Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = tree ring analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2556 KB  
Article
Differences in Growth Responses to Climate of Three Conifer Species in Lugu Lake of Northwestern Yunnan, Southwestern China
by Tao Yan, Yaoyao Kang, Siyu Xie, Chun Tao, Lianxiang Li, Xuefen Li, Qiong Wang and Yun Zhang
Plants 2025, 14(16), 2508; https://doi.org/10.3390/plants14162508 - 12 Aug 2025
Viewed by 298
Abstract
Responses of tree radial growth to climate are usually species-specific. Northwestern Yunnan has become a hotspot for the study of dendrochronology due to its sensitivity to climate change and the relative integrity of vegetation preservation. In this paper, we take three dominant conifers— [...] Read more.
Responses of tree radial growth to climate are usually species-specific. Northwestern Yunnan has become a hotspot for the study of dendrochronology due to its sensitivity to climate change and the relative integrity of vegetation preservation. In this paper, we take three dominant conifers—Pinus armandii, Pinus yunnanensis and Picea likiangensis—as the research objects and analyze their tree-ring width chronologies in order to reveal the main climate factors affecting tree growth in northwestern Yunnan and to evaluate species-specific variation in climate response. The results showed that the radial growth of the three tree species was co-regulated by temperature and precipitation but that the growth response patterns were varied. Specifically: (1) The radial growth of the three species of conifers was significantly and negatively correlated with the July average maximum temperature (Tmax) and the October Palmer Drought Severity Index (PDSI) in the current year. (2) Current May precipitation significantly promoted P. armandii growth and inhibited P. likiangensis growth, and a wet July was beneficial for both P. yunnanensis and P. likiangensis growth, while the radial growth of P. yunnanensis and P. armandii showed a significant and positive correlation with the August Tmax in the current year. (3) The sliding analysis supported the results of the response function by showing stable relationships with climate factors which significantly affected tree growth. Results from redundancy analysis (RDA) and response function analysis were basically consistent, demonstrating that these two methods could complement each other in the understanding of relationships between tree radial growth and climatic factors. This study elucidates the climate–growth relationship of the main tree species in the study area and provides theoretical guidance and scientific evidence for regional forest management. Full article
(This article belongs to the Special Issue Biological Signaling in Plant Development)
Show Figures

Figure 1

15 pages, 4511 KB  
Article
Tree-Ring-Based Analysis of Populus euphratica Radial Growth Response to Extreme Drought Across Lower Tarim River Sections, Xinjiang, China
by Xiaodong Xie, Weilong Chen, Xiaoting Pan, Tongxin Wang, Jing Che, Yexin Lv and Mao Ye
Forests 2025, 16(8), 1311; https://doi.org/10.3390/f16081311 - 12 Aug 2025
Viewed by 371
Abstract
The lower reaches of the Tarim River in Xinjiang, China are home to desert riparian vegetation dominated by Populus euphratica, which play an important role in windbreak and sand fixation, as well as maintaining the ecological balance of arid regions. Based on [...] Read more.
The lower reaches of the Tarim River in Xinjiang, China are home to desert riparian vegetation dominated by Populus euphratica, which play an important role in windbreak and sand fixation, as well as maintaining the ecological balance of arid regions. Based on dendrochronology, this study analyzed the response of Populus euphratica radial growth to hydrothermal factors in the lower Tarim River region, assessed its resistance and resilience to extreme drought events, developed a multivariate regression model for resilience–hydrothermal factor relationships, and revealed the differential response of its ecological resilience to these factors. The results showed that the maximum, minimum, and mean temperatures and saturated water VPD (vapor pressure deficit) during the spring and growing season were the most significant and positively correlated with Populus euphratica growth. The radial growth of Populus euphratica was negatively correlated with maximum and mean summer temperatures. By region, Yingsu (YS) and Kaerdayi (KE) were more sensitive to seasonal climatic factors. The effect of groundwater on the radial growth of Populus euphratica was the strongest factor, with a highly significant negative correlation (p < 0.01), showing that the radial growth of Populus euphratica slowed with increasing depth of groundwater. The VPD, spring drought severity, and growing season groundwater variability all had a significant effect on Populus euphratica resistance, whereas Populus euphratica resilience was mainly significantly associated with growing season drought severity and summer groundwater variability. Radial growth was positively correlated with spring temperatures and the VPD and negatively correlated with summer temperatures (p < 0.01). Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 1855 KB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 294
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

