Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = trench speed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3922 KB  
Article
Time–Frequency Domain Analysis of the Ground Vibration of an Elevated Railway and Study on the Elliptic Polarization Dispersion Characteristics of Rayleigh Waves
by Shijie Liu, Yulan Song, Zhengping Liu, Zhe Liu and Qingling Du
Computation 2025, 13(9), 215; https://doi.org/10.3390/computation13090215 - 4 Sep 2025
Viewed by 465
Abstract
Elevated railways are a crucial component of railway lines, characterized by their widespread distribution, simple structure, and low cost, while actively promoting local economic development. However, they also cause significant ground vibrations when trains pass. Similarly, considerable vibration levels are transmitted to the [...] Read more.
Elevated railways are a crucial component of railway lines, characterized by their widespread distribution, simple structure, and low cost, while actively promoting local economic development. However, they also cause significant ground vibrations when trains pass. Similarly, considerable vibration levels are transmitted to the subgrade and surrounding structures when trains operate on viaducts within the Loess Plateau region. However, research on mitigating these vibration effects remains relatively scarce. This study focused on the impacts of such vibrations on surrounding buildings and stratum structures and evaluated the effectiveness of a vibration isolation trench in mitigating these effects. Time frequency domain analysis of ground vibrations during train passage revealed that the characteristic frequency of the train-induced pulse excitation in the track structure had a pronounced peak in the spectrum curve. The introduction of a vibration isolation trench effectively blocked the propagation of vibration waves in the soil, reduced soil vibration, and significantly lowered the peak value in the spectrum. Numerical simulations were employed to analyze the elliptical polarization dispersion characteristics of surface wave propagation with the vibration isolation trench in place, confirming the effective damping performance of the trench. These findings could offer a valuable reference for high-speed railway vibration isolation and significantly advance the application of surface wave theory in high-speed railway technology. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

