Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (427)

Search Parameters:
Keywords = triple frequency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 673 KiB  
Article
Bridge Tower Warning Method Based on Improved Multi-Rate Fusion Under Strong Wind Action
by Yan Shi, Yan Wang, Lu-Nan Wang, Wei-Nan Wang and Tao-Yuan Yang
Buildings 2025, 15(15), 2733; https://doi.org/10.3390/buildings15152733 (registering DOI) - 2 Aug 2025
Abstract
The displacement of bridge towers is relatively large under strong wind action. Changes in tower displacement can reflect the usage status of the bridge towers. Therefore, it is necessary to conduct performance warning research on tower displacement under strong wind action. In this [...] Read more.
The displacement of bridge towers is relatively large under strong wind action. Changes in tower displacement can reflect the usage status of the bridge towers. Therefore, it is necessary to conduct performance warning research on tower displacement under strong wind action. In this paper, the triple standard deviation method, multiple linear regression method, and interpolation method are used to preprocess monitoring data with skipped points and missing anomalies. An improved multi-rate data fusion method, validated using simulated datasets, was applied to correct monitoring data at bridge tower tops. The fused data were used to feed predictive models and generate structural performance alerts. Spectral analysis confirmed that the fused displacement measurements achieve high precision by effectively merging the low-frequency GPS signal with the high-frequency accelerometer signal. Structural integrity monitoring of wind-loaded bridge towers used modeling residuals as alert triggers. The efficacy of this proactive monitoring strategy has been quantitatively validated through statistical evaluation of alarm accuracy rates. Full article
15 pages, 4375 KiB  
Article
Design of 5G-Advanced and Beyond Millimeter-Wave Filters Based on Hybrid SIW-SSPP and Metastructures
by Qingqing Liao, Guangpu Tang, Tong Xiao, Chengguo Liu, Lifeng Huang and Hongguang Wang
Electronics 2025, 14(15), 3026; https://doi.org/10.3390/electronics14153026 - 29 Jul 2025
Viewed by 149
Abstract
This article investigates how to exploit the high-frequency mmWave for 5G-advanced and beyond, which requires new filters for the wide bandpass and its multi-sub-band. Based on the substrate-integrated waveguide (SIW), spoof surface plasmon polariton (SSPP), and metastructures, like complementary split-ring resonators (CSRRs), the [...] Read more.
This article investigates how to exploit the high-frequency mmWave for 5G-advanced and beyond, which requires new filters for the wide bandpass and its multi-sub-band. Based on the substrate-integrated waveguide (SIW), spoof surface plasmon polariton (SSPP), and metastructures, like complementary split-ring resonators (CSRRs), the development of a wide bandpass filter and a multi-sub-band filter is proposed, along with an experimental realization to verify the model. The upper and lower cutoff frequencies of the wide bandpass are controlled through an SIW-SSPP structure, whereas the corresponding wide bandpass and its multi-sub-band filters are designed through incorporating new metastructures. The frequency range of 24.25–29.5 GHz, which covers the n257, n258, and n261 bands for 5G applications, was selected for verification. The basic SIW-SSPP wide bandpass structure of 24.25–29.5 GHz was designed first. Then, by incorporating an Archimedean spiral configuration, the insertion loss within the passband was reduced from 1 dB to 0.5 dB, while the insertion loss in the high-frequency stopband was enhanced from 40 dB to 70 dB. Finally, CSRRs were integrated to effectively suppress undesired frequency components within the bandpass, thereby achieving multi-sub-band filters with low insertion losses with a triple-sub-band filter of 0.5 dB, 0.7 dB, and 0.8 dB in turn. The experimental results showed strong agreement with the design scheme, thereby confirming the rationality of the design. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

