 on ovulation rate, fertilization, and pregnancy in ewes. Biol. Reprod. 2004, 70, 557–561. [Google Scholar] [CrossRef]
- Elvin, J.A.; Yan, C.; Matzuk, M.M. Oocyte-expressed TGF-beta superfamily members in female fertility. Mol. Cell. Endocrinol. 2000, 159, 1–5. [Google Scholar] [CrossRef]
- Knight, P.G.; Glister, C. TGF-β superfamily members and ovarian follicle development. Reproduction 2006, 132, 191–206. [Google Scholar] [CrossRef]
- Vitt, U.A.; Hsueh, A.J.; Hsueh, A.J. Stage-dependent role of growth differentiation factor-9 in ovarian follicle development. Mol. Endocrinol. 2001, 15, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, R.B.; Lane, M.; Thompson, J.G. Oocyte-secreted factors: Regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 2008, 14, 159–177. [Google Scholar] [CrossRef]
- Mazerbourg, S.; Hsueh, A.J. Growth differentiation factor-9 signaling in the ovary: Insights into the molecular basis of ovarian physiology. Reproduction 2006, 132, 191–206. [Google Scholar]
- Peng, J.; Li, Q.; Wigglesworth, K.; Rangarajan, A.; Kattamuri, C.; Peterson, R.T.; Eppig, J.J.; Thompson, T.B.; Matzuk, M.M. Growth differentiation factor 9: Bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proc. Natl. Acad. Sci. USA 2013, 110, E776–E785. [Google Scholar] [CrossRef]
- Orisaka, M.; Orisaka, S.; Jiang, J.Y.; Craig, J.; Wang, Y.; Kotsuji, F.; Tsang, B.K. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol. Endocrinol. 2006, 20, 2456–2468. [Google Scholar] [CrossRef]
- Uyar, A.; Torrealday, S.; Seli, E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil. Steril. 2013, 99, 979–997. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Christenson, L.K.; McAllister, J.M.; Strauss, J.F. Growth differentiation factor-9 inhibits 3050-adenosine monophosphate–stimulated steroidogenesis in human granulosa and theca cells. J. Clin. Endocrinol. Metab. 2002, 87, 2849–2856. [Google Scholar] [PubMed]
- Pangas, S.A.; Jorgez, C.J.; Matzuk, M.M. Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J. Biol. Chem. 2004, 279, 32281–32286. [Google Scholar] [CrossRef]
- Belli, M.; Shimasaki, S. Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function. Vitam. Horm. 2018, 107, 317–348. [Google Scholar] [PubMed]
- Chatroudi, M.H.; Khalili, M.A.; Ashourzadeh, S.; Anbari, F.; Shahedi, A.; Safari, S. Growth differentiation factor 9 and cumulus cell supplementation in in vitro maturation culture media enhances the viability of human blastocysts. Clin. Exp. Reprod. Med. 2019, 46, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Hreinsson, J.G.; Scott, J.E.; Rasmussen, C.; Swahn, M.L.; Hsueh, A.J.; Hovatta, O. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture. J. Clin. Endocrinol. Metab. 2002, 87, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Vitt, U.A.; Hayashi, M.; Klein, C.; Hsueh, A.J. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol. Reprod. 2000, 62, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Orisaka, M.; Tajima, K.; Tsang, B.K.; Kotsuji, F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J. Ovarian Res. 2009, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, F.; Lolicato, F.; Romero, S.; De Vos, M.; Van Ranst, H.; Verheyen, G.; Anckaert, E.; Smitz, J.E. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum. Reprod. 2017, 32, 2056–2068. [Google Scholar] [CrossRef]
- Diaz, F.J.; Wigglesworth, K.; Eppig, J.J. Oocytes determine cumulus cell lineage in mouse ovarian follicles. J. Cell Sci. 2007, 120, 1330–1340. [Google Scholar] [CrossRef]
- Zhu, X.M.; Zhu, Y.M.; Xu, C.M.; Qian, Y.L.; Jin, F.; Huang, H.F. Autologous mature follicular fluid: Its role in in vitro maturation of human cumulus-removed oocytes. Fertil. Steril. 2008, 90, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, R.Q.; Ou, S.B.; Zhang, N.F.; Ren, L.; Wei, L.N.; Zhang, Q.X.; Yang, D.Z. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans. Reprod. Biol. Endocrinol. 2014, 12, 81. [Google Scholar] [CrossRef]
