Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = transporter-mediated drug disposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1423 KiB  
Review
Transporter-Mediated Interactions Between Uremic Toxins and Drugs: A Hidden Driver of Toxicity in Chronic Kidney Disease
by Pierre Spicher, François Brazier, Solène M. Laville, Sophie Liabeuf, Saïd Kamel, Maxime Culot and Sandra Bodeau
Int. J. Mol. Sci. 2025, 26(13), 6328; https://doi.org/10.3390/ijms26136328 - 30 Jun 2025
Viewed by 366
Abstract
Chronic kidney disease (CKD) is associated with the systemic accumulation of uremic toxins (UTs) due to impaired renal elimination. Among these, indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are particularly challenging because of their high protein binding and limited removal by dialysis. In [...] Read more.
Chronic kidney disease (CKD) is associated with the systemic accumulation of uremic toxins (UTs) due to impaired renal elimination. Among these, indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are particularly challenging because of their high protein binding and limited removal by dialysis. In addition to renal excretion, the transport of IS and PCS, and their microbiota-derived precursors, indole and p-cresol, across key physiological barriers—the intestinal barrier, blood–brain barrier, and renal proximal tubule—critically influences their distribution and elimination. This review provides an overview of transporter-mediated mechanisms involved in the disposition of IS, PCS, and their microbial precursors, indole and p-cresol. It also examines how these UTs may interact with commonly prescribed drugs in CKD, particularly those that share transporter pathways as substrates or inhibitors. These drug–toxin interactions may influence the pharmacokinetics and toxicity of IS and PCS, but remain poorly characterized and largely overlooked in clinical settings. A better understanding of these processes may guide future efforts to optimize pharmacotherapy and support more informed management of CKD patients, particularly in the context of polypharmacy. Full article
(This article belongs to the Special Issue Transporters in Health and Disease)
Show Figures

Figure 1

25 pages, 2704 KiB  
Article
A Parent–Metabolite Middle-Out PBPK Model for Genistein and Its Glucuronide Metabolite in Rats: Integrating Liver and Enteric Metabolism with Hepatobiliary and Enteroluminal Transport to Assess Glucuronide Recycling
by Bhargavi Srija Ramisetty, Rashim Singh, Ming Hu and Michael Zhuo Wang
Pharmaceutics 2025, 17(7), 814; https://doi.org/10.3390/pharmaceutics17070814 - 23 Jun 2025
Viewed by 462
Abstract
Background: Glucuronide recycling in the gut and liver profoundly affects the systemic and/or local exposure of drugs and their glucuronide metabolites, impacting both clinical efficacy and toxicity. This recycling also alters drug exposure in the colon, making it critical to establish local [...] Read more.
Background: Glucuronide recycling in the gut and liver profoundly affects the systemic and/or local exposure of drugs and their glucuronide metabolites, impacting both clinical efficacy and toxicity. This recycling also alters drug exposure in the colon, making it critical to establish local concentration for drugs targeting colon (e.g., drugs for colon cancer and inflammatory bowel disease). Methods: In this study, a parent–metabolite middle-out physiologically based pharmacokinetic (PBPK) model was built for genistein and its glucuronide metabolite to estimate the systemic and local exposure of the glucuronide and its corresponding aglycone in rats by incorporating UDP-glucuronosyltransferase (UGT)-mediated metabolism and transporter-dependent glucuronide disposition in the liver and intestine, as well as gut microbial-mediated deglucuronidation that enables the recycling of the parent compound. Results: This parent–metabolite middle-out rat PBPK model utilized in vitro-to-in vivo extrapolated (IVIVE) metabolic and transporter clearance values based on in vitro kinetic parameters from surrogate species, the rat tissue abundance of relevant proteins, and saturable Michaelis–Menten mechanisms. Inter-system extrapolation factors (ISEFs) were used to account for transporter protein abundance differences between in vitro systems and tissues and between rats and surrogate species. Model performance was evaluated at multiple dose levels for genistein and its glucuronide. Model sensitivity analyses demonstrated the impact of key parameters on the plasma concentrations and local exposure of genistein and its glucuronide. Our model was applied to simulate the quantitative impact of glucuronide recycling on the pharmacokinetic profiles in both plasma and colonocytes. Conclusions: Our study underlines the importance of glucuronide recycling in determining local drug concentrations in the intestine and provides a preliminary modeling tool to assess the influence of transporter-mediated drug–drug interactions on glucuronide recycling and local drug exposure, which are often misrepresented by systemic plasma concentrations. Full article
(This article belongs to the Special Issue Development of Physiologically Based Pharmacokinetic (PBPK) Modeling)
Show Figures