25 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 96
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 1017 KiB  
Article
Elevated Serum TNF-α/IL-1β Levels and Under-Nutrition Predict Early Mortality and Hospital Stay Burden in Pulmonary Tuberculosis
by Ionut-Valentin Stanciu, Ariadna-Petronela Fildan, Adrian Cosmin Ilie, Cristian Oancea, Livia Stanga, Emanuela Tudorache, Felix Bratosin, Ovidiu Rosca, Iulia Bogdan, Doina-Ecaterina Tofolean, Ionela Preotesoiu, Viorica Zamfir and Elena Dantes
J. Clin. Med. 2025, 14(15), 5327; https://doi.org/10.3390/jcm14155327 - 28 Jul 2025
Viewed by 229
Abstract
Background/Objectives: Romania remains a tuberculosis (TB) hotspot in the European Union, yet host-derived factors of poor outcomes are poorly characterised. We quantified circulating pro-inflammatory cytokines and examined their interplay with behavioural risk factors, the nutritional status, and the clinical course in adults hospitalised [...] Read more.
Background/Objectives: Romania remains a tuberculosis (TB) hotspot in the European Union, yet host-derived factors of poor outcomes are poorly characterised. We quantified circulating pro-inflammatory cytokines and examined their interplay with behavioural risk factors, the nutritional status, and the clinical course in adults hospitalised with pulmonary TB. We analysed 80 adults with microbiologically confirmed pulmonary TB and 40 respiratory symptom controls; four TB patients (5%) died during hospitalisation, all within 10 days of admission. Methods: A retrospective analytical case–control study was conducted at the Constanța regional TB referral centre (October 2020—October 2023). Patients with smear- or culture-confirmed TB were frequency-matched by sex, 10-year age band, and BMI class to culture-negative respiratory controls at a 2:1 ratio. The patients’ serum interferon-γ (IFN-γ), interleukin-1α (IL-1α), interleukin-1β (IL-1β), and tumour-necrosis-factor-α (TNF-α) were quantified within 24 h of admission; the neutrophil/lymphocyte ratio (NLR) was extracted from full blood counts. Independent predictors of in-hospital mortality were identified by multivariable logistic regression; factors associated with the length of stay (LOS) were modelled with quasi-Poisson regression. Results: The median TNF-α (24.1 pg mL−1 vs. 16.2 pg mL−1; p = 0.009) and IL-1β (5.34 pg mL−1 vs. 3.67 pg mL−1; p = 0.008) were significantly higher in the TB cases than in controls. TNF-α was strongly correlated with IL-1β (ρ = 0.80; p < 0.001), while NLR showed weak concordance with multiplex cytokine patterns. Among the patients with TB, four early deaths (5%) exhibited a tripling of TNF-α (71.4 pg mL−1) and a doubling of NLR (7.8) compared with the survivors. Each 10 pg mL−1 rise in TNF-α independently increased the odds of in-hospital death by 1.8-fold (95% CI 1.1–3.0; p = 0.02). The LOS (median 29 days) was unrelated to the smoking, alcohol, or comorbidity load, but varied across BMI strata: underweight, 27 days; normal weight, 30 days; overweight, 23 days (Kruskal–Wallis p = 0.03). In a multivariable analysis, under-nutrition (BMI < 18.5 kg m−2) prolonged the LOS by 19% (IRR 1.19; 95% CI 1.05–1.34; p = 0.004) independently of the disease severity. Conclusions: A hyper-TNF-α/IL-1β systemic signature correlates with early mortality in Romanian pulmonary TB, while under-nutrition is the dominant modifiable determinant of prolonged hospitalisation. Admission algorithms that pair rapid TNF-α testing with systematic nutritional assessment could enable targeted host-directed therapy trials and optimise bed utilisation in high-burden settings. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