- Juengel, J.L.; Hudson, N.L.; Heath, D.A.; Smith, P.; Reader, K.L.; Lawrence, S.B.; O’Connell, A.R.; Laitinen, M.P.; Cranfield, M.; Groome, N.P.; et al. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 2002, 67, 1777–1789. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.L.; Xu, Y.R.; Yang, W.X.; Sun, Y. The role of FSH and TGF-β superfamily in follicle atresia. Aging 2018, 10, 305. [Google Scholar] [CrossRef] [PubMed]
- Sanfins, A.; Rodrigues, P.; Albertini, D.F. GDF-9 and BMP-15 direct the follicle symphony. J. Assist. Reprod. Genet. 2018, 35, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Mazerbourg, S.; Hsueh, A.J. Genomic analyses facilitate identification of receptors and signaling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Hum. Reprod. Update 2006, 12, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.S.; Celestino, J.J.H.; Saraiva, M.V.A.; Matos, M.H.T.; Bruno, J.B.; Rocha, C.M.C.; Lima-Verde, I.B.; Lucci, C.M.; Báo, S.N.; Figueiredo, J.R. Growth and differentiation factor-9 stimulates activation of goat primordial follicles in vitro and their progression to secondary follicles. Reprod. Fertil. Dev. 2008, 20, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Cook-Andersen, H.; Curnow, K.J.; Su, H.I.; Chang, R.J.; Shimasaki, S. Growth and differentiation factor 9 promotes oocyte growth at the primary but not the early secondary stage in three-dimensional follicle culture. J. Assist. Reprod. Genet. 2016, 33, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Ferreira, A.; Sa, N.; Silva, R.; Palomino, G.; Pimentel, E.; Cadenas, J.; Alves, B.G.; Celestino, J.J.; Rodrigues, A.P.; et al. Growth and differentiation factor-9 (GDF-9) increases the in vitro growth rates of isolated goat early antral follicles. Ciência Anim. Bras. 2023, 24, e-74980E. [Google Scholar]
- Almeida, A.P.; Saraiva, M.V.A.; Araújo, V.R.; Magalhães, D.M.; Duarte, A.B.G.; Frota, I.M.A.; Lopes, C.A.; Campello, C.C.; Silva, J.R.; Figueiredo, J.R. Expression of growth and differentiation factor 9 (GDF-9) and its effect on the in vitro culture of caprine preantral ovarian follicles. Small Rumin. Res. 2011, 100, 169–176. [Google Scholar] [CrossRef]
- Hendarto, H.; Prabowo, P.; Moeloek, F.A.; Soetjipto, S. Growth differentiation factor 9 concentration in the follicular fluid of infertile women with endometriosis. Fertil. Steril. 2010, 94, 758–760. [Google Scholar] [CrossRef]
- Kawabe, S.; Yamashita, Y.; Saito, N.; Kokunai, K.; Kayashi, A.; Hayashi, M.; Terai, Y.; Miyazaki, K.; Ohmichi, M. The effect of moderate to severe endometriosis on expression of growth differentiation factor-9 mRNA in human granulosa cells under controlled ovarian hyperstimulation. Reprod. Biomed. 2015, 14, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Evkuran Dal, G.; Baykal, A.; Toydemir Karabulut, T.S.F.; Dokuzeylul Gungor, N.; Turna, O. Preliminary results of blood growth differentiation factor-9 (GDF-9) measurement in cats: Future aspects of GDF-9 on stage of the cycle and spaying history. Pol. J. Vet. Sci. 2022, 25, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Wiweko, B.; Natadisastra, M.; Situmorang, H.; Rectifa, Z.; Mutia, K.; Amelia, P.; Muna, N. Expressions of growth differentiation factor-9 on granulosa cells of infertile women with endometriosis undergoing in vitro fertilization. J. Phys. Conf. Ser. 2018, 1073, 3. [Google Scholar] [CrossRef]
- Knochenhauer, E.S.; Key, T.J.; Kahsar-Miller, M.; Waggoner, W.; Boots, L.R.; Azziz, R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: A prospective study. J. Clin. Endocrinol. Metab. 1998, 83, 3078–3082. [Google Scholar] [CrossRef] [PubMed]