16 pages, 3923 KB  
Article
Research on Layered Fertilization Method of Fertilizer Applicator and Optimization of Key Parameters
by Yabo Zhang, Tongxi Li, Dong Zhang, Xiuwen Fan, Hong Zhang and Hao Niu
Agriculture 2025, 15(17), 1876; https://doi.org/10.3390/agriculture15171876 - 3 Sep 2025
Viewed by 542
Abstract
To address the challenges of layered fertilization in orchards and the lack of dedicated equipment, this study proposes a layered fertilization technique based on the three-dimensional distribution characteristics of jujube root systems and develops an orchard layered fertilizer applicator. First, the agronomic advantages [...] Read more.
To address the challenges of layered fertilization in orchards and the lack of dedicated equipment, this study proposes a layered fertilization technique based on the three-dimensional distribution characteristics of jujube root systems and develops an orchard layered fertilizer applicator. First, the agronomic advantages of layered fertilization were systematically elucidated by analyzing the spatial distribution patterns of jujube roots, as well as the mechanisms of fertilizer nutrient transport and uptake. Second, parametric design was conducted for key components (e.g., trenching–fertilizing unit), with emphasis on the structural design of the fertilizer-dividing box and the augerless spiral conveying mechanism. A three-factor, three-level experiment based on response surface methodology was implemented, where the coefficient of variation (CV) of fertilization uniformity and row consistency were selected as evaluation indices to optimize key parameters (forward speed, augerless spiral speed, and fertilizer gate opening). The optimal operational combination was determined as follows: forward speed of 2.62 km/h, augerless spiral speed of 29.87 r/min, and fertilizer gate opening of 3.49 cm. Field tests demonstrated that the CVs of fertilization uniformity and row consistency reached 7.77% and 8.46%, respectively, meeting the agronomic requirements for orchard fertilization. This study provides a reference for the development of orchard fertilization technologies and machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 6849 KB  
Article
Study on the Interactions Process of Coupled Model of Furrow Opener–Soil–Pot Seedling Based on Discrete Approach
by Bin Jiang, Jinping Cai, Xiongfei Chen, Junan Liu, Liping Xiao, Jinlong Lin and Yuqiang Chen
Agriculture 2025, 15(11), 1206; https://doi.org/10.3390/agriculture15111206 - 31 May 2025
Cited by 1 | Viewed by 610
Abstract
The upright state of pot seedlings in the process of rice mechanized throwing operations has an important influence on the growth rate and yield of rice, and pot seedling uprightness is affected by the influence of soil backfilling during trenching. Due to the [...] Read more.
The upright state of pot seedlings in the process of rice mechanized throwing operations has an important influence on the growth rate and yield of rice, and pot seedling uprightness is affected by the influence of soil backfilling during trenching. Due to the complexity of the furrow opener–soil–pot seedling interaction mechanism in the rice pot seedling planting process, the soil backfilling process is difficult to observe. In order to improve the uprightness of pot seedling planting, this paper constructs a soil model and a soil–pot seedling model step by step, based on the discrete element method (DEM), as well as a coupled model of the pot seedling planting system to study the process of furrow opener–soil–pot seedling planting, the reliability of which is then verified. The results showed that the simulation results of the constructed soil model and soil–pot seedling model deviated from the actual calibration results by <6%, and the model could accurately simulate the pot seedling throwing process. The simulation analysis of the trenching process revealed that the soil backfilling process during trenching showed a three-stage evolution pattern of “backfilling-covering-stabilizing”; in addition, the forward speed of the machine was 0.8 m/s, and the falling speed of the seedling discharge cylinder was 3.5 m/s, which made it possible for the model to simulate the pot seedling throwing process accurately. In addition, when the pot seedling with a forward speed of 0.8 m/s and a drop speed of 3.5 m/s fell into the trench after 0.15 s of trenching, its lateral and longitudinal uprightness were 67.0 ± 1.2° and 65.2 ± 1.5°, respectively. After optimization of the structure of the trenchers, the width, depth, and length of the main body were 40 mm, 37.87 mm, and 32.32 mm, respectively, and the lateral and longitudinal uprightness of the pot seedlings increased to 70.0 ± 1.0° and 69.4 ± 0.8, respectively. The coupled model bench validation test showed that its reliability error was <5%. The coupled model provides technical support for the design and parameter optimization of rice planting equipment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 4718 KB  
Article
800 kHz Femtosecond Laser Cleaning of Microwave Plasma Chemical Vapor Deposition Diamond Growth Substrate
by Xiwang Wu and Xin Chen
Crystals 2025, 15(6), 517; https://doi.org/10.3390/cryst15060517 - 28 May 2025
Viewed by 588
Abstract
Microwave Plasma Chemical Vapor Deposition (MPCVD) plays a crucial role in the growth of high-quality diamonds. However, during the MPCVD process, residues such as polycrystalline diamond, and graphite often adhere to the high-temperature growth substrate surfaces, potentially degrading diamond growth quality. To effectively [...] Read more.
Microwave Plasma Chemical Vapor Deposition (MPCVD) plays a crucial role in the growth of high-quality diamonds. However, during the MPCVD process, residues such as polycrystalline diamond, and graphite often adhere to the high-temperature growth substrate surfaces, potentially degrading diamond growth quality. To effectively remove these contaminants and improve the quality of diamond growth, this study employed an 800 kHz femtosecond laser to clean growth substrates with residual deposits. We assessed the effects of multiple cleaning cycles on residue removal from the Foundation Trench Region (FTR) and Inwall Region (IR) and on substrate quality. The results indicate that multiple scans at a laser power of 2.38 W, a repetition rate of 800 kHz, a scanning speed of 1800 mm/s, and a scan spacing of 10 μm significantly removed residues, reduced substrate surface roughness, and restored substrate cleanliness. This approach enhances the quality and efficiency of diamond growth via MPCVD. The application of high-repetition-rate femtosecond laser cleaning techniques for growth substrates significantly improves the quality of regenerated diamond films, providing crucial support for the preparation of high-quality diamond materials. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

