Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (169)

Search Parameters:
Keywords = transversely isotropic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5048 KiB  
Article
Voxel-Based Finite Element Investigation of Micromechanics Models for Stiffness Prediction of Cross-Ply Laminates
by Darya Forooghi and Yunhua Luo
J. Compos. Sci. 2025, 9(6), 288; https://doi.org/10.3390/jcs9060288 - 4 Jun 2025
Viewed by 422
Abstract
Laminate plate and shell structures with symmetric cross-ply configurations are widely used due to their high stiffness-to-weight ratio. However, conventional lamination theories rely on simplifying assumptions that may introduce inaccuracies. This study evaluates the predictive capability of such theories by integrating multiple micromechanics [...] Read more.
Laminate plate and shell structures with symmetric cross-ply configurations are widely used due to their high stiffness-to-weight ratio. However, conventional lamination theories rely on simplifying assumptions that may introduce inaccuracies. This study evaluates the predictive capability of such theories by integrating multiple micromechanics models with First-Order Shear Deformation Theory (FSDT), and comparing the results against voxel-based finite element modeling (VB-FEM), which serves as a high-fidelity numerical reference. A range of models—including Voigt–Reuss, Chamis, Halpin–Tsai, Bridging, and two iterative isotropized formulations—are assessed for unidirectional laminae with fiber volume fractions from 40% to 73%. Quantitative comparison reveals that while all models predict the longitudinal modulus accurately, significant deviations arise in predicting transverse and shear properties. The Bridging Model consistently yields the closest agreement with VB-FEM across all five elastic constants, maintaining accuracy even at high volume fractions where the modified Halpin–Tsai model begins to fail. Discrepancies in micromechanics-based lamina properties propagate to laminate-level stiffness predictions, highlighting the critical role of model selection. These findings establish VB-FEM as a valuable tool for validating analytical models and guide improved modeling strategies for laminated composite design. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 3617 KiB  
Article
Comparative Evaluation of Presented Strength Criteria of Anisotropic Rocks Based on Triaxial Experiments
by Yongfeng Liu, Zhengxing Yu, Yongming Yin and Jinglin Wen
Appl. Sci. 2025, 15(10), 5308; https://doi.org/10.3390/app15105308 - 9 May 2025
Viewed by 433
Abstract
The inherent mineralogical alignment in stratified rock formations engenders pronounced mechanical anisotropy, presenting persistent challenges across geological, geotechnical, and petroleum engineering disciplines. While substantial progress has been made in modeling transversely isotropic media, current methodologies exhibit limitations in reconciling theoretical predictions with complex [...] Read more.
The inherent mineralogical alignment in stratified rock formations engenders pronounced mechanical anisotropy, presenting persistent challenges across geological, geotechnical, and petroleum engineering disciplines. While substantial progress has been made in modeling transversely isotropic media, current methodologies exhibit limitations in reconciling theoretical predictions with complex failure mechanisms. This investigation examines the anisotropic response of diverse lithologies through triaxial testing across bedding orientations (0–90°) and confinement levels (0–60 MPa), revealing a pressure-dependent attenuation of directional strength variations. Experimental evidence identifies three dominant failure modes: cross-bedding shear fracturing, bedding-parallel sliding, and hybrid mechanisms combining both, with transition thresholds governed by confinement intensity and bedding angle. Analytical comparisons demonstrate that conventional single weakness plane models produce characteristic shoulder-shaped strength curves with overpredictions, particularly in hybrid failure regimes. Conversely, the modified patchy weakness plane formulation achieves superior predictive accuracy through parametric representation of anisotropy gradation, effectively capturing strength transitions between end-member failure modes. The Pariseau criterion, though marginally less precise in absolute terms, provides critical insights into directional strength contrasts through its explicit differentiation of vertical versus parallel bedding responses. These findings advance the fundamental understanding of anisotropic rock behavior while establishing practical frameworks for optimizing stability assessments in bedded formations, particularly in high-confinement environments characteristic of deep reservoirs and engineered underground structures. Full article
Show Figures