- Teixeira Filho, F.L.; Baracat, E.C.; Lee, T.H.; Suh, C.S.; Matsui, M.; Chang, R.J.; Shimasaki, S.; Erickson, G.F. Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.N.; Liang, X.Y.; Fang, C.; Zhang, M.F. Abnormal expression of growth differentiation factor 9 and bone morphogenetic protein 15 in stimulated oocytes during maturation from women with polycystic ovary syndrome. Fertil. Steril. 2011, 96, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhai, Y.; Zhu, B.; Wu, K.; Fan, Y.; Zhou, X.; Liu, L.; Ge, W. Loss of growth differentiation factor 9 causes an arrest of early folliculogenesis in zebrafish—A novel insight into its action mechanism. PLoS Genet. 2022, 18, e1010318. [Google Scholar] [CrossRef]
- Ghoreishi, H.; Fathi-Yosefabad, S.; Shayegh, J.; Barzegari, A. Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Arch. Anim. Breed. 2019, 62, 565–570. [Google Scholar] [CrossRef]
- Persani, L.; Rossetti, R.; Di Pasquale, E.; Cacciatore, C.; Fabre, S. The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum. Reprod. Update 2014, 20, 869–883. [Google Scholar] [CrossRef]
- Silva, J.R.V.; Van Den Hurk, R.; Van Tol, A.T.H.; Roelen, J.A.B.; Figueiredo, R.J. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol. Reprod. Dev. 2004, 70, 11–19. [Google Scholar] [CrossRef]
- Moore, R.K.; Shimasaki, S. Molecular biology and physiological role of the oocyte factor, BMP-15. Mol. Cell. Endocrinol. 2005, 234, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.L.; Heath, D.A.; Reader, K.L.; Quirke, L.D.; Hudson, N.L.; Juengel, J.L.; McNatty, K.P. Oocytes in sheep homozygous for a mutation in bone morphogenetic protein receptor 1B express lower mRNA levels of bone morphogenetic protein 15 but not growth differentiation factor 9. Reproduction 2011, 142, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Nagdy, H.; Mahmoud, K.G.M.; Kandiel, M.M.; Helmy, N.A.; Ibrahim, S.S.; Nawito, M.F.; Othman, O.E. PCR-RFLP of bone morphogenetic protein 15 (BMP15/FecX) gene as a candidate for prolificacy in sheep. Int. J. Vet. Sci. Med. 2018, 6, S68–S72. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.M.; Moghadam, S.; Saki, G.; Nikbakht, R.; Eftekhari, A.R. Moghadam. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell. Cell Biol. Int. 2021, 45, 127–139. [Google Scholar] [CrossRef]
- Dube, J.L.; Wang, P.; Elvin, J.; Lyons, K.M.; Celeste, A.J.; Matzuk, M.M. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol. Endocrinol. 1998, 12, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, F.; Yamamoto, S.; Erickson, G.F.; Shimasaki, S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J. Biol. Chem. 2001, 276, 11387–11392. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Alwani, M.; Kosta, S. BMP15 and GDF9 gene mutations in premature ovarian failure. J. Reprod. Infertil. 2017, 18, 185–189. [Google Scholar] [PubMed]
- Di Pasquale, E.; Beck-Peccoz, P.; Persani, L. Hypergonadotropic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am. J. Hum. Genet. 2004, 75, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Tiotiu, D.; Alvaro Mercadal, B.; Imbert, R.; Verbist, J.; Demeestere, I.; De Leener, A.; Englert, Y.; Vassart, G.; Costagliola, S.; Delbaere, A. Variants of the BMP15 gene in a cohort of patients with premature ovarian failure. Hum. Reprod. 2010, 25, 1581–1587. [Google Scholar] [CrossRef]
- Shi, M.; Zhu, J.; Wang, R.; Chen, X.; Mi, L.; Walz, T.; Springer, T.A. Latent TGF-bstructure and activation. Nature 2011, 474, 343–349. [Google Scholar] [CrossRef]
- Mottershead, D.G.; Harrison, C.A.; Mueller, T.D.; Stanton, P.G.; Gilchrist, R.B.; McNatty, K.P. Growth differentiation factor 9: Bone morphogenetic protein 15 (GDF9: BMP15) synergism and protein heterodimerization. Proc. Natl. Acad. Sci. USA 2013, 110, E2257. [Google Scholar] [CrossRef] [PubMed]