25 pages, 4978 KB  
Article
Design and Experiment of the Codonopsis pilosula Outcrop Film-Laying and Transplanting Machine
by Jiajia Bai, Wei Sun, Ming Zhao, Luhai Zhang, Juanling Wang and Petru Aurelian Simionescu
AgriEngineering 2025, 7(5), 131; https://doi.org/10.3390/agriengineering7050131 - 5 May 2025
Viewed by 733
Abstract
A Codonopsis pilosula film-laying and outcrop transplantation machine is developed to solve problems, such as unstable quality of transplanted seedlings, high intensity of manual work, and low efficiency of work in the seedling transplantation of Codonopsis pilosula. This paper outlines the structure [...] Read more.
A Codonopsis pilosula film-laying and outcrop transplantation machine is developed to solve problems, such as unstable quality of transplanted seedlings, high intensity of manual work, and low efficiency of work in the seedling transplantation of Codonopsis pilosula. This paper outlines the structure and working principle of the machine and analyzes the key components of the prototype, designs the seed bed preparer, analyzes its working process and the force required for furrowing into the soil. Additionally, based on EDEM discrete element simulation technology, a soil-component simulation model was established. In addition, the Hertz–Mindlin model was selected as the contact model between the discrete element simulation soil particles and the seed bed preparer to simulate the operation process of the seed bed preparer. The structure and relevant parameters of the seedling planting device and soil covering device are determined, the transmission system scheme is established, and the working mechanism of the core components is analyzed. Field experiment results indicate that at forward speeds of 0.20, 0.25, and 0.3 m/s, the average qualified rate of planting depth is 91.08%, and the average qualified rate of plant spacing is 89.8%. The field performance test indicators met national and industry standards, which require both qualified rates to exceed 80%, and the test results met the design requirements, demonstrating the integrated operation of trenching, seedling planting, film-laying, and topsoil covering. Full article
Show Figures

Figure 1

21 pages, 5516 KB  
Article
Optimization Design and Experiment of Soil-Covering Device for Astragalus Mulching Transplanting Machine
by Bin Feng, Wei Sun, Shanglong Xin, Guanping Wang, Wenjing Lv and Junzeng Wang
Agriculture 2025, 15(7), 769; https://doi.org/10.3390/agriculture15070769 - 2 Apr 2025
Cited by 1 | Viewed by 501
Abstract
In response to the low efficiency and poor soil quality of the mechanized transplanting of Astragalus, and in combination with the agronomic requirements of Astragalus mulching and outcrop cultivation, an Astragalus film mulching transplanting machine was designed, which integrates functions such as trenching, [...] Read more.
In response to the low efficiency and poor soil quality of the mechanized transplanting of Astragalus, and in combination with the agronomic requirements of Astragalus mulching and outcrop cultivation, an Astragalus film mulching transplanting machine was designed, which integrates functions such as trenching, seedling feeding, mulching, and seed row soil covering. Firstly, based on the analysis of the overall structure of the transplanting machine, the structure and working principle of the soil-covering device are expounded, and the structure and working parameters of the soil-covering disc and soil-covering drum are clarified. In order to optimize the performance of the soil-covering device of the mulching transplanting machine and improve the quality of the covering soil, the Box–Behnken response surface test design method was adopted. The depth of disc extraction, the disc deflection angle, and the rotation speed of the soil-covering drum were selected as the main influencing factors. The quantity of soil cover and variation coefficient of soil cover quantity uniformity were used as the evaluation indicators for the quality of the operation, and parameter optimization experiments were conducted. By establishing a regression mathematical model between influencing factors and evaluation indicators, analyzing the interactive effects of each factor on response values, and comprehensively optimizing the model, the optimal parameter combination was obtained. The results of field experiments show that when the depth of disc extraction is 95 mm, the disc deviation angle is 40°, and the rotation speed of the soil-covering drum is 30 r/min, the corresponding quantity of soil cover and variation coefficient of soil cover quantity uniformity are 10.61 kg/m and 1.79%, respectively, which can meet the soil covering requirements. The research results can provide technical references for the structural optimization and performance improvement of the soil-covering device of the traditional Chinese medicine mulching transplanting machine. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