23 pages, 7469 KiB  
Article
Dark Sweet Cherry Anthocyanins Suppressed Triple-Negative Breast Cancer Pulmonary Metastasis and Downregulated Genes Associated with Metastasis and Therapy Resistance In Vivo
by Ana Nava-Ochoa, Lauren W. Stranahan, Rodrigo San-Cristobal, Susanne U. Mertens-Talcott and Giuliana D. Noratto
Int. J. Mol. Sci. 2025, 26(15), 7225; https://doi.org/10.3390/ijms26157225 - 25 Jul 2025
Viewed by 328
Abstract
Dark sweet cherries (DSC) phytochemicals have emerged as a promising dietary strategy to combat triple-negative breast cancer (TNBC). This study explored the effects of DSC extract rich in anthocyanins (ACN) as a chemopreventive agent and as a complement to doxorubicin (DOX) in treating [...] Read more.
Dark sweet cherries (DSC) phytochemicals have emerged as a promising dietary strategy to combat triple-negative breast cancer (TNBC). This study explored the effects of DSC extract rich in anthocyanins (ACN) as a chemopreventive agent and as a complement to doxorubicin (DOX) in treating TNBC tumors and metastasis using a 4T1 syngeneic animal model. Initiating ACN intake as a chemopreventive one week before 4T1 cell implantation significantly delayed tumor growth without any signs of toxicity. Both DOX treatment and the combination of DOX-ACN effectively delayed tumor growth rate, but DOX-ACN allowed for body weight gain, which was hindered by DOX alone. As a chemopreventive, ACN downregulated metastasis- and immune-suppression-related genes, including STAT3, Snail1, mTOR, SIRT1, TGFβ1, IKKβ, and those unaffected by DOX alone, such as HIF, Cd44, and Rgcc32. Correlations between mRNA levels seen in control and DOX groups were absent in ACN and/or DOX-ACN groups, indicating that Cd44, mTOR, Rgcc32, SIRT1, Snail1, and TGFβ1 may be ACN targets. The DOX-ACN treatment showed a trend toward enhanced efficacy involving CREB, PI3K, Akt-1, and Vim compared to DOX alone. Particularly, ACN significantly suppressed lung metastasis compared to the other groups. ACN also decreased the frequency and incidence of metastasis in the liver, heart, kidneys, and spleen, while their metastatic area (%) and number of breast cancer (BC) metastatic tumor nodules were lowered without reaching significance. Further research is needed to explore the efficacy of combining ACN with drug therapy in the context of drug resistance. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Anticancer Effects)
Show Figures

Graphical abstract

22 pages, 4200 KiB  
Article
Investigation of Personalized Visual Stimuli via Checkerboard Patterns Using Flickering Circles for SSVEP-Based BCI System
by Nannaphat Siribunyaphat, Natjamee Tohkhwan and Yunyong Punsawad
Sensors 2025, 25(15), 4623; https://doi.org/10.3390/s25154623 - 25 Jul 2025
Viewed by 585
Abstract
In this study, we conducted two steady-state visual evoked potential (SSVEP) studies to develop a practical brain–computer interface (BCI) system for communication and control applications. The first study introduces a novel visual stimulus paradigm that combines checkerboard patterns with flickering circles configured in [...] Read more.
In this study, we conducted two steady-state visual evoked potential (SSVEP) studies to develop a practical brain–computer interface (BCI) system for communication and control applications. The first study introduces a novel visual stimulus paradigm that combines checkerboard patterns with flickering circles configured in single-, double-, and triple-layer forms. We tested three flickering frequency conditions: a single fundamental frequency, a combination of the fundamental frequency and its harmonics, and a combination of two fundamental frequencies. The second study utilizes personalized visual stimuli to enhance SSVEP responses. SSVEP detection was performed using power spectral density (PSD) analysis by employing Welch’s method and relative PSD to extract SSVEP features. Commands classification was carried out using a proposed decision rule–based algorithm. The results were compared with those of a conventional checkerboard pattern with flickering squares. The experimental findings indicate that single-layer flickering circle patterns exhibit comparable or improved performance when compared with the conventional stimuli, particularly when customized for individual users. Conversely, the multilayer patterns tended to increase visual fatigue. Furthermore, individualized stimuli achieved a classification accuracy of 90.2% in real-time SSVEP-based BCI systems for six-command generation tasks. The personalized visual stimuli can enhance user experience and system performance, thereby supporting the development of a practical SSVEP-based BCI system. Full article
Show Figures