- Faiza, H.; Khan, M.; Rafiq, M.; Khan, A.A.; Rind, N.A.; Naqvi, S.H.A. Two novel mutations in exon 2 of bone morphogenetic protein (BMP) 15 gene in Pakistani infertile females. Saudi J. Biol. Sci. 2021, 28, 5364–5370. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, F.; Shimasaki, S. A novel function of bone morphogenetic protein-15 in the pituitary: Selective synthesis and secretion of FSH by gonadotropes. Endocrinology 2002, 143, 4938–4941. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.K.; Otsuka, F.; Shimasaki, S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. J. Biol. Chem. 2003, 278, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, F.; Shimasaki, S. A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell kit ligand: Its role in regulating granulosa cell mitosis. Proc. Natl. Acad. Sci. USA 2002, 99, 8060–8065. [Google Scholar] [CrossRef]
- Shimasaki, S.; Moore, R.K.; Erickson, G.F.; Otsuka, F. The role of bone morphogenetic proteins in ovarian function. Reprod. Biol. Endocrinol. 2004, 2, 58. [Google Scholar] [CrossRef]
- Rossi, R.O.D.S.; Portela, A.M.L.R.; Passos, J.R.S.; Cunha, E.V.; Silva, A.W.B.; Costa, J.J.N.; Silva, J.R.V. Effects of BMP-4 and FSH on growth, morphology and mRNA expression of oocyte-secreted factors in cultured bovine secondary follicles. Anim. Reprod. 2015, 12, 910–919. [Google Scholar]
- Juárez-Rodríguez, P.; Palma-Flores, C.; Téllez-Valencia, A. BMP-4 is a key signal in murine fetal testis development. J. Dev. Biol. 2016, 4, 5. [Google Scholar]
- Dalbies-Tran, R.; Cadoret, V.; Desmarchais, A.; Elis, S.; Maillard, V.; Monget, P.; Uzbekova, S. A comparative analysis of oocyte development in mammals. Cells 2020, 9, 1002. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Wei, Z.; Zhou, P.; Zu, Y.; Zhou, S.; Wen, Q.; Wang, J.; Cao, Y.; Ma, X. Mutational analysis of human bone morphogenetic protein 15 in Chinese women with polycystic ovary syndrome. Metabolism 2011, 60, 1511–1514. [Google Scholar] [CrossRef]
- Wu, Y.T.; Tang, L.; Cai, J.; Lu, X.E.; Xu, J.; Zhu, X.M.; Luo, Q.; Huang, H.F. High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development. Hum. Reprod. 2007, 22, 1526–1531. [Google Scholar] [CrossRef]
- Shekarian, A.; Nadia Sharifi, Z.; Nazarnejad, M.M.; Saeinia, A.; Abdi, S. In Vitro Culture of Mouse Preantral Follicle in Supplemented Medium with Bone Morphogenetic Protein 15 (BMP15). J. Otorhinolaryngol. Facial Plast. Surg. 2021, 6, 1–7. [Google Scholar]
- Galloway, S.M.; Gregan, S.M.; Wilson, T.; McNatty, K.P.; Juengel, J.L.; Ritvos, O.; Davis, G.H. Bmp15 mutations and ovarian function. Mol. Cell. Endocrinol. 2002, 191, 15–18. [Google Scholar] [CrossRef]
- Hanrahan, J.P.; Gregan, S.M.; Mulsant, P.; Mullen, M.; Davis, G.H.; Powell, R.; Galloway, S.M. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 2004, 70, 900–909. [Google Scholar] [CrossRef]
- Hernández-Montiel, W.; Martínez-Núñez, M.A.; Ramón-Ugalde, J.P.; Román-Ponce, S.I.; Calderón-Chagoya, R.; Zamora-Bustillos, R. Genome-Wide Association Study Reveals Candidate Genes for Litter Size Traits in Pelibuey Sheep. Animals 2020, 10, 434. [Google Scholar] [CrossRef]
- Ferrarini, E.; De Marco, G.; Orsolini, F.; Gianetti, E.; Benelli, E.; Fruzzetti, F.; Simoncini, T.; Agretti, P.; Tonacchera, M. Characterization of a novel mutation V136L in bone morphogenetic protein 15 identified in a woman affected by POI. J. Ovarian Res. 2021, 14, 85. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Lei, L.; Zhang, J.; Zhou, Q.; Han, J.; Zou, S. Effects of BMP-4 on the expression of type I collagen and MMP-1 in human skin fibroblasts. J. Dermatol. Sci. 2013, 71, 187–195. [Google Scholar]
- Wang, F.; Chu, M.; Pan, L.; Wang, X.; He, X.; Zhang, R.; Di, R. Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals 2021, 11, 571. [Google Scholar] [CrossRef]