Graphical abstract

17 pages, 1389 KiB  
Review
Drug Transporters and Metabolizing Enzymes in Antimicrobial Drug Pharmacokinetics: Mechanisms, Drug–Drug Interactions, and Clinical Implications
by Kaili Lin, Ruoqing Wang, Tong Li, Yawen Zuo, Shilei Yang, Deshi Dong and Yanna Zhu
Biomolecules 2025, 15(6), 864; https://doi.org/10.3390/biom15060864 - 13 Jun 2025
Viewed by 679
Abstract
Drug transporters and metabolizing enzymes are integral components of drug disposition, governing the absorption, distribution, metabolism, and excretion (ADME) of pharmaceuticals. Their activities critically determine therapeutic efficacy and toxicity profiles, particularly for antimicrobial agents, one of the most widely prescribed drug classes frequently [...] Read more.
Drug transporters and metabolizing enzymes are integral components of drug disposition, governing the absorption, distribution, metabolism, and excretion (ADME) of pharmaceuticals. Their activities critically determine therapeutic efficacy and toxicity profiles, particularly for antimicrobial agents, one of the most widely prescribed drug classes frequently co-administered with other medications. Emerging evidence highlights the clinical significance of the drug–drug interactions (DDIs) mediated by these systems, which may alter antimicrobial pharmacokinetics, compromise treatment outcomes, or precipitate adverse events. With the continuous introduction of novel antimicrobial agents into clinical practice, the role of drug transporters and metabolizing enzymes in the pharmacokinetics of antibiotics and the DDIs between antibiotics and other drugs mediated by these transporters and enzymes are important to determine in order to provide a theoretical basis for the safe and effective use of antimicrobial drugs in clinical use. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

21 pages, 1248 KiB  
Review
Clinical Pharmacology of Bulevirtide: Focus on Known and Potential Drug–Drug Interactions
by Martina Billi, Sara Soloperto, Stefano Bonora, Antonio D’Avolio and Amedeo De Nicolò
Pharmaceutics 2025, 17(2), 250; https://doi.org/10.3390/pharmaceutics17020250 - 14 Feb 2025
Viewed by 1078
Abstract
Background: Hepatitis D virus (HDV) is a defective virus requiring co-infection with hepatitis B virus (HBV) to replicate, occurring in 5% of HBV+ patients. Bulevirtide (BLV) is now the first-in-class specific anti-HDV agent, inhibiting HDV binding to NTCP, with good tolerability and good [...] Read more.
Background: Hepatitis D virus (HDV) is a defective virus requiring co-infection with hepatitis B virus (HBV) to replicate, occurring in 5% of HBV+ patients. Bulevirtide (BLV) is now the first-in-class specific anti-HDV agent, inhibiting HDV binding to NTCP, with good tolerability and good virological and biochemical response rates. Currently, little is known about its pharmacokinetic/pharmacodynamic (PK/PD), as well as potential drug-drug interaction (DDI) profile. In this work we provide a systematic review of the current knowledge on these aspects. Methods: A literature review of PK, PD and DDI profiles of BLV was conducted from Pubmed and EMA websites. Experimentally tested interactions and hypothetical mechanisms of interaction were evaluated, mostly focusing on usually co-administered anti-infective agents and other drugs interacting on NTCP. Results: BLV shows non-linear PK, due to target-mediated drug disposition, so its PK as well as PD is expected to be influenced by interactions of other drugs with NTCP, while it is not substrate of CYPs and ABC transporters. In-vivo investigated DDIs showed no clinically relevant interactions, but a weak inhibitory effect was suggested on CYP3A4 in a work when used at high doses (10 mg instead of 2 mg). In vitro, a weak inhibitory effect on OATP transporters was observed, but at much higher concentrations than the ones expected in vivo. Conclusions: The drug-drug interaction potential of BLV can be considered generally very low, particularly at the currently approved dose of 2 mg/day. Some attention should be paid to the coadministration of drugs with known binding and/or inhibition of NTCP. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