27 pages, 12936 KB  
Article
Bionic Optimal Design and Performance Study of Soil Loosening Shovels for Degraded Grasslands
by Zhaoyu Wang, Yong You, Xuening Zhang, Decheng Wang and Chengzhong Pan
Agriculture 2025, 15(5), 487; https://doi.org/10.3390/agriculture15050487 - 24 Feb 2025
Cited by 2 | Viewed by 686
Abstract
To improve the soil loosening effects of degraded grasslands, this study investigates the performance of a bionic loosening shovel designed based on the claws of prairie zokor. A single-factor simulation test of the bionic loosening shovel was conducted using EDEM software to analyze [...] Read more.
To improve the soil loosening effects of degraded grasslands, this study investigates the performance of a bionic loosening shovel designed based on the claws of prairie zokor. A single-factor simulation test of the bionic loosening shovel was conducted using EDEM software to analyze the effects of loosening depth (H) and operating speed (V) on key parameters, including the ridge disturbance area (As), furrow disturbance area (Af), loosening resistance (Fr), and trench specific resistance (Fc). Additionally, field tests were performed to validate the simulation results of the bionic loosening shovel. The findings indicate that the difference ratio (Da1) between the simulated and test values for the bionic loosening shovel remained consistently low, confirming the reliability of the simulation model in predicting variations in response parameters. Furthermore, comparative field tests were conducted to evaluate the loosening performance of the bionic loosening shovel against standard loosening shovels (the diamond-shaped loosening shovel and the arrow-shaped loosening shovel). The results show that the bionic loosening shovel achieved the lowest values for As, Af, and Fr under the same operating parameters. However, its effect on improving Af was limited. These findings provide valuable technical support for the enhancement and optimization of loosening shovels for degraded grasslands. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 8082 KB  
Article
Development of a Crawler-Type Self-Propelled Machine with Trenching, Fertilizing, and Soil-Covering Components for Hilly Orchard
by Jun Li, Chaodong Mai, Ye Zeng, Zhao Li, Runpeng Jiang, Qinglin Weng, Jiamin Cai, Qian Wang and Can Li
Agriculture 2025, 15(4), 430; https://doi.org/10.3390/agriculture15040430 - 19 Feb 2025
Viewed by 1054
Abstract
In response to the issues of high energy consumption, limited functionality, and uneven soil–fertilizer mixing in mechanical operations for trenching and fertilizing in hilly orchards, this study proposes the design of a crawler-type self-propelled machine, integrating three main functions: trenching, fertilizing, and soil [...] Read more.
In response to the issues of high energy consumption, limited functionality, and uneven soil–fertilizer mixing in mechanical operations for trenching and fertilizing in hilly orchards, this study proposes the design of a crawler-type self-propelled machine, integrating three main functions: trenching, fertilizing, and soil covering. The key components of the trenching device, fertilizing device, and soil-covering device were designed. Three fertilizing simulation models (pre-plant, mid-plant, and post-plant) were established using EDEM discrete element software. The soil–fertilizer mixing effects under each mode were analyzed, with results indicating that the post-plant fertilizing mode better meets the soil–fertilizer mixing requirements for deep organic fertilizer application. Using trenching speed, forward speed, and bending angle of the trenching knife as experimental factors, with operating power consumption and soil–fertilizer mixing uniformity as evaluation indicators, a Box–Behnken experiment was conducted to optimize the parameters of the trenching and fertilizing components. A regression model was established to analyze the interaction between experimental factors and indicators. The optimal operational parameter combination was determined as follows: trenching speed of 265.03 r/min, forward speed of 0.40 m/s, and bending angle of trenching knife of 130°. Under these parameters, the trenching power consumption and soil–fertilizer mixing uniformity were 1.74 kW and 77.15%, respectively. Orchard verification tests on the machine showed that under the optimal parameters, the relative errors in trenching power consumption and soil–fertilizer mixing uniformity between the field tests and simulations were 7.40% and 4.50%, respectively. These results meet the agronomic requirements for trenching and fertilizing, and the study provides valuable references for the application of related technologies in orchard trenching and fertilizing operations. Full article
Show Figures