- Estienne, A.; Lahoz, B.; Jarrier-Gaillard, P.; Bodin, L.; Folch, J.; Alabart, J.L.; Monniaux, D. BMP15 regulates the inhibin/activin system independently of ovulation rate control in sheep. Reproduction 2017, 153, 395–404. [Google Scholar] [CrossRef]
- Zhang, H.; Klausen, C.; Zhu, H.; Chang, H.M.; Leung, P.C. BMP4 and BMP7 suppress StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 in human granulosa-lutein cells. Endocrinology 2015, 156, 4269–4280. [Google Scholar] [CrossRef]
- Haas, C.S.; Rovani, M.T.; Ilha, G.F.; Bertolin, K.; Ferst, J.G.; Bridi, A.; Gasperin, B.G. Transforming growth factor-beta family members are regulated during induced luteolysis in cattle. Anim. Reprod. 2019, 16, 829–837. [Google Scholar] [CrossRef]
- da Cunha, E.V.; de Souza, G.B.; Passos, J.R.S.; Silva, A.W.B.; Dau, A.M.; Saraiva, M.V.A.; Dau, A.M.; Saraiva, M.V.; Lobo, R.N.; Silva, J.R. Effects of bone morphogenetic protein 4 (BMP4) on in vitro development and survival of bovine preantral follicles enclosed in fragments ovarian tissue. Zygote 2017, 25, 256–264. [Google Scholar] [CrossRef]
- Childs, A.J.; Kinnell, H.L.; Collins, C.S.; Hogg, K.; Bayne, R.A.; Green, S.J.; McNeilly, A.S.; Anderson, R.A. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis. Stem Cells 2010, 28, 1368–1378. [Google Scholar] [CrossRef]
- Winnier, G.; Blessing, M.; Labosky, P.A.; Hogan, B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995, 9, 2105–2116. [Google Scholar] [CrossRef]
- Tanwar, P.S.; McFarlane, J.R. Dynamic expression of bone morphogenetic protein 4 in reproductive organs of female mice. Reproduction 2011, 142, 573–579. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kwan, K.-M.; Carroll, T.J.; McMahon, A.P.; Mendelsohn, C.L.; Behringer, R.R. Distinct and sequential tissue-specific activities of the LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney development. Development 2005, 132, 2809–2823. [Google Scholar] [CrossRef]
- Koch, L. BMPR-2 signalling is essential for maintenance of pregnancy. Nat. Rev. Endocrinol. 2013, 9, 380. [Google Scholar] [CrossRef]
- Nilsson, E.E.; Skinner, M.K. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol. Reprod. 2003, 69, 1265–1272. [Google Scholar] [CrossRef]
- Kumar, S.; Punetha, M.; Jose, B.; Bharati, J.; Khanna, S.; Sonwane, A.; Green, J.A.; Whitworth, K.; Sarkar, M. Modulation of granulosa cell function via CRISPR-Cas fueled editing of BMPR-IB gene in goats (Capra hircus). Sci. Rep. 2020, 10, 20446. [Google Scholar] [CrossRef]
- Lawson, K.A.; Dunn, N.R.; Roelen, B.A.J.; Zeinstra, L.M.; Davis, A.M.; Wright, C.V.E.; Korving, J.P.W.F.M.; Hogan, B.L.M. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999, 13, 424–436. [Google Scholar] [CrossRef]
- Magro-Lopez, E.; Muñoz-Fernández, M.Á. The Role of BMP Signaling in Female Reproductive System Development and Function. Int. J. Mol. Sci. 2021, 22, 11927. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Carracedo, R.; Tesoro, L.; Hernandez, I.; Diez-Mata, J.; Filice, M.; Toro, R.; Rodriguez-Piñero, M.; Zamorano, J.L.; Saura, M.; Zaragoza, C. Non-Invasive Detection of Extracellular Matrix Metalloproteinase Inducer EMMPRIN, a New Therapeutic Target against Atherosclerosis, Inhibited by Endothelial Nitric Oxide. Int. J. Mol. Sci. 2018, 19, 3248. [Google Scholar] [CrossRef] [PubMed]
- Nabeshima, K.; Iwasaki, H.; Koga, K.; Hojo, H.; Suzumiya, J.; Kikuchi, M. Emmprin (basigin/CD147): Matrix metalloproteinase modulator and multifunctional cell recognition molecule that plays a critical role in cancer progression. Pathol. Int. 2006, 56, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Sheu, B.-C.; Chang, W.C.; Cheng, C.Y.; Wang, P.H.; Lin, S.; Huang, S.C. Extracellular Matrix Proteases—Cytokine Regulation Role in Cancer and Pregnancy. Front. Biosci. 2009, 14, 1571–1588. [Google Scholar]