Figure 1

25 pages, 4957 KiB  
Article
Monitoring of the Single-Cell Behavior of an Escherichia coli Reporter Strain Producing L-phenylalanine in a Scale-Down Bioreactor by Automated Real-Time Flow Cytometry
by Prasika Arulrajah, Sophi Katharina Riessner, Anna-Lena Heins and Dirk Weuster-Botz
BioTech 2025, 14(3), 54; https://doi.org/10.3390/biotech14030054 - 3 Jul 2025
Viewed by 334
Abstract
Large-scale bioprocesses often suffer from spatial heterogeneities, which impact microbial performance and often lead to phenotypic population heterogeneity. To better understand these effects at the single-cell level, this study applied, for the first time, automated real-time flow cytometry (ART-FCM) to monitor L-phenylalanine production [...] Read more.
Large-scale bioprocesses often suffer from spatial heterogeneities, which impact microbial performance and often lead to phenotypic population heterogeneity. To better understand these effects at the single-cell level, this study applied, for the first time, automated real-time flow cytometry (ART-FCM) to monitor L-phenylalanine production with an Escherichia coli triple reporter strain in a fed-batch process with glycerol as the carbon source. The strain was cultivated in both a well-mixed stirred-tank bioreactor (STR) and a scale-down two-compartment bioreactor (TCB), consisting of an STR and a coiled flow inverter (CFI) in bypass, to simulate spatial heterogeneities. ART-FCM enabled autonomous, high-frequency sampling every 20 min, allowing for real-time tracking of fluorescence signals linked to growth (rrnB-mEmerald), oxygen availability (narGHIJ-CyOFP1), and product formation (aroFBL-mCardinal2). The STR exhibited uniform reporter expression and higher biomass accumulation, while the TCB showed delayed product formation and pronounced phenotypic diversification depending on the set mean residence time in the CFI. Single-cell fluorescence distributions revealed that the shorter mean residence time in the CFI resulted in pronounced subpopulation formation, whereas longer exposure attenuated heterogeneity, indicating transcriptional adaptation. This finding highlights a critical aspect of scale-down studies: increased exposure duration to perturbations can enhance population robustness. Overall, this study demonstrates the relevance of ART-FCM, in combination with a multi-reporter strain, as a pioneering tool for capturing dynamic cellular behavior and correlating it to process performance, providing deeper insights into microbial heterogeneity under fluctuating bioprocess conditions. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Figure 1

11 pages, 614 KiB  
Article
Jumping Performance Development in Junior Single Figure Skating at International Championships and Competitions and Its Implications for Higher Risk of Acute and Overuse Injuries: A Retrospective Observational Study from 2005 to 2020
by Zoé Stehlin, Felix Karl-Ludwig Klingebiel, Hans-Christoph Pape, Bergita Ganse and Thomas Rauer
J. Funct. Morphol. Kinesiol. 2025, 10(3), 251; https://doi.org/10.3390/jfmk10030251 - 1 Jul 2025
Viewed by 271
Abstract
Background: Although the difficulty level of figure skating programs has increased in the last two decades, particularly at the junior level, trends in performance have not been reported. This retrospective observational study investigated performance development trends among the top five junior figure [...] Read more.
Background: Although the difficulty level of figure skating programs has increased in the last two decades, particularly at the junior level, trends in performance have not been reported. This retrospective observational study investigated performance development trends among the top five junior figure skaters competing at international levels in both the ladies’ and men’s singles disciplines from 2005 to 2020. Data from 160 junior single ladies and 160 junior single men were analyzed. The focus was on the progression of technical elements—particularly jumps—and their potential correlation with injury risk. It was hypothesized that younger athletes are increasingly performing jumps with more revolutions, thereby enhancing overall competition standards. Materials and Methods: Using data from the Junior World Championships and Junior Grand Prix Finals, linear regression analysis and one-way ANOVA were conducted to track the frequency of double, triple, and quadruple jumps, as well as trends in age development among athletes in the singles categories from 2005 to 2020. Results: The results indicate a significant increase in the execution of higher-revolution jumps among junior athletes. Between 2005 and 2012, the frequency of double jumps declined across all events, with the most pronounced reductions observed in the Ladies’ Junior World Championships (Δ = 0.216, p = 0.004, d = 1.64) and the Men’s Junior World Championships (Δ = 0.500, p = 0.001, d = 1.82). From 2005 to 2011, the frequencies of triple and quadruple jumps increased, while double jumps remained stable or showed only slight increases. Triple jumps showed slight downward trends (e.g., R2 = 0.0202 at the Men’s Junior World Championships). Although still rare, the frequency of quadruple jumps has shown a consistent upward trend across multiple competitions. Between 2000 and 2009, all four events exhibited declining age trends, with decreases ranging from −0.029 to −0.078 years of age per year. In the subsequent decade (2010–2020), when averaged across all events, the observed difference slope (Δ = 0.014) indicated a continued decline in athlete age. Conclusions: In summary, increases in more difficult jumps were found, with simultaneous decreases in less difficult jumps. As jump complexity rises, a parallel increase in sport-specific injury incidence can be anticipated, highlighting the need for proactive strategies for injury prevention and athlete well-being. Full article
(This article belongs to the Section Athletic Training and Human Performance)
Show Figures