Figure 1

23 pages, 4503 KiB  
Article
Moisture-Dependent Transverse Isotropic Elastic Constants of Wood S2 Secondary Cell Wall Layers Determined Using Nanoindentation
by Xavier Arzola-Villegas, Nayomi Z. Plaza, Nathan J. Bechle, Yikai Wang, Roderic Lakes, Donald S. Stone and Joseph E. Jakes
Forests 2025, 16(5), 712; https://doi.org/10.3390/f16050712 - 22 Apr 2025
Viewed by 493
Abstract
Moisture- and orientation-dependent mechanical properties of the S2 secondary cell wall layer are needed to better understand wood mechanical properties and advance wood utilization. In this work, nanoindentation was used to assess the orientation-dependent elastic moduli and Meyer hardness of the loblolly pine [...] Read more.
Moisture- and orientation-dependent mechanical properties of the S2 secondary cell wall layer are needed to better understand wood mechanical properties and advance wood utilization. In this work, nanoindentation was used to assess the orientation-dependent elastic moduli and Meyer hardness of the loblolly pine (Pinus taeda) S2 layer under environmental conditions ranging from 0% to 94% relative humidity (RH). The elastic moduli were fit to a theoretical transverse isotropic elasticity model to calculate the longitudinal elastic modulus, transverse elastic modulus, axial shear modulus, and transverse shear modulus for the S2 layer at 0%, 33%, 75%, and 94% RH and 26 °C. The longitudinal elastic modulus was consistently higher than the transverse elastic modulus because of the orientation of the stiff cellulose microfibrils in the S2 layer. The axial shear modulus was consistently higher than the transverse shear modulus. The Meyer hardness had a much smaller orientation dependence than the elastic properties. Moisture generally plasticized the S2 layer. Over the range of RH tested, the longitudinal elastic modulus decreased by 30%, the transverse elastic modulus and transverse shear modulus decreased by 83%, the axial shear modulus did not have an observable trend with RH, and the hardness decreased by 68% to 82% with the hardness in the longitudinal direction softening less than in the transverse direction. Full article
(This article belongs to the Special Issue Wood Quality and Mechanical Properties: 2nd Edition)
Show Figures

Figure 1

26 pages, 8150 KiB  
Article
Coefficients of Thermal Expansion in Aligned Carbon Staple Fiber-Reinforced Polymers: Experimental Characterization with Numerical Investigation
by Julian Kupski, Lucian Zweifel, Miriam Preinfalck, Stephan Baz, Mohammad Hajikazemi and Christian Brauner
Polymers 2025, 17(8), 1088; https://doi.org/10.3390/polym17081088 - 17 Apr 2025
Viewed by 608
Abstract
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more [...] Read more.
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more sustainable alternative while balancing performance, cost-effectiveness, and environmental impact. Aligning staple fibers into tape-like structures enables similar applications to those of continuous-fiber-based products, while allowing control over fiber orientation distribution, fiber volume fraction, and length distribution, which are all critical factors influencing both mechanical and thermo-mechanical properties. This study focuses on the experimental characterization and numerical investigation of Coefficients of Thermal Expansion (CTEs) in aligned carbon staple fiber composites. The effects of fiber orientation and volume fraction on coefficients of thermal expansion under different fiber alignment parameters are analyzed, revealing distinct thermal expansion behavior compared to typical aligned unidirectional continuous carbon fiber composite laminates. Unlike continuous unidirectional laminates, which typically exhibit transversely isotropic behavior without tensile–shear coupling, staple fiber composites demonstrate different in-plane axial, transverse, and out-of-plane CTE characteristics. To explain these deviations, a modeling approach is introduced, incorporating detailed experimental information on fiber distributions and microstructural features rather than averaged fiber orientation values. This involves a multi-scale analysis based on a laminate analogy through which all composite thermo-elastic properties can be predicted, accounting for variations in fiber orientations, volume fractions, and tape thicknesses. It is shown that while the local variation of fiber volume fraction has a small effect on the homogenized value of the coefficients of thermal expansion, fiber misalignment, tape thickness, and asymmetry in fiber orientation distribution will significantly affect the measurements of CTEs. For the case of carbon staple fiber composites, the asymmetry in fiber orientation distribution significantly influences the measurements of axial CTE. Fiber orientation asymmetry causes tensile–shear coupling under mechanical and thermal loading, leading to an unbalanced laminate with in-plane shear–tensile deformation. This coupling disrupts uniform displacement, complicating strain measurements and the determination of composite properties. Full article
Show Figures