26 pages, 3355 KB  
Article
Dendrochronology and Isotope Chronology of Juglans neotropica and Its Response to El Niño-Related Rainfall Events in Tropical Highlands of Piura, Northern Peru
by Tone Marie Ektvedt, Michael N. Evans, Donald A. Falk and Paul R. Sheppard
Plants 2025, 14(11), 1704; https://doi.org/10.3390/plants14111704 - 3 Jun 2025
Cited by 1 | Viewed by 978
Abstract
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List [...] Read more.
Tropical trees represent an important potential archive of climate and ecological information, but their dendrochronology based on conventional techniques has been challenging. We conducted a pilot study of the wood anatomy and dendroclimatological potential of Juglans neotropica Diels (Juglandaceae), an IUCN Red List species, using 225 radii sampled from 57 trees in Piura (4°55′ S, 79° 56′ W), northern Peru. A total of 112 radii from 40 trees passed quality control and are included in the tree-ring width chronology for this species. J. neotropica has demonstrably annual rings, and results are consistent with reports that the species has a dormant period during the dry season, which locally is approximately June–November. Local precipitation is correlated (p = 0.10, 1-tailed test) with tree-ring growth, lagged by one year, consistent with other studies of tropical tree species. The age distribution of the sample collection of J. neotropica is young and invariant, probably because of selective cutting by local villagers. To supplement ring-width analysis, we conducted the first oxygen isotopic (δ18O) and radiocarbon (∆14C) analysis for this species on radii from two individuals; results are preliminary given sample size limitations, but consistent with dendrochronological dating, within uncertainties, in all three chronometric analyses. A two-sample composite annually-averaged δ18O anomaly data series is correlated significantly with gridded regional growing season (December–May) precipitation (1973/74–2005/06). Qualitatively consistent with simulation of ring width and δ18O, responses to El Niño events are manifested in positive ring-growth anomalies and negative isotopic anomalies following known event years. The combination of tree-ring, radiocarbon, stable isotopic analyses, and the application of sensor and chronological modeling provides a degree of confidence in the results that would not have been possible by relying on any single approach and indicates the potential for further investigation of this and other tropical tree species with uncertain ring boundaries. Full article
(This article belongs to the Special Issue New Perspectives on New World Tropical Forests)
Show Figures

Figure 1

14 pages, 1705 KB  
Article
The Influence of Pruning on the Growth and Wood Properties of Populus deltoides “Nanlin 3804”
by Weiqi Leng, Pei Cao, Chao Chen and Luozhong Tang
Forests 2025, 16(5), 848; https://doi.org/10.3390/f16050848 - 19 May 2025
Viewed by 410
Abstract
During the natural growth of trees, a large number of branches are formed, with a negative impact on timber quality. Therefore, pruning is an essential measure in forest cultivation. In this work, the effect of pruning on poplar timber quality was evaluated. This [...] Read more.
During the natural growth of trees, a large number of branches are formed, with a negative impact on timber quality. Therefore, pruning is an essential measure in forest cultivation. In this work, the effect of pruning on poplar timber quality was evaluated. This study used an artificial forest of Populus deltoides “Nanlin 3804”, established in 2014, as the research object. Pruning was carried out in March 2018 and March 2020 with a pruning intensity of one-third, and a control group was also set up. In December 2023, the growth of 11-year-old poplars under different treatments was investigated and analyzed, and sample trees were cut down for a wood property analysis. The results showed that pruning did not have a significant effect on the growth of the diameter at breast height, the tree height, or the volume. However, pruning could significantly facilitate the forming of higher-quality timber with smaller knots. Compared to unpruned wood, the ring width decreased 1–2 years after pruning, while it turned out to be greater than that of the control 3 years after pruning. Moreover, pruning can reduce the degree of trunk tapering. The fiber aspect ratio two years after pruning was greater than that of the control. The distribution frequency of fiber lengths of between 1500 μm and 1900 μm and that of fiber widths of between 32 μm and 38 μm were higher than that of the control. However, pruning had little effect on their density and oven-dried shrinkage. In addition, compared to the control, the bending strength and the modulus of elasticity increased by approximately 11%–14%, the impact toughness decreased by approximately 5%, and the compressive strength increased by approximately 6%. Pruning proved to be a successful method to improve the timber quality. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Figure 1