Figure 1

29 pages, 2914 KiB  
Article
Protein and Amino Acid Supplementation Among Recreational Gym Goers and Associated Factors—An Exploratory Study
by Sandor-Richard Nagy, Magdalena Mititelu, Violeta Popovici, Mihaela Gabriela Bontea, Annamaria Pallag and Tünde Jurca
J. Funct. Morphol. Kinesiol. 2025, 10(3), 248; https://doi.org/10.3390/jfmk10030248 - 28 Jun 2025
Viewed by 1508
Abstract
Objective: The present study investigated the relationship between protein and amino acid supplementation and various associated aspects among recreational gym goers at 2 gymnasiums in Oradea (Romania). Methods: A total of 165 gym goers (110 men and 55 women, most of them 18–30 [...] Read more.
Objective: The present study investigated the relationship between protein and amino acid supplementation and various associated aspects among recreational gym goers at 2 gymnasiums in Oradea (Romania). Methods: A total of 165 gym goers (110 men and 55 women, most of them 18–30 years old) with high educational levels were included in the present study, which was conducted as face-to-face interviews. Results: Participants were divided into 4 groups: protein supplement users (PSUs, 42/165), creatine supplement users (CSUs, 38/165), L-carnitine supplement users (LcSUs, 37/165), and protein + creatine + L-carnitine supplement users (PCLcSUs, 48/165). Most consumers were young (18–30 years) and preferred the triple combination. Females consumed PS and CS (38.2% and 34.5%, respectively), while the most-used NSs by males were PCLcS (36.4%) and LcS (27.3%). Obese gym goers opted for LcS consumption (r = 0.999, p < 0.05). Creatine and L-carnitine were consumed for force training (65.79 and 62.16%), while PCLcS and PS were used in cardio + force and force training in equal measures (42.86 and 47.92%, respectively). Most PSUs were gym goers for 7–12 months and more than 1 year (r = 0.999 and r = 0.952, respectively, p < 0.05), while PCLcSUs had a training frequency of at least 5 times a week (r = 0.968, p < 0.05). Muscle mass growth was the primary training focus for all NS users (57.89%), followed by muscular tonus (40.54%, p < 0.05). Almost 30% of one-only NS users reported various side effects, whereas all PCLcSUs claimed side effects (p < 0.05). Conclusions: Age and gender were key factors in diet type, training type, frequency, duration, scope, NS type, and dose intake. The frequency of side effects substantially depended on the kind of NS and the dose consumed. The present study’s results highlight the need for health professionals’ advice and monitoring in personalized diets and protein and amino acid supplementation in recreational gym goers. Full article
Show Figures