Figure 1

14 pages, 5637 KiB  
Article
Cross-Attention U-Net for Elastic Wavefield Decomposition in Anisotropic Media
by Youngjae Shin
Appl. Sci. 2025, 15(7), 4019; https://doi.org/10.3390/app15074019 - 5 Apr 2025
Viewed by 365
Abstract
Elastic wavefield separation in anisotropic media is essential for seismic imaging but remains challenging due to complex interactions among multiple wave modes. Traditional methods often rely on solving the Christoffel equation, which is computationally expensive, particularly in heterogeneous models. This study proposes a [...] Read more.
Elastic wavefield separation in anisotropic media is essential for seismic imaging but remains challenging due to complex interactions among multiple wave modes. Traditional methods often rely on solving the Christoffel equation, which is computationally expensive, particularly in heterogeneous models. This study proposes a deep learning-based approach using a cross-attention U-Net architecture to achieve efficient vector decomposition of elastic wavefields. The model employs a dual-branch encoder with cross-attention mechanisms to preserve and exploit inter-component relationships among wavefield components. The network was trained on patches extracted from the BP (British Petroleum) 2007 anisotropic benchmark model, with ground truth labels being generated via low-rank approximation methods. Quantitative evaluations show that the cross-attention U-Net outperforms a baseline U-Net, improving the peak signal-to-noise ratio(PSNR) by 1.25 dB (44.10 dB vs. 42.85 dB) and structural similarity index (SSIM) by 0.014 (0.904 vs. 0.890). The model demonstrates effective generalization to larger domains and different geological settings, validated on both the extended BP model and the Hess vertically transversely isotropic (VTI) model. Overall, this approach provides a computationally efficient alternative to traditional separation methods while maintaining physical consistency in the separated wavefields. Full article
(This article belongs to the Special Issue Novel Applications of Machine Learning and Bayesian Optimization)
Show Figures

Figure 1

13 pages, 12552 KiB  
Article
Inversion of Elastic and Fracture Parameters in Tilted Transverse Isotropic Media with Parameter Standardization
by Guangzhi Zhang, Shengzhao Dai, Han Li, Hongjian Hao and Tengfei Chen
Appl. Sci. 2025, 15(5), 2792; https://doi.org/10.3390/app15052792 - 5 Mar 2025
Viewed by 568
Abstract
This study addresses inversion challenges in tilted transverse isotropic (TTI) media affected by inclined fractures. A new method is proposed to derive the reflection coefficient for such media, combining scattering theory with the steady-phase method. To enhance inversion accuracy and stability, a scale [...] Read more.
This study addresses inversion challenges in tilted transverse isotropic (TTI) media affected by inclined fractures. A new method is proposed to derive the reflection coefficient for such media, combining scattering theory with the steady-phase method. To enhance inversion accuracy and stability, a scale normalization technique is introduced. The approach improves parameter consistency during the inversion process. The results highlight the potential of this method to offer valuable technical support for fractured reservoir exploration and development. Full article
(This article belongs to the Special Issue Advances in Geophysical Exploration)
Show Figures

Figure 1

20 pages, 4080 KiB  
Article
A Bioinspired Multi-Level Numerical Model of the Tibiofemoral Joint for Biomechanical and Biomimetic Applications
by Yuyang Wei, Yijie Chen, Sihan Jia, Lingyun Yan and Luzheng Bi
Biomimetics 2025, 10(2), 119; https://doi.org/10.3390/biomimetics10020119 - 18 Feb 2025
Viewed by 656
Abstract
This study presents a comprehensive three-dimensional finite element (FE) model inspired by the biomechanics of the human knee, specifically the tibiofemoral joint during the gait cycle. Drawing from natural biological systems, the model integrates bio-inspired elements, including transversely isotropic materials, to replicate the [...] Read more.
This study presents a comprehensive three-dimensional finite element (FE) model inspired by the biomechanics of the human knee, specifically the tibiofemoral joint during the gait cycle. Drawing from natural biological systems, the model integrates bio-inspired elements, including transversely isotropic materials, to replicate the anisotropic properties of ligaments and cartilage, along with anatomically realistic bone and meniscus structures. This dual-material approach ensures a physiologically accurate representation of knee mechanics under varying conditions. The model effectively captures key biomechanical parameters, including a maximum medial tibial cartilage contact pressure of 16.75 MPa at 25% of the stance phase and a maximum femoral cartilage pressure of 10.57 MPa at 75% of the stance phase. Furthermore, its strong correlation with in vivo and in vitro data highlights its potential for clinical applications in orthopedics, such as pre-surgical planning and post-operative assessments. By bridging the gap between biomechanics and bioinspired design, this research contributes significantly to the field of biomimetics and offers a robust simulation tool for enhancing joint protection strategies and optimizing implant designs. Full article
Show Figures