Figure 1

17 pages, 5704 KB  
Article
Study of the Micro-Vibration Response and Related Vibration Isolation of Complex Traffic Load-Induced Experimental Buildings
by Feifan Feng, Yunjun Lu and Weiwei Chen
Symmetry 2024, 16(10), 1328; https://doi.org/10.3390/sym16101328 - 9 Oct 2024
Cited by 2 | Viewed by 1288
Abstract
In view of the high-sensitivity vibration effect of precision instrument laboratory buildings under the influence of surrounding traffic loads, field micro-vibration tests under various working conditions were carried out based on actual projects. Combined with numerical simulation, measured data served as input loads [...] Read more.
In view of the high-sensitivity vibration effect of precision instrument laboratory buildings under the influence of surrounding traffic loads, field micro-vibration tests under various working conditions were carried out based on actual projects. Combined with numerical simulation, measured data served as input loads to simulate the vibration effect of various traffic loads on the floor of a building structure, and the structural vibration laws under the comprehensive action of various loads were analyzed. The vibration isolation effect of the isolation ditch on the oblique orthogonal load was investigated according to the corresponding safety index. The results show that the main frequency components of the site vibration frequency caused by various traffic loads are approximately 25 Hz and that the root-mean-square speed value is stable below VC-E, which meets the design requirements. Under the comprehensive action of multiple loads, the site structure will produce a vibration amplification effect, which is obvious when all types of loads are distributed symmetrically and the curve distribution is controlled by load factors with large amplitudes. The isolation effect of a small isolation ditch is best when it is located close to the source and the building. The depth of the isolation ditch must be greater than the maximum depth of the source to achieve better results, and the width has little influence. The effect of a small isolation trench on vertical vibration is poor, and the oblique orthogonal triaxial load has a counteracting effect on the vertical component. Thus, additional structural vibration isolation measures are needed. The research results provide a reference for engineering vibration isolation, damping measures, and structural design. Full article
(This article belongs to the Special Issue Symmetry in Civil Transportation Engineering)
Show Figures

Figure 1

18 pages, 7452 KB  
Article
Soil Moisture Detection and Linear Deceleration Control Strategy Enhancing Trenching Depth Precision and Stability for Rapeseed Sowing
by Peiru Xu, Jianchuan Kou, Minghang Wang, Tianyu Tu, Xiaoling Chen, Jie Luo, Jianfeng Hu and Xiaolong Lei
Agriculture 2024, 14(10), 1717; https://doi.org/10.3390/agriculture14101717 - 30 Sep 2024
Viewed by 1258
Abstract
Sowing depth significantly affects the germination of rapeseed, and different soil moisture conditions require corresponding sowing depths. However, most current trenching devices do not account for soil moisture content, and commonly used hydraulic or constant-force trenching equipment also exhibits deficiencies in stability and [...] Read more.
Sowing depth significantly affects the germination of rapeseed, and different soil moisture conditions require corresponding sowing depths. However, most current trenching devices do not account for soil moisture content, and commonly used hydraulic or constant-force trenching equipment also exhibits deficiencies in stability and consistency. To address these challenges, this study developed an automatic depth adjustment control system based on soil moisture content. A soil moisture detection device and an innovative sliding mechanism that maintained the soil moisture sensor in a relatively stationary position relative to the soil during seeder movement were introduced. An automatic sowing depth adjustment device was designed to modulate the sowing depth. A control strategy that incorporated the Kalman filtering algorithm and linear deceleration equations was conducted. At an observation noise covariance matrix (Q/R) of 0.001, a deceleration range of 40 mm and a minimum speed of 10, the control system exhibited minimal overshoot (approximately 4%) and steady-state error (approximately 3.2 mm). It effectively adjusted the trenching depth while operating at speeds ranging from 2 to 3.6 km/h, successfully adapting to variations in soil topography. The system performance tests revealed that the control system adjustment time (ts) was 534 ms and the steady-state error remained within 1 mm. Under three different soil moisture content conditions, the sowing depth qualification rate and stability coefficients consistently surpassed 90% and 80%, respectively. This research offers a sowing depth adjustment control system based on soil moisture content, contributing to more precise depth regulation for rapeseed sowing. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 5903 KB  
Article
Design and Testing of Soybean Double-Row Seed-Metering Device with Double-Beveled Seed Guide Groove
by Huajiang Zhu, Sihao Zhang, Wenjun Wang, Hongqian Lv, Yulong Chen, Long Zhou, Mingwei Li and Jinhui Zhao
Agriculture 2024, 14(9), 1595; https://doi.org/10.3390/agriculture14091595 - 13 Sep 2024
Cited by 2 | Viewed by 1442
Abstract
During the operation of a shaped hole seed-metering device, poor seed-filling quality and inconsistent seed-casting points lead to poor seed spacing uniformity, especially in a one-chamber double-row seed-metering device. To solve this problem, a soybean double-row seed-metering device with double-beveled seed guide groove [...] Read more.
During the operation of a shaped hole seed-metering device, poor seed-filling quality and inconsistent seed-casting points lead to poor seed spacing uniformity, especially in a one-chamber double-row seed-metering device. To solve this problem, a soybean double-row seed-metering device with double-beveled seed guide groove was designed to ensure a high single-seed rate and seed-casting point consistency. Through the theoretical analysis of the working process of the seed-metering device, dynamic and kinematic models of the seeds were established, and the main structural parameters of the seed discharge ring, triage convex ridge, shaped hole, and seed guide groove were determined. The main factors affecting the seeding performance were obtained as the following: the inclination angle of the triage convex ridge, the radius of the shaped hole, and the depth of the seed guide groove. A single-factor test was carried out by discrete element simulation to obtain the inclination angle of the triage convex ridge α3 = 29°, the radius of the shaped hole r1 = 4.16–4.5 mm, and the depth of the seed guide groove l1 = 0.49–1.89 mm. A two-factor, five-level, second-order, orthogonal rotation combination test was conducted to further optimize the structural parameters of the seed-metering device. The two test factors were the radius of the shaped hole and the depth of the seed guide groove, and the evaluation indices were the qualified rate, replay rate, and missed seeding rate. The results showed that the optimal combinations of the structural parameters were the radius of the shaped hole r1 = 4.33 mm and the depth of the seed guide groove l1 = 1.20 mm. Subsequent bench testing demonstrated that the seed discharge’s qualified rate was above 94% at operating speeds of 6–10 km/h, and the seeding performance was stable. The final results of the soil trench test showed that the seed-metering device exhibited a qualified rate of 93.31%, replay rate of 2.04%, and missed seeding rate of 4.65% at an operating speed of 8 km/h. This research outcome may serve as a valuable reference and source of inspiration for the innovative design of precision seed-metering devices. Full article
Show Figures