17 pages, 3522 KB  
Article
The Changes in Annual Precipitation in the Forest–Steppe Ecotone of North China Since 1540
by Xiaodong Wang, Jinfeng Ma, Long Fei, Xiaohui Liu and Xiaoqiang Li
Forests 2025, 16(5), 847; https://doi.org/10.3390/f16050847 - 19 May 2025
Viewed by 512
Abstract
Understanding precipitation changes over a long period of time can provide valuable insights into global climate change. Taking the forest–steppe ecotone of North China as the research area, based on the tree ring width index of Carya cathayensis Sarg (Carya cathayensis), [...] Read more.
Understanding precipitation changes over a long period of time can provide valuable insights into global climate change. Taking the forest–steppe ecotone of North China as the research area, based on the tree ring width index of Carya cathayensis Sarg (Carya cathayensis), the relationship between tree growth and climate factors is analyzed, and the annual precipitation is reconstructed from data from the nearest five weather stations from AD 1540 to 2019. The results show that the growth of trees was affected by the changes in precipitation. The precipitation was divided into three dry periods and three wet periods over 480 years, based on wavelet analysis. There were 328 years of precipitation within the mean plus or minus one standard deviation (SD) (accounting for 68.3% of 480 years), indicating that relatively stable climate conditions exist in the study area, which has become one of the main agricultural areas in China. Each period lasted 2–7 years according to the multi-taper method, indicating that precipitation change was closely related to the El Niño–Southern Oscillation (ENSO) on a short time scale and affected by the Atlantic Multidecadal Oscillation (AMO) on a medium time scale during the period of 60–80 years based on wavelet analysis. Full article
Show Figures

Figure 1

11 pages, 3162 KB  
Article
Site Variability in Fibers, Vessels, and Ring Width of Robinia pseudoacacia L. Wood: A Case Study in Hungary
by Fath Alrhman Awad Ahmed Younis, Mátyás Báder, Miklós Bak and Róbert Németh
Forests 2025, 16(5), 807; https://doi.org/10.3390/f16050807 - 12 May 2025
Viewed by 1014
Abstract
The black locust tree is a plantation-grown species that occupies a large area in Hungary. Due to variations in the growth environment of trees across different locations, the anatomical features of wood may differ. This study investigated the variability in fiber properties (fiber [...] Read more.
The black locust tree is a plantation-grown species that occupies a large area in Hungary. Due to variations in the growth environment of trees across different locations, the anatomical features of wood may differ. This study investigated the variability in fiber properties (fiber length, width, wall thickness, vessel length, and width) and growth rate of Robinia pseudoacacia L. from five counties and in three specific growing conditions. The parameters were investigated based on a sample of discs taken from the trees at breast height. The statistical analysis revealed significant differences in wood fiber and vessel dimensions, as well as ring width, between counties and growth conditions. Nearly all examined parameters showed the lowest values in Bács-Kiskun County, whereas the highest values were observed in Szabolcs-Szatmár-Bereg and Vas. Regarding the growth conditions, wood in poor growth conditions (mixed trees) and good growth conditions produced superior wood fiber properties and ring widths. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