Figure 1

19 pages, 7741 KiB  
Article
Determination of Biomechanical Parameters and Development of an Improved FEM Model for Perennial Alfalfa (Medicago sativa L.) Roots
by Shuo Wang, Xuanting Liu, Hongyan Qi, Zihe Xu and Yunhai Ma
Agronomy 2024, 14(12), 3033; https://doi.org/10.3390/agronomy14123033 - 19 Dec 2024
Cited by 2 | Viewed by 700
Abstract
Grassland degradation and reduced yields are often linked to the root soil composite of perennial alfalfa roots. This study introduces a novel modeling approach to accurately characterize root biomechanical properties, assist in the design of soil-loosening and root-cutting tools. Our model conceptualizes the [...] Read more.
Grassland degradation and reduced yields are often linked to the root soil composite of perennial alfalfa roots. This study introduces a novel modeling approach to accurately characterize root biomechanical properties, assist in the design of soil-loosening and root-cutting tools. Our model conceptualizes the root as a composite structure of cortex and stele, applying transversely isotropic properties to the stele and isotropic properties to the cortex. Material parameters were derived from longitudinal tension, longitudinal compression, transverse compression, and shear tests. The constitutive model of stele was Hashin failure criteria, accounting for differences in tensile and compressive strengths. Results reveal that root tensile strength mainly depends on the stele, with its tensile properties exceeding compressive and transverse strengths by 4–10 times. In non-longitudinal tensile stress scenarios, like shear and transverse compression tests, the new model demonstrated superior accuracy over conventional models. Results of shear tests were further validated using non-parametric statistical analysis. This study provides a finite element method (FEM) modeling approach that, by integrating root anatomical features and biomechanical properties, significantly enhances simulation accuracy. This provides a tool for designing low-energy consumption components in grassland degradation restoration and conservation tillage. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 4117 KiB  
Article
Unified Elasto-Plastic Solution for High-Speed Railway Tunnel in Cold Regions Considering Dual Transverse Isotropic Model of Frozen Rock Mass
by Peng Zhao, Weibin Ma and Qian Fang
Appl. Sci. 2024, 14(24), 11796; https://doi.org/10.3390/app142411796 - 17 Dec 2024
Viewed by 720
Abstract
Frost damage is one of the main influencing factors for the deterioration of support structures in cold-region tunnels. A new dual transverse isotropic model of frozen rock mass is first proposed based on parameter strain and elastic modulus to serve as the theoretical [...] Read more.
Frost damage is one of the main influencing factors for the deterioration of support structures in cold-region tunnels. A new dual transverse isotropic model of frozen rock mass is first proposed based on parameter strain and elastic modulus to serve as the theoretical basis for tunnel operation safety in cold regions. Subsequently, a unified elasto-plastic solution for high-speed railway tunnels in cold regions is derived based on the new dual transverse isotropic model, and the accuracy of the analytical solution is verified by comparisons with existing models and experimental results. Finally, the effect of the model parameters on stress and displacement is explored. The results reveal a significant negative correlation between the plastic radius of the frozen rock mass zone and the pressure acting on the inner surface of the support structure, the influence coefficient of intermediate principal stress, radial-gradient influence coefficient of the frozen rock mass, and anisotropic frost heave coefficient of the frozen rock mass, as well as between the frost-heaving force and the influence coefficient of intermediate principal stress parameter. However, the frost-heaving force is positively correlated with the pressure acting on the inner surface of the support structure, the radial gradient influence coefficient of the frozen rock mass, and the anisotropic frost heave coefficients of the frozen rock mass. Therefore, the pressure acting on the inner surface of the support structure, the radial gradient influence co-efficient of the frozen rock mass, and the anisotropic frost heave coefficients of frozen rock mass should be reasonably considered, but the strength theory of the surrounding rock should be strongly considered in the design of tunnel structures in cold regions. Full article
Show Figures