- Yang, J.; Wu, J.; Guo, F.; Wang, D.; Chen, K.; Li, J.; Du, L.; Yin, A. Maternal serum disintegrin and metalloprotease protein-12 in early pregnancy as a potential marker of adverse pregnancy outcomes. PLoS ONE 2014, 9, e97284. [Google Scholar] [CrossRef] [PubMed]
- Davidson, B.; Goldberg, I.; Berner, A.; Kristensen, G.B.; Reich, R. EMMPRIN (extracellular matrix metalloproteinase inducer) is a novel marker of poor outcome in serous ovarian carcinoma. Clin. Exp. Metastasis 2003, 20, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Muramatsu, T.; Miyauchi, T. Basigin (CD147): A multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histol. Histopathol. 2003, 18, 981–987. [Google Scholar] [PubMed]
- Biswas, C.; Zhang, Y.; DeCastro, R.; Guo, H.; Nakamura, T.; Kataoka, H.; Nabeshima, K. The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res. 1995, 55, 434–439. [Google Scholar] [PubMed]
- Fan, Q.W.; Yuasa, S.; Kuno, N.; Senda, T.; Kobayashi, M.; Muramatsu, T.; Kadomatsu, K. Expression of basigin, a member of the immunoglobulin superfamily, in the mouse central nervous system. Neurosci. Res. 1998, 30, 53–63. [Google Scholar] [CrossRef]
- Nabha, S.M.; Bonfil, R.D.; Aboukameel, A. Extracellular matrix metalloproteinase inducer (EMMPRIN) in cancer and inflammation. Cancer Metastasis Rev. 2008, 27, 303–315. [Google Scholar]
- Muramatsu, T.; Miyauchi, T. Extracellular matrix metalloproteinase inducer (EMMPRIN/CD147): Unique glycoprotein modulator of matrix metalloproteinases in the pathogenesis of cancer. J. Biochem. 2003, 134, 657–661. [Google Scholar]
- Curry, T.E.; Osteen, K.G. The matrix metalloproteinase system: Changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr. Rev. 2003, 24, 428–465. [Google Scholar] [CrossRef]
- Fingleton, B. Matrix metalloproteinases as valid clinical targets. Curr. Pharm. Des. 2007, 13, 333–346. [Google Scholar] [CrossRef]
- Bourguignon, L.Y.W.; Gilad, E.; Brightman, A.; Diedrich, F. Hyaluronan-CD44 interaction with EMMPRIN (CD147) regulates MMP-9 expression and cell migration in ovarian tumor cells. J. Biol. Chem. 2006, 281, 25893–25908. [Google Scholar]
- Huang, L.; Zhang, L.; Liu, X.; Zhang, Y.; Li, Y.; Xu, Y.; Sun, S. EMMPRIN promotes angiogenesis, proliferation, invasion and resistance to sunitinib in renal cell carcinoma, and its level predicts patient outcome. PLoS ONE 2019, 14, e0218439. [Google Scholar]
- Yan, L.; Zucker, S.; Toole, B.P. Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb. Haemost. 2005, 93, 199–204. [Google Scholar] [CrossRef]
- Pata, S.; Surinkaew, S.; Takheaw, N.; Laopajon, W.; Chuensirikulchai, K.; Kasinrerk, W. Differential CD147 functional epitopes on distinct leukocyte subsets. Front. Immunol. 2021, 12, 3157. [Google Scholar] [CrossRef]
- Huang, Z.; Tan, N.; Guo, W.; Wang, L.; Li, H.; Zhang, T.; Liu, X.; Xu, Q.; Li, J.; Guo, Z. Overexpression of EMMPRIN isoform 2 is associated with head and neck cancer metastasis. PLoS ONE 2014, 9, e91596. [Google Scholar] [CrossRef]
- Guindolet, D.; Gabison, E.E. Role of CD147 (EMMPRIN/Basigin) in tissue remodeling. Anatom. Rec. 2020, 303, 1584–1589. [Google Scholar] [CrossRef]
- Yang, M.; Yuan, Y.; Zhang, H.; Yan, M.; Wang, S.; Feng, F.; Ji, P.; Li, Y.; Li, B.; Gao, G.; et al. Prognostic significance of CD147 in patients with glioblastoma. J. Neurooncol. 2013, 115, 19–26. [Google Scholar] [CrossRef]