17 pages, 3887 KB  
Article
Divergent Climate Sensitivity and Spatiotemporal Instability in Radial Growth of Natural and Planted Pinus tabulaeformis Forests Across a Latitudinal Gradient
by Yue Fan, Yujian Zhang, Dongqing Han, Yanbo Fan and Yanhong Liu
Plants 2025, 14(10), 1441; https://doi.org/10.3390/plants14101441 - 12 May 2025
Viewed by 704
Abstract
A deeper understanding of growth–climate relationships in natural forests (NFs) and planted forests (PFs) is crucial for the prediction of climate change impacts on forest productivity. Yet, the mechanisms and divergences in climatic responses between these forest types remain debated. This study investigated [...] Read more.
A deeper understanding of growth–climate relationships in natural forests (NFs) and planted forests (PFs) is crucial for the prediction of climate change impacts on forest productivity. Yet, the mechanisms and divergences in climatic responses between these forest types remain debated. This study investigated P. tabulaeformis NFs and PFs in China using tree-ring chronologies to analyze their radial growth responses to climatic factors and associated temporal–spatial dynamics. The results reveal significant negative correlations between radial growth and mean temperatures (Tmean) in August of the previous year and June of the current year, and positive correlations were observed with the September standardized precipitation evapotranspiration index (SPEI) of the previous year and May precipitation (PPT) and SPEI of the current year. Compared with NFs, PFs exhibited a heightened climatic sensitivity, with stronger inhibitory effects from prior- and current-year growing-season temperatures and greater SPEI influences during the growing season. Moving window analysis demonstrated higher temporal variability and more frequent short-term correlation shifts in PF growth–climate relationships. Spatially, NFs displayed latitudinal divergence, autumn Tmean shifted from growth-suppressive in southern regions to growth-promotive in the north, and winter SPEI transitioned from positive to negative correlations along the same gradient. However, PFs showed no significant spatial patterns. Relative importance analysis highlighted water availability (PPT and SPEI) as the dominant driver of NF growth, whereas temperature, moisture, and solar radiation co-regulated PF growth. These findings provide critical insights into climate-driven growth divergences between forest types and offer scientific support for the optimization of NF conservation and PF management under accelerating climate change. Full article
Show Figures

Figure 1

24 pages, 4897 KB  
Article
Reconstructing Hydroclimatic Variability (1657 AD) Using Tree-Ring Time Series and Observed and Gridded Precipitation Data in Central Greece
by Vasileios D. Sakalis and Aristeidis Kastridis
Forests 2025, 16(5), 773; https://doi.org/10.3390/f16050773 - 1 May 2025
Viewed by 920
Abstract
This study evaluated the long-term hydroclimatic trend through a reconstruction procedure of precipitation variability in central Greece (1657–2020), using eight tree-ring chronologies (Pinus sp. and Abies sp.). Through the combination of gridded climate datasets with tree-ring width (TRW) and earlywood width (EWW) [...] Read more.
This study evaluated the long-term hydroclimatic trend through a reconstruction procedure of precipitation variability in central Greece (1657–2020), using eight tree-ring chronologies (Pinus sp. and Abies sp.). Through the combination of gridded climate datasets with tree-ring width (TRW) and earlywood width (EWW) chronologies, we created three precipitation reconstructions, (1) April–August (AMJJA) and (2) May–June (MJ) using TRW and (3) EWW chronologies, utilizing both measured and gridded precipitation data. Chronologies were standardized using ARSTAN, while principal component analysis (PCA) was used for the development of the reconstructions. Verification and calibration of the derived time series (split-period tests, RE > 0, R = 0.62–0.67) confirmed a strong reconstruction that explained 15%–45% of the variability in precipitation. The results revealed strong growth–precipitation relationships throughout spring–summer (AMJJA/MJ). Multi-decadal variability is captured by TRW chronologies, while higher-frequency signals are reflected by EWW. Significant time intervals (19.6-, 12.5-, and 2.2-year cycles) were found by spectral analysis, indicating climatic impacts on tree-ring chronologies. Extremely wet (e.g., 1885, 1913) and dry (e.g., 1894–1895) episodes were confirmed against regional paleoclimate data and were consistent among previous reconstructions (72%–92% agreement). Despite the fact that sample depth reduced after 1978, the EPS was constantly higher than the threshold (EPS > 0.85 post-1746), showing the reliability of the reconstruction. This study expanded the hydroclimatic record of the southeast Mediterranean and highlighted that tree-ring chronologies are reliable variables to predict the historical precipitation. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