19 pages, 1631 KiB  
Article
Modulation of Multispecific Transporters by Uncaria tomentosa Extract and Its Major Phytoconstituents
by Nóra Szilvásy, Panna Lajer, Attila Horváth, Katalin Veres, Judit Hohmann, Zsuzsanna Schelz, Renáta Minorics, István Zupkó, Zsuzsanna Gáborik, Emese Kis and Csilla Temesszentandrási-Ambrus
Pharmaceutics 2024, 16(11), 1363; https://doi.org/10.3390/pharmaceutics16111363 - 25 Oct 2024
Viewed by 1738
Abstract
Background/Objectives: One of the major risks associated with the concomitant use of herbal products and therapeutic drugs is herb–drug interactions (HDIs). The most common mechanism leading to HDIs is the inhibition and/or induction of transport proteins and drug-metabolizing enzymes by herbal ingredients, causing [...] Read more.
Background/Objectives: One of the major risks associated with the concomitant use of herbal products and therapeutic drugs is herb–drug interactions (HDIs). The most common mechanism leading to HDIs is the inhibition and/or induction of transport proteins and drug-metabolizing enzymes by herbal ingredients, causing changes in the pharmacokinetic disposition of the victim drug. The present study aimed to determine the potential interactions of Uncaria tomentosa (UT) (cat’s claw), a popular herb due to its supposed health benefits. Methods: The effect of UT extract and its major oxindole alkaloids was investigated on multispecific solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters, using SLC transporter-overexpressing cell lines and vesicles prepared from ABC transporter-overexpressing cells. Results: UT extract significantly inhibited all ABC transporters and the majority of the SLC transporters tested. Of the investigated oxindole alkaloids, isopteropodine significantly inhibited OATP, OCT1 and OCT2, OAT3, ENT4, MDR1, and BCRP transporters. OCTs, OCTN1-, ENT1-, and MDR1-mediated substrate accumulation was below 50% in the presence of mitraphylline. Conclusions: Based on the calculated intestinal concentration of UT extract, interactions with intestinal transporters, especially OATP2B1, ENTs, MRP1, MRP2, MDR1, and BCRP could be relevant in vivo. Our data can help to predict the clinical consequences of UT co-administration with drugs, such as increased toxicity or altered efficacy. In conclusion, the use of these in vitro models is applicable for the analysis of transporter-mediated HDIs similar to drug–drug interaction (DDI) prediction. Full article
Show Figures

Graphical abstract

11 pages, 944 KiB  
Article
Altered Expression of BCRP Impacts Fetal Accumulation of Rosuvastatin in a Rat Model of Preeclampsia
by Wanying Dai and Micheline Piquette-Miller
Pharmaceutics 2024, 16(7), 884; https://doi.org/10.3390/pharmaceutics16070884 - 30 Jun 2024
Viewed by 1786
Abstract
Expression of the breast cancer resistance protein (BCRP/ABCG2) transporter is downregulated in placentas from women with preeclampsia (PE) and in an immunological rat model of PE. While many drugs are substrates of this important efflux transporter, the impact of PE associated BCRP downregulation [...] Read more.
Expression of the breast cancer resistance protein (BCRP/ABCG2) transporter is downregulated in placentas from women with preeclampsia (PE) and in an immunological rat model of PE. While many drugs are substrates of this important efflux transporter, the impact of PE associated BCRP downregulation on maternal and fetal drug exposure has not been investigated. Using the PE rat model, we performed a pharmacokinetic study with rosuvastatin (RSV), a BCRP substrate, to investigate this impact. PE was induced in rats during gestational days (GD) 13 to 16 with daily low-dose endotoxin. On GD18, RSV (3 mg/kg) was administrated intravenously, and rats were sacrificed at time intervals between 0.5 and 6 h. As compared to controls, placental expression of Bcrp and Oatp2b1 significantly decreased in PE rats. A corresponding increase in RSV levels was seen in fetal tissues and amniotic fluid of the PE group (p < 0.05), while maternal plasma concentrations remained unchanged from the controls. An increase in Bcrp expression and decreased RSV concentration were seen in the livers of PE dams. This suggests that PE-mediated transporter dysregulation leads to significant changes in the maternal and fetal RSV disposition. Overall, our findings demonstrate that altered placental expression of transporters in PE can increase fetal accumulation of their substrates. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
Show Figures