Graphical abstract

22 pages, 7233 KB  
Article
Analysis of the Parameters of an Ecological Power Supply Wire System for Moving and Stabilising the Position of a Floating Dock
by Tadeusz Szelangiewicz, Katarzyna Żelazny and Szymon Sobków
Energies 2024, 17(17), 4331; https://doi.org/10.3390/en17174331 - 29 Aug 2024
Viewed by 967
Abstract
This research study aims to develop a system which ensures the mobility of a floating dock and its stability in position during docking operations. The dock is designed for operation in a river canal. In order to dock a ship, it is moved [...] Read more.
This research study aims to develop a system which ensures the mobility of a floating dock and its stability in position during docking operations. The dock is designed for operation in a river canal. In order to dock a ship, it is moved away from the quay over a dock trench. Initial requirements and design criteria for the system were determined. The most important of them include docking in the maximum weather conditions, corresponding to a wind speed of 5° Beaufort (5°B), and a zero-emission target for the power supply system (use of a renewable energy source). A wire and winch system was designed to move the dock and stabilise it in position during docking operations. The system comprises mooring wires which are tied to bollards on both quays, and wire winches mounted on both sides of the dock. The wire winches are hydraulically driven, and the hydraulic pumps, run by electric motors, are powered with batteries charged using photovoltaic panels. Statistical environmental parameters (wind, river current) were analysed and the probability of certain mooring wire loads and the corresponding wire winch power output were quantified. Based on these calculations, the power of photovoltaic panels and capacity of the batteries required to power the dock moving system were determined. This paper discusses the system design as well as the results of trials. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 4580 KB  
Article
Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics
by Daniel Joch, Thomas Lang, Shawn Sanctis and Michael P. M. Jank
Materials 2024, 17(15), 3849; https://doi.org/10.3390/ma17153849 - 3 Aug 2024
Viewed by 1181
Abstract
In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively [...] Read more.
In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current–voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array. Full article
Show Figures