21 pages, 2623 KB  
Review
Leaves and Tree Rings as Biomonitoring Archives of Atmospheric Mercury Deposition: An Ecophysiological Perspective
by Fabrizio Monaci and Davide Baroni
Plants 2025, 14(9), 1275; https://doi.org/10.3390/plants14091275 - 22 Apr 2025
Viewed by 693
Abstract
Trees mediate critical biogeochemical cycles involving nutrients, pollutants, water, and energy at the interface between terrestrial biosphere and atmosphere. Forest ecosystems significantly influence the global cycling of mercury (Hg), serving as important sinks and potential sources of re-emission through various biotic and abiotic [...] Read more.
Trees mediate critical biogeochemical cycles involving nutrients, pollutants, water, and energy at the interface between terrestrial biosphere and atmosphere. Forest ecosystems significantly influence the global cycling of mercury (Hg), serving as important sinks and potential sources of re-emission through various biotic and abiotic processes. Anthropogenic Hg emissions, predominantly from industrial activities, mining, and fossil fuel combustion, have substantially altered the natural Hg cycle, intensifying ecotoxicological concerns and establishing forests as primary routes for atmospheric Hg deposition into terrestrial reservoirs. This perturbation profoundly affects global atmospheric Hg concentrations, residence times, and spatial distribution patterns. While early investigations focused on forest stands near heavily polluted areas, contemporary research has expanded to diverse ecosystems, revealing that trees provide tissues that function as temporal archives for atmospheric-terrestrial Hg exchange. Leaves capture high-resolution records of contemporary Hg dynamics at sub-annual timescales, whereas annual growth rings preserve multi-decadal chronologies of historical atmospheric exposure. Incorporating this dual temporal perspective is crucial for analysing Hg deposition trends and assessing the efficacy of environmental policies designed to control and mitigate Hg pollution. This review critically evaluates recent developments concerning the ecophysiological determinants of Hg accumulation in trees, highlighting how combined foliar and dendrochemical analytical methods strengthen our mechanistic understanding of vegetation-atmosphere Hg exchange. To enhance biomonitoring approaches, we emphasised the need for methodological standardisation, deeper integration of ecophysiological variables, and consideration of climate change implications as priority research areas. Furthermore, integrating Hg measurements with functional markers (δ13C and δ18O) and Hg isotope analyses strengthens the capacity to differentiate between physiological and environmental influences on Hg accumulation, thereby refining the mechanistic framework underlying effective tree-based Hg biomonitoring. Full article
(This article belongs to the Special Issue Biological Responses of Plants to Environmental Pollution)
Show Figures