Figure 1

22 pages, 13327 KiB  
Article
Efficient Representative Volume Element of a Matrix–Precipitate Microstructure—Application on AlSi10Mg Alloy
by Chantal Bouffioux, Luc Papeleux, Mathieu Calvat, Hoang-Son Tran, Fan Chen, Jean-Philippe Ponthot, Laurent Duchêne and Anne Marie Habraken
Metals 2024, 14(11), 1244; https://doi.org/10.3390/met14111244 - 1 Nov 2024
Viewed by 1439
Abstract
In finite element models (FEMs), two- or three-dimensional Representative Volume Elements (RVEs) based on a statistical distribution of particles in a matrix can predict mechanical material properties. This article studies an alternative to 3D RVEs with a 2.5D RVE approach defined by a [...] Read more.
In finite element models (FEMs), two- or three-dimensional Representative Volume Elements (RVEs) based on a statistical distribution of particles in a matrix can predict mechanical material properties. This article studies an alternative to 3D RVEs with a 2.5D RVE approach defined by a one-plane layer of 3D elements to model the material behavior. This 2.5D RVE relies on springs applied in the out-of-plane direction to constrain the two lateral deformations to be compatible, with the goal of achieving the isotropy of the studied material. The method is experimentally validated by the prediction of the tensile stress–strain curve of a bi-phasic microstructure of the AlSi10Mg alloy. Produced by additive manufacturing, the sample material becomes isotropic after friction stir processing post treatment. If a classical plane strain 2D RVE simulation is clearly too stiff compared to the experiment, the predictions of the stress–strain curves based on 2.5D RVE, 2D RVE with no transversal constraint (called 2D free RVE), and 3D RVE simulations are close to the experiments. The local stress fields within a 2.5D RVE present an interesting similarity with 3D RVE local fields, but differences with the 2D free RVE local results. Since a 2.5D RVE simplifies one spatial dimension, the simulations with this model are faster than the 3D RVE (factor 2580 in CPU or taking into account an optimal parallel computation, a factor 417 in real time). Such a discrepancy can affect the FEM2 multi-scale simulations or the time required to train a neural network, enhancing the interest in a 2.5D RVE model. Full article
Show Figures

Figure 1

37 pages, 888 KiB  
Article
Spectral Analysis of Electromagnetic Diffraction Phenomena in Angular Regions Filled by Arbitrary Linear Media
by Vito G. Daniele and Guido Lombardi
Appl. Sci. 2024, 14(19), 8685; https://doi.org/10.3390/app14198685 - 26 Sep 2024
Cited by 2 | Viewed by 777
Abstract
A general theory for solving electromagnetic diffraction problems with impenetrable/penetrable wedges immersed in/made of an arbitrary linear (bianistropic) medium is presented. This novel and general spectral theory handles complex scattering problems by using transverse equations for layered planar and angular structures, the characteristic [...] Read more.
A general theory for solving electromagnetic diffraction problems with impenetrable/penetrable wedges immersed in/made of an arbitrary linear (bianistropic) medium is presented. This novel and general spectral theory handles complex scattering problems by using transverse equations for layered planar and angular structures, the characteristic Green function procedure, the Wiener–Hopf technique, and a new methodology for solving GWHEs. The technique has been proven effective for analyzing problems involving wedges immersed in isotropic media; in this study, we extend the theory to more general cases while providing all necessary mathematical tools and corresponding validations. We obtain generalized Wiener–Hopf equations (GWHEs) from spectral functional equations in angular regions filled by arbitrary linear media. The equations can be interpreted with a network formalism for a systematic view. We recall that spectral methods (such as the Sommerfeld–Malyuzhinets (SM) method, the Kontorovich–Lebedev (KL) transform method, and the Wiener–Hopf (WH) method) are well-consolidated, fundamental, and effective tools for the correct and precise analysis of electromagnetic diffraction problems constituted by abrupt discontinuities immersed in media with one propagation constant, although they are not immediately applicable to multiple-propagation-constant problems. To the best of our knowledge, the proposed mathematical technique is the first extension of spectral analysis to electromagnetic problems in the presence of angular regions filled by complex arbitrary linear media, thereby providing novel mathematical tools. Validation through fundamental examples is proposed. Full article
Show Figures