- Smedts, A.M.; Lele, S.M.; Modesitt, S.C.; Curry, T.E. Expression of an extracellular matrix metalloproteinase inducer (basigin) in the human ovary and ovarian endometriosis. Fertil. Steril. 2006, 86, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Ni, H.; Ma, X.H.; Xu, L.B.; Kadomatsu, K.; Muramatsu, T.; Yang, Z.M. Basigin expression and regulation in mouse ovary during the sexual maturation and development of corpus luteum. Mol. Reprod. Dev. 2004, 68, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Lescaille, G.; Menashi, S.; Cavelier-Balloy, B.; Khayati, F.; Quemener, C.; Podgorniak, M.P.; Naïmi, B.; Calvo, F.; Lebbe, C.; Mourah, S. EMMPRIN/CD147 up-regulates urokinase-type plasminogen activator: Implications in oral tumor progression. BMC Cancer 2012, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Igakura, T.; Kadomatsu, K.; Kaname, T.; Muramatsu, H.; Fan, Q.W.; Miyauchi, T.; Toyama, Y.; Kuno, N.; Yuasa, S.; Takahashi, M.; et al. A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in periimplantation development and spermatogenesis. Dev. Biol. 1998, 194, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Li, W.; Tran, V.; Khalil, R.A. EMMPRIN-mediated induction of uterine and vascular matrix metalloproteinases during pregnancy and in response to estrogen and progesterone. Biochem. Pharmacol. 2013, 86, 734–747. [Google Scholar] [CrossRef] [PubMed]
- Mazzuca, M.Q.; Wlodek, M.E.; Dragomir, N.M.; Parkington, H.C.; Tare, M. Uteroplacental insufficiency programs regional vascular dysfunction and alters arterial stiffness in female offspring. J. Physiol. 2010, 588, 1997–2010. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Cheng, J.C.; Klausen, C.; Leung, P.C. BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells. Mol. Endocrinol. 2016, 27, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.D.; Dhar, B.; Kundu, S.; Das, N.; Choudhury, A.P.; Deb, M.; Das, A.; Das, A.; Das, N.; Choudhury, B.; et al. Association between gene expression levels of GDF9 and BMP15 and clinicopathological factors in the prognosis of female infertility in northeast Indian populations. Meta Gene 2021, 30, 100964. [Google Scholar] [CrossRef]
- Alam, M.H.; Miyano, T. Interaction between growing oocytes and granulosa cells in vitro. Reprod. Med. Biol. 2019, 19, 13–23. [Google Scholar] [CrossRef]
- Riepsamen, A.H.; Chan, K.; Lien, S.; Sweeten, P.; Donoghoe, M.W.; Walker, G.; Fraison, E.H.; Stocker, W.A.; Walton, K.L.; Harrison, C.A.; et al. Serum concentrations of oocyte-secreted factors BMP15 and GDF9 during IVF and in women with reproductive pathologies. Endocrinology 2019, 160, 2298–2313. [Google Scholar] [CrossRef]
- Riepsamen, A.H.; Donoghoe, M.W.; Indran, I.R.; Hechtman, L.; Robertson, D.M.; Gilchrist, R.B.; Ledger, W.L.; Yong, E.L. Serum GDF9 and BMP15 as potential markers of ovarian function in women with and without polycystic ovary syndrome. Clin. Endocrinol. 2023, 98, 567–577. [Google Scholar] [CrossRef]
- Juengel, J.L.; Bodensteiner, K.J.; Heath, D.A.; Hudson, N.L.; Moeller, C.L.; Smith, P.; Galloway, S.M.; Davis, G.H.; Sawyer, H.R.; McNatty, K.P. Physiology of GDF9 and BMP15 Signalling Molecules. Anim. Reprod. Sci. 2004, 82–83, 447–460. [Google Scholar] [CrossRef]
- Abdulhameed, W.; Hassan, F. Serum Follicular Fluid Growth Differentiation Factor 9 (GDF-9) and Bone Morphogenic Protein 15 (BMP-15) as Markers of Ovarian Reserve. Al-Anbar Med. J. 2024, 20, 25–30. [Google Scholar] [CrossRef]
- McIntosh, C.J.; Lun, S.; Lawrence, S.; Western, A.H.; McNatty, K.P.; Juengel, J.L. The Proregion of Mouse BMP15 Regulates the Cooperative Interactions of BMP15 and GDF9. Biol. Reprod. 2008, 79, 889–896. [Google Scholar] [CrossRef]
- Hashimoto, O.; Moore, R.K.; Shimasaki, S. Posttranslational Processing of Mouse and Human BMP15: Potential Implication in the Determination of Ovulation Quota. Proc. Natl. Acad. Sci. USA 2005, 102, 5426–5431. [Google Scholar] [CrossRef]
- McNatty, K.P.; Juengel, J.L.; Reader, K.L.; Lun, S.; Myllymaa, S.; Lawrence, S.B. Bone Morphogenetic Protein 15 and Growth Differentiation Factor 9 Co-operate to Regulate Granulosa Cell Function. Reproduction 2005, 129, 473–480. [Google Scholar] [CrossRef]