Figure 1

18 pages, 2005 KB  
Article
Comparison of Growth Strategies and Biomass Allocation in Chinese Fir Provenances from the Subtropical Region of China
by Zhibing Wan, Ning Liu, Chenggong Liu, Meiman Zhang, Chengcheng Gao, Lingyu Yang, Liangjin Yao and Xueli Zhang
Forests 2025, 16(4), 687; https://doi.org/10.3390/f16040687 - 16 Apr 2025
Viewed by 569
Abstract
This study aims to evaluate the growth characteristics of six Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) provenances (S1–S6) from different climatic regions in subtropical China in order to select superior provenances with strong adaptability, fast growth, and reasonable biomass allocation. These results [...] Read more.
This study aims to evaluate the growth characteristics of six Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) provenances (S1–S6) from different climatic regions in subtropical China in order to select superior provenances with strong adaptability, fast growth, and reasonable biomass allocation. These results will provide references for genetic improvement and resource utilization of Chinese fir plantations. A total of 385 trees, aged 26 to 48 years, were selected from the Chinese fir gene bank in Anhui. Wood core sampling was used to obtain tree ring width and early/latewood width data. Growth rate, fast-growth period, and biomass allocation of each provenance were analyzed using methods such as the logistic growth equation, BAI (basal area increment), latewood percentage, and biomass estimation. The fast-growth period of Chinese fir starts from the 2nd to the 4th year, with significant growth occurring around the 14th year and growth stabilizing between 30 and 50 years. Provenance S2 showed clear advantages in growth rate and biomass, while S6 was relatively weak. BAI analysis revealed that the provenances reached their growth peak around 10 years of age, with a gradual decline afterward, but S2 maintained higher growth levels for a longer period. Root-shoot ratio analysis showed that S2 had the most balanced ratio, promoting stable growth and efficient water and nutrient absorption, while S6 had a higher root-shoot ratio, indicating growth limitations. Furthermore, S2 demonstrated continuous biomass increase after 30 years, indicating excellent growth potential. This study provides quantitative analysis of the growth characteristics and adaptability of different Chinese fir provenances, offering scientific support for the construction and breeding of Chinese fir plantations, and contributing to enhancing the productivity and ecological adaptability of Chinese fir plantations for sustainable resource utilization. Full article
Show Figures

Figure 1

32 pages, 9739 KB  
Article
Estimating Spatiotemporal Dynamics of Carbon Storage in Roinia pseudoacacia Plantations in the Caijiachuan Watershed Using Sample Plots and Uncrewed Aerial Vehicle-Borne Laser Scanning Data
by Yawei Hu, Ruoxiu Sun, Miaomiao He, Jiongchang Zhao, Yang Li, Shengze Huang and Jianjun Zhang
Remote Sens. 2025, 17(8), 1365; https://doi.org/10.3390/rs17081365 - 11 Apr 2025
Cited by 1 | Viewed by 477
Abstract
Forest ecosystems play a pivotal role in the global carbon cycle and climate change mitigation. Forest aboveground biomass (AGB), a critical indicator of carbon storage and sequestration capacity, has garnered significant attention in ecological research. Recently, uncrewed aerial vehicle-borne laser scanning (ULS) technology [...] Read more.
Forest ecosystems play a pivotal role in the global carbon cycle and climate change mitigation. Forest aboveground biomass (AGB), a critical indicator of carbon storage and sequestration capacity, has garnered significant attention in ecological research. Recently, uncrewed aerial vehicle-borne laser scanning (ULS) technology has emerged as a promising tool for rapidly acquiring three-dimensional spatial information on AGB and vegetation carbon storage. This study evaluates the applicability and accuracy of UAV-LiDAR technology in estimating the spatiotemporal dynamics of AGB and vegetation carbon storage in Robinia pseudoacacia (R. pseudoacacia) plantations in the gully regions of the Loess Plateau, China. At the sample plot scale, optimal parameters for individual tree segmentation (ITS) based on the canopy height model (CHM) were determined, and segmentation accuracy was validated. The results showed root mean square error (RMSE) values of 13.17 trees (25.16%) for tree count, 0.40 m (3.57%) for average tree height (AH), and 320.88 kg (16.94%) for AGB. The regression model, which links sample plot AGB with AH and tree count, generated AGB estimates that closely matched the observed AGB values. At the watershed scale, ULS data were used to estimate the AGB and vegetation carbon storage of R. pseudoacacia plantations in the Caijiachuan watershed. The analysis revealed a total of 68,992 trees, with a total carbon storage of 2890.34 Mg and a carbon density of 62.46 Mg ha−1. Low-density forest areas (<1500 trees ha−1) dominated the landscape, accounting for 94.38% of the tree count, 82.62% of the area, and 92.46% of the carbon storage. Analysis of tree-ring data revealed significant variation in the onset of growth decline across different density classes of plantations aged 0–30 years, with higher-density stands exhibiting delayed growth decline compared to lower-density stands. Compared to traditional methods based on diameter at breast height (DBH), carbon storage assessments demonstrated superior accuracy and scientific validity. This study underscores the feasibility and potential of ULS technology for AGB and carbon storage estimation in regions with complex terrain, such as the Loess Plateau. It highlights the importance of accounting for topographic factors to enhance estimation accuracy. The findings provide valuable data support for density management and high-quality development of R. pseudoacacia plantations in the Caijiachuan watershed and present an efficient approach for precise forest carbon sink accounting. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Figure 1