Figure 1

27 pages, 12334 KB  
Article
Research and Experiment on the Ditching Performance of a Ditching and Film-Covering Machine in the Yellow Sand Cultivation Mode of Solar Greenhouses
by Yalong Song, Jiahui Xu, Jianfei Xing, Xufeng Wang, Can Hu, Long Wang and Wentao Li
Agronomy 2024, 14(8), 1704; https://doi.org/10.3390/agronomy14081704 - 2 Aug 2024
Cited by 1 | Viewed by 1027
Abstract
This research initiative, developed in response to the need for enhanced mechanization efficiency within solar greenhouses, particularly under yellow sand cultivation conditions, introduces an integrated ditching and film-covering machine. A novel spiral staggered throw-cut combined ditching knife was specifically engineered and optimized to [...] Read more.
This research initiative, developed in response to the need for enhanced mechanization efficiency within solar greenhouses, particularly under yellow sand cultivation conditions, introduces an integrated ditching and film-covering machine. A novel spiral staggered throw-cut combined ditching knife was specifically engineered and optimized to meet the exacting agronomic requirements of embedded substrate cultivation. Extensive analyses of soil interactions and the formulation of dynamic equations for soil particles facilitated the determination of key operational parameters: a tangent height of 650 mm for the ditching knife, a soil-throwing width of 300 mm, a piece width of 120 mm, and an inclination angle of 30°. Performance simulations of the ditching knife, conducted using the discrete element method (DEM), revealed superior soil disturbance control and improved soil return compared to conventional designs. Critical operational variables such as forward speed, knife shaft speed, and ditching depth were rigorously tested, with trench depth quality and power consumption as primary evaluation metrics. The results demonstrated that knife shaft speed profoundly influences performance, with optimal operating parameters established through detailed field testing: a speed of 0.5 m/s, a blade shaft speed of 200 rpm, and a ditching depth of 300 mm. Under these optimized conditions, the machine achieved power consumption of 0.668 kW, trench depth stability of 86.7%, a surface width of 413 mm, a bottom width of 304 mm, and an average ditching depth of 310 mm, achieving a qualification rate of 87.1%. The post-ditching soil crushing rate was 92.4%. Both simulation and field evaluations validated that the innovative ditching knife markedly enhances ditching and soil-throwing quality in sandy soil, fulfills agronomic requirements for tomato sowing, and provides an essential reference for the mechanized planting of crops in the yellow sand matrix cultivation mode of solar greenhouses. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

25 pages, 6792 KB  
Article
A Multi-Function Novel Crop Seeder for the Management of Residues and Mechanized Sowing of Wheat in a Single Path
by Muhammad Usama Yaseen, Shahzad Ahmad, Maqsood Ahmad, John M. Long, Hafiz Ali Raza, Hassan Iftekhar, Sikander Ameer and Dabira Ogunbiyi
AgriEngineering 2024, 6(3), 2445-2469; https://doi.org/10.3390/agriengineering6030143 - 26 Jul 2024
Cited by 3 | Viewed by 2855
Abstract
The handling of the remnants of rice crops in the field is not an easy operation, and farmers prefer burning, which causes air pollution, smog, and disease. This research reports the development of a novel precision crop seeder by handling the remnants of [...] Read more.
The handling of the remnants of rice crops in the field is not an easy operation, and farmers prefer burning, which causes air pollution, smog, and disease. This research reports the development of a novel precision crop seeder by handling the remnants of previous crops through mechanization. The precision seeder performed multiple operations in a single path, viz, chop residues, incorporate into soil, make mini trenches, and sow wheat with fertilizer application. The precision seeder has a 2040 mm working width, and specially designed C-type blades are used to shred the crop residue. A multiple-speed gearbox with a gear ratio of 1:0.52 is installed, with a further set of spur gears with 16, 18, and 20 teeth that provide 225, 250, 310, and 350 RPMs to the main rotor. In the middle of the seeder, after the main rotor shaft, 11 V-shaped trencher plates are fixed on the trencher roller for the making of trenches. The trencher roller is powered by star wheels, which showed good results. A zero-tillage-type sharp tip edge novel seeder unit was developed for the precise placement of seed and fertilizer. Seed and fertilizer were placed into the mini trenches through 11 seeder units through a ground wheel calibration system. The field capacity of the precision seeder was 0.408 ha/h and the operational cost was calculated 40.68 USD/ha. The seeder showed good results, with the production of 5028 kg/ha compared to conventional methods. The precision seeder provides a mechanized solution for wheat sowing with minimal operational costs by enhancing organic matter in soil with 13% more yield. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

Back to TopTop