- Hussein, T.S.; Thompson, J.G.; Gilchrist, R.B. Oocyte Secreted Factors Enhance Oocyte Developmental Competence. Dev. Biol. 2006, 296, 514–521. [Google Scholar] [CrossRef]
- Gode, F.; Gulekli, B.; Dogan, E.; Korhan, P.; Dogan, S.; Bige, O.; Cimrin, D.; Atabey, N. Influence of Follicular Fluid GDF9 and BMP15 on Embryo Quality. Fertil. Steril. 2011, 95, 2274–2278. [Google Scholar] [CrossRef]
- Aaltonen, J.; Laitinen, M.P.; Vujolainen, K.; Jaatinen, R.; Kuitunen, N.; Seppa, L.; Louhio, H.; Tuuri, T.; Sjoberg, J.; Butzow, R.; et al. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J. Clin. Endocrinol. Metab. 1999, 84, 2744–2750. [Google Scholar] [CrossRef]
- Spicer, L.J.; Aad, P.Y.; Allen, D.T.; Mazerbourg, S.; Hsueh, A.J. Growth differentiation factor-9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells. J. Endocrinol. 2006, 189, 329–339. [Google Scholar] [CrossRef]
- Kawashima, I.; Kawamura, K. Regulation of follicle growth through hormonal factors and mechanical cues mediated by Hippo signaling pathway. Syst. Biol. Reprod. Med. 2018, 64, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Shimasaki, S.; Moore, R.K.; Otsuka, F.; Erickson, G.F. The bone morphogenetic protein system in mammalian reproduction. Endocr. Rev. 2004, 25, 72–101. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Qin, Q.Y.; Qu, J.X.; Wang, H.Y.; Yan, J. Where are the theca cells from: The mechanism of theca cells derivation and differentiation. Chin. Med. J. 2020, 133, 1711. [Google Scholar] [CrossRef] [PubMed]
- Heath, D.A.; Pitman, J.L.; McNatty, K.P. Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors. Reproduction 2017, 154, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Brown, C.W.; Matzuk, M.M. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr. Rev. 2002, 23, 787–823. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.K.; Erickson, G.F.; Shimasaki, S. Are BMP-15 and GDF-9 primary determinants of ovulation quota in mammals? Trends Endocrinol. Metab. 2004, 15, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Takeda, K.; Imamura, T.; Aoki, H.; Sampath, T.K.; Enomoto, S.; Kawabata, M.; Kato, M.; Ichijo, H.; Miyazono, K. Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol. Biol. Cell 1999, 10, 3801–3813. [Google Scholar] [CrossRef]
- Yu, P.; Guo, J.; Liu, Y.; Zhang, C.; Qian, W.; Wang, Y. Expression of extracellular matrix metalloproteinase inducer glycosylation and its effect on angiogenesis in non-small cell lung cancer. Oncol. Lett. 2017, 14, 2769–2774. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fountas, S.; Petinaki, E.; Bolaris, S.; Kargakou, M.; Dafopoulos, S.; Zikopoulos, A.; Moustakli, E.; Sotiriou, S.; Dafopoulos, K. The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. J. Clin. Med. 2024, 13, 3775. https://doi.org/10.3390/jcm13133775
Fountas S, Petinaki E, Bolaris S, Kargakou M, Dafopoulos S, Zikopoulos A, Moustakli E, Sotiriou S, Dafopoulos K. The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. Journal of Clinical Medicine. 2024; 13(13):3775. https://doi.org/10.3390/jcm13133775
Chicago/Turabian StyleFountas, Serafeim, Efthymia Petinaki, Stamatis Bolaris, Magdalini Kargakou, Stefanos Dafopoulos, Athanasios Zikopoulos, Efthalia Moustakli, Sotirios Sotiriou, and Konstantinos Dafopoulos. 2024. "The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization" Journal of Clinical Medicine 13, no. 13: 3775. https://doi.org/10.3390/jcm13133775
APA StyleFountas, S., Petinaki, E., Bolaris, S., Kargakou, M., Dafopoulos, S., Zikopoulos, A., Moustakli, E., Sotiriou, S., & Dafopoulos, K. (2024). The Roles of GDF-9, BMP-15, BMP-4 and EMMPRIN in Folliculogenesis and In Vitro Fertilization. Journal of Clinical Medicine, 13(13), 3775. https://doi.org/10.3390/jcm13133775