16 pages, 2416 KB  
Article
Volcanic Impact Patterns in Tree Rings from Historical Wood in Northern Fennoscandia’s Old Churches
by Oleg I. Shumilov, Elena A. Kasatkina, Mauri Timonen and Evgeniy O. Potorochin
Forests 2025, 16(4), 573; https://doi.org/10.3390/f16040573 - 26 Mar 2025
Viewed by 572
Abstract
This study revealed a significant reduction in tree growth across northern Fennoscandia following the 1600 AD eruption of Huaynaputina in Peru, the most powerful volcanic event in South America over the past two millennia. In the analysis, we utilized six tree-ring chronologies, which [...] Read more.
This study revealed a significant reduction in tree growth across northern Fennoscandia following the 1600 AD eruption of Huaynaputina in Peru, the most powerful volcanic event in South America over the past two millennia. In the analysis, we utilized six tree-ring chronologies, which included the Finnish super-long chronology (5634 BC–2004 AD), the Kola Peninsula chronology (1445–2004 AD), and historical chronologies derived from old wooden churches in Finnish Lapland and Karelia, Russia. Using a superposed epoch analysis across these chronologies revealed a significant 24% (p < 0.01) decline in tree-ring growth in 1601 compared to the previous six years. The northernmost records, the Finnish super-long chronology (72%, p < 0.001) and the Sodankylä Old Church chronology (67%, p < 0.001), showed the most pronounced decreases. Statistical analysis confirmed significant (p < 0.05) similarities in tree-ring responses across all chronologies from 1601 to 1608. These findings underscore the reliability of using the 1600 Huaynaputina eruption as a chronological marker for dating historic wooden churches in northern Fennoscandia that were likely built between the late 17th and early 18th centuries. Additionally, analyzing church wood may provide insights into past climate patterns and environmental conditions linked to the eruption. Full article
(This article belongs to the Special Issue Wood as Cultural Heritage Material: 2nd Edition)
Show Figures