Figure 1

21 pages, 3691 KiB  
Article
A Syntax-Aware Graph Network with Contrastive Learning for Threat Intelligence Triple Extraction
by Zhenxiang He, Ziqi Zhao and Zhihao Liu
Symmetry 2025, 17(7), 1013; https://doi.org/10.3390/sym17071013 - 27 Jun 2025
Viewed by 357
Abstract
As Advanced Persistent Threats (APTs) continue to evolve, constructing a dynamic cybersecurity knowledge graph requires precise extraction of entity–relationship triples from unstructured threat intelligence. Existing approaches, however, face significant challenges in modeling low-frequency threat associations, extracting multi-relational entities, and resolving overlapping entity scenarios. [...] Read more.
As Advanced Persistent Threats (APTs) continue to evolve, constructing a dynamic cybersecurity knowledge graph requires precise extraction of entity–relationship triples from unstructured threat intelligence. Existing approaches, however, face significant challenges in modeling low-frequency threat associations, extracting multi-relational entities, and resolving overlapping entity scenarios. To overcome these limitations, we propose the Symmetry-Aware Prototype Contrastive Learning (SAPCL) framework for joint entity and relation extraction. By explicitly modeling syntactic symmetry in attack-chain dependency structures and its interaction with asymmetric adversarial semantics, SAPCL integrates dependency relation types with contextual features using a type-enhanced Graph Attention Network. This symmetry–asymmetry fusion facilitates a more effective extraction of multi-relational triples. Furthermore, we introduce a triple prototype contrastive learning mechanism that enhances the robustness of low-frequency relations through hierarchical semantic alignment and adaptive prototype updates. A non-autoregressive decoding architecture is also employed to globally generate multi-relational triples while mitigating semantic ambiguities. SAPCL was evaluated on three publicly available CTI datasets: HACKER, ACTI, and LADDER. It achieved F1-scores of 56.63%, 60.21%, and 53.65%, respectively. Notably, SAPCL demonstrated a substantial improvement of 14.5 percentage points on the HACKER dataset, validating its effectiveness in real-world cyber threat extraction scenarios. By synergizing syntactic–semantic multi-feature fusion with symmetry-driven dynamic representation learning, SAPCL establishes a symmetry–asymmetry adaptive paradigm for cybersecurity knowledge graph construction, thus enhancing APT attack tracing, threat hunting, and proactive cyber defense. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Artificial Intelligence for Cybersecurity)
Show Figures

Figure 1

17 pages, 3073 KiB  
Article
Forecast of Aging of PEMFCs Based on CEEMD-VMD and Triple Echo State Network
by Jie Sun, Shiyuan Pan, Qi Yang, Yiming Wang, Lei Qin, Wang Han, Ruixiang Wang, Lei Gong, Dongdong Zhao and Zhiguang Hua
Sensors 2025, 25(13), 3868; https://doi.org/10.3390/s25133868 - 21 Jun 2025
Viewed by 639
Abstract
Accurately forecasting the degradation trajectory of proton exchange membrane fuel cells (PEMFCs) across a spectrum of operational scenarios is indispensable for effective maintenance scheduling and robust health surveillance. However, this task is highly intricate due to the fluctuating nature of dynamic operating conditions [...] Read more.
Accurately forecasting the degradation trajectory of proton exchange membrane fuel cells (PEMFCs) across a spectrum of operational scenarios is indispensable for effective maintenance scheduling and robust health surveillance. However, this task is highly intricate due to the fluctuating nature of dynamic operating conditions and the limitations inherent in short-term forecasting techniques, which collectively pose significant challenges to achieving reliable predictions. To enhance the accuracy of PEMFC degradation forecasting, this research proposes an integrated approach that combines the complete ensemble empirical mode decomposition with the variational mode decomposition (CEEMD-VMD) and triple echo state network (TriESN) to predict the deterioration process precisely. Decomposition can filter out high-frequency noise and retain low-frequency degradation information effectively. Among data-driven methods, the echo state network (ESN) is capable of estimating the degradation performance of PEMFCs. To tackle the problem of low prediction accuracy, this study proposes a novel TriESN that builds upon the classical ESN. The proposed enhancement method seeks to refine the ESN architecture by reducing the impact of surrounding neurons and sub-reservoirs on active neurons, thus realizing partial decoupling of the ESN. On this basis of decoupling, the method takes into account the multi-timescale aging characteristics of PEMFCs to achieve precise prediction of remaining useful life. Overall, combining CEEMD-VMD with the TriESN strengthens feature depiction, fosters sparsity, diminishes the likelihood of overfitting, and augments the network’s capacity for generalization. It has been shown that the TriESN markedly improved the accuracy of long-term PEMFC degradation predictions in three different dynamic contexts. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 7793 KiB  
Article
Studies on Vibration and Synchronization Characteristics of an Anti-Resonance System Driven by Triple-Frequency Excitation
by Duyu Hou, Zheng Liang, Zhuozhuang Zhang and Zihan Wang
Machines 2025, 13(7), 534; https://doi.org/10.3390/machines13070534 - 20 Jun 2025
Viewed by 247
Abstract
In the continuous drilling process of oil wells, to achieve the efficient screening of drilling fluids by the vibrating screen while ensuring the safety of the screening operation, an anti-resonance system driven by two exciters with triple-frequency (denoted as 3:1 frequency ratio) is [...] Read more.
In the continuous drilling process of oil wells, to achieve the efficient screening of drilling fluids by the vibrating screen while ensuring the safety of the screening operation, an anti-resonance system driven by two exciters with triple-frequency (denoted as 3:1 frequency ratio) is proposed. Initially, differential motion equations are formulated utilizing Lagrange’s equation, followed by the definition of vibration isolation coefficients adopting ratios. Triple-frequency synchronization and stability criterion between two eccentric blocks are subsequently elucidated via the asymptotic method and Routh–Hurwitz criterion. Concurrently, the effects of structural parameters on vibration isolation capacity, steady-state trajectory, and the triple-frequency synchronization phase are investigated through numerical computation. Ultimately, the reliability of the theoretical study is corroborated by simulation analysis. Results indicate that under the allowable system parameters for the practical project, the amplitude of the vibration body can exceed three times that of the isolation body; the two solutions of the stable phase difference (SPD) are different by π, one of which is stable and the other is unstable, and the stability of phase difference is determined by the sign of the stability coefficient. This work is useful for developing new vibrating screens and other multi-frequency vibration machines. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