Figure 1

20 pages, 6654 KiB  
Article
Investigation of Indirect Shear Strength of Black Shale for Urban Deep Excavation
by Mintae Kim
Buildings 2024, 14(10), 3050; https://doi.org/10.3390/buildings14103050 - 24 Sep 2024
Viewed by 1196
Abstract
This study thoroughly investigated the compressive and tensile strength characteristics of black shale using both experimental and analytical approaches. Uniaxial compression tests were conducted to determine the elastic constants of black shale modeled as idealized, linear elastic, homogeneous, and transversely isotropic. Additionally, Brazilian [...] Read more.
This study thoroughly investigated the compressive and tensile strength characteristics of black shale using both experimental and analytical approaches. Uniaxial compression tests were conducted to determine the elastic constants of black shale modeled as idealized, linear elastic, homogeneous, and transversely isotropic. Additionally, Brazilian tests were carried out on shale, considering it a transversely isotropic material. Strain measurements were recorded at the center of disc specimens subjected to diametric loading. By placing strain gages at the disc centers, the five elastic constants were accurately estimated. The effects of experimental methods and diametric loading on the elastic constant determination were evaluated and analyzed, and the indirect shear strength of the black shale, considering anisotropy, was determined using the estimated stress concentration coefficient. This study revealed that the indirect tensile strength of black shale is significantly influenced by the angle between the anisotropic planes and the diametric loading direction. Moreover, it was revealed that the stress concentration coefficients for anisotropic rocks vary from those of isotropic rocks, depending on the inclination angle of the bedding planes. This study confirms that the shear (tensile) strength of anisotropic black shale is not constant but varies with the orientation of the anisotropic planes in relation to the applied load. Full article
(This article belongs to the Special Issue Advances in Foundation Engineering for Building Structures)
Show Figures

Figure 1

19 pages, 10323 KiB  
Article
Numerical Modeling of Scholte Wave in Acoustic-Elastic Coupled TTI Anisotropic Media
by Yifei Chen and Deli Wang
Appl. Sci. 2024, 14(18), 8302; https://doi.org/10.3390/app14188302 - 14 Sep 2024
Cited by 1 | Viewed by 1210
Abstract
Numerical modeling of acoustic-elastic media is helpful for seismic exploration in the deepwater environment. We propose an algorithm based on the staggered grid finite difference to simulate wave propagation in the interface between fluid and transversely isotropic media, where the interface does not [...] Read more.
Numerical modeling of acoustic-elastic media is helpful for seismic exploration in the deepwater environment. We propose an algorithm based on the staggered grid finite difference to simulate wave propagation in the interface between fluid and transversely isotropic media, where the interface does not need to consider the boundary condition. We also derive the stability conditions of the proposed method. Scholte waves, which are generated at the seafloor, exhibit distinctly different propagation behaviors than body waves in ocean-bottom seismograms. Numerical examples are used to characterize the wavefield of Scholte waves and discuss the relationship between travel time and the Thomsen parameters. Thomsen parameters are assigned clear physical meanings, and the magnitude of their values directly indicates the strength of the anisotropy in the media. Numerical results show that the velocity of the Scholte wave is positively correlated with ε and negatively correlated with δ. And the curve of the arrival time of the Scholte wave as a whole is sinusoidal and has no symmetry in inclination. The velocity of the Scholte wave in azimuth is positively related to the polar angle. The energy of the Scholte wave is negatively correlated with the distance from the source to the fluid-solid interface. The above results provide a basis for studying oceanic Scholte waves and are beneficial for utilizing the information provided by Scholte waves. Full article
Show Figures