Figure 1

16 pages, 4198 KB  
Article
Early- and Latewood vs. Stem Asymmetry: Which Is More Important for Dendrochemistry in Scots Pine?
by Vladimir L. Gavrikov, Alexey I. Fertikov, Ruslan A. Sharafutdinov and Eugene A. Vaganov
Forests 2025, 16(3), 493; https://doi.org/10.3390/f16030493 - 11 Mar 2025
Viewed by 543
Abstract
For dendrochemical research, it may be important to be aware of the effects of stem asymmetry and the intra-ring structure because these may introduce unwanted dispersion in the results. In dendrochemical studies, separate analysis of the elemental content of early- and latewood is [...] Read more.
For dendrochemical research, it may be important to be aware of the effects of stem asymmetry and the intra-ring structure because these may introduce unwanted dispersion in the results. In dendrochemical studies, separate analysis of the elemental content of early- and latewood is rare. Also, explanations of how the elemental content may relate to stem asymmetry originating from conditions at the edges of contrasting environments are largely lacking in these studies. The purpose of the current study was to estimate the impact of the seasonal tree ring structure and stem asymmetry on the distribution of elements in tree stems. The study population was a plantation of Scots pine (Pinus sylvestris L.) at an afforestation experiment area, with the sample trees being at the edge of the stand, causing strong crown asymmetry. Six pine trees were cored through the thickness from the maximal crown side (max-side) to the minimal crown side (min-side), and the cores were subsequently scanned through an Itrax Multiscanner unit. The count rates of aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), chlorine (Cl), calcium (Ca), iron (Fe), copper (Cu), zinc (Zn), and strontium (Sr) in the tree rings from 1990 to 2022 were analyzed. A group of elements (Al, Si, P, S, and Cl) tended to consistently concentrate on the min-side, both in early- and latewood, the difference being most significant for S and Cl. Regarding early- vs. latewood, Al, Si, P, S, Cl, Cu, and Zn always had lower concentration in earlywood than in latewood, while others (Ca, Fe, and Sr) had lower concentrations in latewood, the relations being consistently significant. Overall, the role of the min- or max-side of the stem in allocation of elements appears to have been weaker that the intra-ring structure (early- and latewood). Some elements such as Al, Si, P, S, Cl, and Ca (in latewood) were often more abundant on the min-side; other elements such as Fe and Sr (in latewood) were often more abundant on the max-side, but these relations were significant only on rare occasions. Intra-ring heterogeneity (in early- and latewood) appears to be more decisive than the asymmetry of the tree stem in regard to the distribution of elements in Scots pine xylem. Nevertheless, tree stems with high and obvious asymmetry should be more extensively explored because a possibility remains that extreme asymmetry does impact the allocation of elements. Full article
Show Figures

Figure 1

22 pages, 7559 KB  
Article
Automated Tunnel Point Cloud Segmentation and Extraction Method
by Zhe Wang, Zhenyi Zhu, Yong Wu, Qihao Hong, Donglai Jiang, Jinbo Fu and Sifa Xu
Appl. Sci. 2025, 15(6), 2926; https://doi.org/10.3390/app15062926 - 7 Mar 2025
Viewed by 1416
Abstract
To address the issue of inaccurate tunnel segmentation caused by solely relying on point cloud coordinates, this paper proposes two algorithms, GuSAC and TMatch, along with a ring-based cross-section extraction method to achieve high-precision tunnel lining segmentation and cross-section extraction. GuSAC, based on [...] Read more.
To address the issue of inaccurate tunnel segmentation caused by solely relying on point cloud coordinates, this paper proposes two algorithms, GuSAC and TMatch, along with a ring-based cross-section extraction method to achieve high-precision tunnel lining segmentation and cross-section extraction. GuSAC, based on the RANSAC algorithm, introduces a minimum spanning tree to reconstruct the topological structure of the tunnel design axis. By using a sliding window, it effectively distinguishes between curved and straight sections of long tunnels while removing non-tunnel structural point clouds with normal vectors, thereby enhancing the lining boundary features and significantly improving the automation level of tunnel processing. At the same time, the TMatch algorithm, which combines cluster analysis and Gaussian Mixture Models (GMMs), achieves accurate segmentation of tunnel rings and inner ring areas and further determines the tunnel cross-section position based on this segmentation result to complete the cross-section extraction. Experimental results show that the proposed method achieves a segmentation accuracy of up to 95% on a standard tunnel point cloud dataset. Compared with traditional centerline extraction methods, the proposed cross-section extraction method does not require complex parameter settings, provides more stable positioning, and demonstrates high practicality and robustness. Full article
Show Figures

Figure 1

Back to TopTop