23 pages, 4820 KiB  
Review
Review: Pipeline Layout Effect on the Wall Thinning of Mihama Nuclear Power Plants
by Nobuyuki Fujisawa
J. Nucl. Eng. 2025, 6(2), 19; https://doi.org/10.3390/jne6020019 - 18 Jun 2025
Viewed by 489
Abstract
The subject of the effect of pipeline layout on wall thinning in Mihama nuclear power plants was reviewed in relation to flow-accelerated corrosion (FAC). The pipeline consists of a complex layout with a straight pipe, elbow, curved pipe, orifice, and T-junction. To understand [...] Read more.
The subject of the effect of pipeline layout on wall thinning in Mihama nuclear power plants was reviewed in relation to flow-accelerated corrosion (FAC). The pipeline consists of a complex layout with a straight pipe, elbow, curved pipe, orifice, and T-junction. To understand the mechanism of wall thinning in the pipeline, the basics of FAC, experimental and numerical approaches, and flow and mass transfer studies of the pipeline were reviewed and compared with actual Mihama pipeline data. The results indicate that the wall thinning in the Mihama pipeline was caused by the asymmetric mass transfer phenomenon arising from the pipeline layout effect induced by the swirl flow, resulting in the generation of a spiral flow downstream of the elbow and an increased mass transfer coefficient downstream of the orifice. Swirl flow can be generated by the coupled T-junction and elbow in the upstream pipeline. Furthermore, related topics in flow and mass transfer studies on short elbows and dual and triple elbows were reviewed in relation to wall thinning, which could depend on the elbow curvature, Reynolds number, and surface roughness. The low-frequency flow oscillation in a short elbow, the swirl flow generation in dual and triple elbows, and the influence of wall roughness could be other sources of the increased mass transfer coefficient in the pipeline. Full article
Show Figures