Figure 1

18 pages, 9950 KiB  
Article
A New Approximation Modeling Method for the Triaxial Induction Logging in Planar-Stratified Biaxial Anisotropic Formations
by Ping Qiao, Lei Wang, Xiyong Yuan and Shaogui Deng
Remote Sens. 2024, 16(16), 3076; https://doi.org/10.3390/rs16163076 - 21 Aug 2024
Cited by 1 | Viewed by 948
Abstract
A novel and efficient modeling approach has been developed for simulating the responses of triaxial induction logging (TIL) in layered biaxial anisotropic (BA) formations. The core of this innovative technique lies in analytically calculating the primary fields within a homogeneous medium and approximating [...] Read more.
A novel and efficient modeling approach has been developed for simulating the responses of triaxial induction logging (TIL) in layered biaxial anisotropic (BA) formations. The core of this innovative technique lies in analytically calculating the primary fields within a homogeneous medium and approximating the scattered fields within layered formations. The former involves employing a two-level subtraction technique. Initially, the first-level subtraction entails altering the direction of the Fourier transform to mitigate the integral singularity of the spectral fields, particularly in high-angle and horizontal wells. Conversely, the second-level subtraction aims to further optimize integral convergence by creating an equivalent unbounded transverse isotropic (TI) formation and eliminating the corresponding spectral fields. With the two-level subtractions, the convergence of the spectral field has been enhanced by more than six orders of magnitude. Additionally, a strict recursive algorithm and approximation method are developed to compute the scattered fields in layered biaxial anisotropic media. The rigorous algorithm is based on a modified amplitude propagator matrix (MAPM) approach and serves as the benchmark for the approximation method. In contrast, the approximation method exploits the similarity between the spectral scattered field of the TI medium and the BA medium, establishing corresponding equivalent layered TI models for each magnetic component. Since the scattered field in TI models only involves a one-dimensional semi-infinite integral, the computational complexity is significantly reduced. Numerical simulation examples demonstrate that the new simulation method is at least two orders of magnitude faster than the current modeling approach while maintaining computational precision error within 0.5%. This significantly improved simulation efficiency provides a solid foundation for expediting the logging data processing. Full article
(This article belongs to the Special Issue Recent Advances in Underwater and Terrestrial Remote Sensing)
Show Figures

Graphical abstract

17 pages, 4149 KiB  
Article
Upper and Lower Bounds to Pull-Out Loading of Inclined Hooked End Steel Fibres Embedded in Concrete
by David W. A. Rees and Sadoon Abdallah
Fibers 2024, 12(8), 65; https://doi.org/10.3390/fib12080065 - 5 Aug 2024
Cited by 3 | Viewed by 1492
Abstract
Steel fibre-reinforced concrete (SFRC) consists of short, hooked steel fibres that are randomly distributed and oriented within the cementitious matrix. This paper presents a new analytical load-bounding approach that captures the tensile response of misaligned fibres embedded in the matrix. The contribution of [...] Read more.
Steel fibre-reinforced concrete (SFRC) consists of short, hooked steel fibres that are randomly distributed and oriented within the cementitious matrix. This paper presents a new analytical load-bounding approach that captures the tensile response of misaligned fibres embedded in the matrix. The contribution of fibres in bridging cracks to provide the required stress transfer relies on the orientation of the fibres in the concrete. Bridging fibres aligned with a crack are less effective than those inclined to it. Therefore, understanding the pull-out behaviour of misaligned fibres is a key factor in quantifying and optimising the design of SFRC in structural applications. In the laboratory, a single-oriented fibre embedded in a solid cylinder of concrete was subjected to a pull-out test, where the axis of the tensile force is aligned with the axis of the cylinder. Based on the observed behaviour, this paper presents a new analytical bounding approach to capture the pull-out response of misaligned hooked-end steel fibres embedded in a concrete matrix. The analysis was based on a transversely isotropic failure criterion assumed for the plasticity that occurs in the cold-drawn fibre. Lower and upper bounds to the loading failure were derived from fibre pull-out and fibre fracture, respectively. The division between bounds depended upon the fibre orientation, fibre diameter and the combined strengths of the steel and concrete. Bounding predictions were drawn from ratios between a fibre’s shear strength and its transverse and axial uniaxial strengths, as found from a novel testing proposal. The two bounds were compared with new data and other experimental results published in the literature. The results showed that the region between the bounds captured the failure loads of embedded fibres with effective load-bearing orientations. A critical orientation was observed at maximum strength. The present interpretation of the plasticity occurring within off-axis, hooked-end steel fibres suggests that it is possible to optimise the strength of concrete using this method of reinforcement. Full article
(This article belongs to the Special Issue Fracture Behavior of Fiber-Reinforced Building Materials)
Show Figures

Figure 1

Back to TopTop