Figure 1

21 pages, 2425 KiB  
Article
HSD3B1 (c.1100C) Genotype Is Associated with Distinct Tumoral and Clinical Outcomes in Breast and Endometrial Cancers
by Nikitha Vobugari, Allison Makovec, Samuel Kellen, Shayan S. Nazari, Andrew Elliott, Devin Schmeck, Aiden Deacon, Gabriella von Dohlen, Emily John, Pedro C. Barata, Neeraj Agarwal, Melissa A. Geller, Britt K. Erickson, George Sledge, Julie H. Ostrander, Rana R. McKay, Charles J. Ryan, Nima Sharifi, Emmanuel S. Antonarakis and Justin Hwang
Int. J. Mol. Sci. 2025, 26(12), 5720; https://doi.org/10.3390/ijms26125720 - 14 Jun 2025
Viewed by 694
Abstract
HSD3B1 encodes an enzyme that catalyzes the conversion of adrenal precursors into potent sex steroids. A common germline variant (c.1100C) enhances this effect and is linked to breast cancer (BC) progression. As the HSD3B1 genotypes contribute to differences in local and adrenal steroid [...] Read more.
HSD3B1 encodes an enzyme that catalyzes the conversion of adrenal precursors into potent sex steroids. A common germline variant (c.1100C) enhances this effect and is linked to breast cancer (BC) progression. As the HSD3B1 genotypes contribute to differences in local and adrenal steroid production, their transcriptional and phenotypic effects on cancers influenced by hormonal signaling such as BC and endometrial cancer (EC)—particularly in relation to menopausal status—remain unclear. We analyzed BC and EC sequenced from patients that received diagnostic tests in oncology clinics, and we determined the germline HSD3B1 c.1100 genotype (AA, AC, CC) from tumor DNA sequencing by using variant allele frequency, with inferred menopausal status assumed by age at molecular profiling. Whole-transcriptome RNA sequencing and gene set enrichment analysis showed that adrenal-permissive homozygous (CC) tumors in premenopausal ER + BC were enriched for hormone-related pathways, including Estrogen Response Early (NES ≈ +1.8). In premenopausal triple-negative BC, adrenal-restrictive homozygous (AA) tumors exhibited the elevated expression of immune and epithelial genes and the increased prevalence of MED12 alterations (AA 0.25% vs. CC 8%, p < 0.01). In endometrioid EC, CC tumors demonstrated the suppression of immune and proliferative pathways. Postmenopausal cases had higher progesterone receptor IHC positivity (AA 75% vs. CC 83%, p < 0.05) and numerically more frequent ESR1 copy number gains (AA 2.0% vs. CC 4.0%). Results highlight context-specific associations between germline HSD3B1 genotypes and tumor biology in BC and EC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 2194 KiB  
Article
Floating Platform and Mooring Line Optimization for Wake Loss Mitigation in Offshore Wind Farms Through Wake Mixing Strategy
by Guido Lazzerini, Giancarlo Troise and Domenico P. Coiro
Energies 2025, 18(11), 2813; https://doi.org/10.3390/en18112813 - 28 May 2025
Viewed by 337
Abstract
Floating offshore wind turbines present peculiar characteristics that make them particularly interesting for the implementation of wind farm control strategies such as wake mixing to increase the overall power production. Wake mixing is achieved by generating an unsteady cyclical load on the blades [...] Read more.
Floating offshore wind turbines present peculiar characteristics that make them particularly interesting for the implementation of wind farm control strategies such as wake mixing to increase the overall power production. Wake mixing is achieved by generating an unsteady cyclical load on the blades of upwind turbines to decrease the wind deficit on downwind turbines. The possibility of exploiting the yaw motion of a floating offshore wind turbine allows for amplified wake mixing or a reduction in the workload of the control mechanism. To amplify the yaw motion of the system at a selected excitation frequency, a multi-disciplinary optimization framework was developed to modify selected properties of the floating platform and mooring line configuration of the DTU 10 MW turbine on the Triple Spar platform. At the same time, operational and structural constraints were taken into account. A simulation-based approach was chosen to design a floating platform and mooring line configuration that were optimized to integrate with the new control strategy based on wake mixing in floating offshore wind farms. Modifying the floating platform spar arrangement and mooring line properties allowed us to tune the yaw natural frequency of the system in accordance with the excitation frequency of the wake control technique and amplify the yaw motion while controlling the deviations of the operational constraints and costs from the baseline configuration. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

Back to TopTop