Figure 1

16 pages, 937 KiB  
Review
Impact of Drug-Mediated Inhibition of Intestinal Transporters on Nutrient and Endogenous Substrate Disposition…an Afterthought?
by Kshitee Kharve, Andrew S. Engley, Mary F. Paine and Jason A. Sprowl
Pharmaceutics 2024, 16(4), 447; https://doi.org/10.3390/pharmaceutics16040447 - 24 Mar 2024
Cited by 1 | Viewed by 2393
Abstract
A large percentage (~60%) of prescription drugs and new molecular entities are designed for oral delivery, which requires passage through a semi-impervious membrane bilayer in the gastrointestinal wall. Passage through this bilayer can be dependent on membrane transporters that regulate the absorption of [...] Read more.
A large percentage (~60%) of prescription drugs and new molecular entities are designed for oral delivery, which requires passage through a semi-impervious membrane bilayer in the gastrointestinal wall. Passage through this bilayer can be dependent on membrane transporters that regulate the absorption of nutrients or endogenous substrates. Several investigations have provided links between nutrient, endogenous substrate, or drug absorption and the activity of certain membrane transporters. This knowledge has been key in the development of new therapeutics that can alleviate various symptoms of select diseases, such as cholestasis and diabetes. Despite this progress, recent studies revealed potential clinical dangers of unintended altered nutrient or endogenous substrate disposition due to the drug-mediated disruption of intestinal transport activity. This review outlines reports of glucose, folate, thiamine, lactate, and bile acid (re)absorption changes and consequent adverse events as examples. Finally, the need to comprehensively expand research on intestinal transporter-mediated drug interactions to avoid the unwanted disruption of homeostasis and diminish therapeutic adverse events is highlighted. Full article
(This article belongs to the Special Issue New Insights into Transporters in Drug Development)
Show Figures

Figure 1

14 pages, 1292 KiB  
Article
Interaction of ALK Inhibitors with Polyspecific Organic Cation Transporters and the Impact of Substrate-Dependent Inhibition on the Prediction of Drug–Drug Interactions
by Yik Pui Tsang, Antonio Jesús López Quiñones, Letícia Salvador Vieira and Joanne Wang
Pharmaceutics 2023, 15(9), 2312; https://doi.org/10.3390/pharmaceutics15092312 - 13 Sep 2023
Viewed by 1862
Abstract
Small molecules targeting aberrant anaplastic lymphoma kinase (ALK) are active against ALK-positive non-small-cell lung cancers and neuroblastoma. Several targeted tyrosine kinase inhibitors (TKIs) have been shown to interact with polyspecific organic cation transporters (pOCTs), raising concerns about potential drug–drug interactions (DDIs). The purpose [...] Read more.
Small molecules targeting aberrant anaplastic lymphoma kinase (ALK) are active against ALK-positive non-small-cell lung cancers and neuroblastoma. Several targeted tyrosine kinase inhibitors (TKIs) have been shown to interact with polyspecific organic cation transporters (pOCTs), raising concerns about potential drug–drug interactions (DDIs). The purpose of this study was to assess the interaction of ALK inhibitors with pOCTs and the impact of substrate-dependent inhibition on the prediction of DDIs. Inhibition assays were conducted in transporter-overexpressing cells using meta-iodobenzylguanidine (mIBG), metformin, or 1-methyl-4-phenylpyridinium (MPP+) as the substrate. The half-maximal inhibitory concentrations (IC50) of brigatinib and crizotinib for the substrates tested were used to predict their potential for in vivo transporter mediated DDIs. Here, we show that the inhibition potencies of brigatinib and crizotinib on pOCTs are isoform- and substrate-dependent. Human OCT3 (hOCT3) and multidrug and toxin extrusion protein 1 (hMATE1) were highly sensitive to inhibition by brigatinib and crizotinib for all three tested substrates. Apart from hMATE1, substrate-dependent inhibition was observed for all other transporters with varying degrees of dependency; hOCT1 inhibition showed the greatest substrate dependency, with differences in IC50 values of up to 22-fold across the tested substrates, followed by hOCT2 and hMATE2-K, with differences in IC50 values of up to 16- and 12-fold, respectively. Conversely, hOCT3 inhibition only showed a moderate substrate dependency (IC50 variance < 4.8). Among the substrates used, metformin was consistently shown to be the most sensitive substrate, followed by mIBG and MPP+. Pre-incubation of ALK inhibitors had little impact on their potencies toward hOCT2 and hMATE1. Our results underscore the complexity of the interactions between substrates and the inhibitors of pOCTs and have important implications for the clinical use of ALK inhibitors and their DDI predictions. Full article
(This article belongs to the Special Issue Drug Transporters: Regulation and Roles in Therapeutic Strategies)
Show Figures

Figure 1

14 pages, 816 KiB  
Article
In Vitro Evaluation of the Potential for Drug Interactions by Salidroside
by Philip G. Kasprzyk, Larry Tremaine, Odette A. Fahmi and Jing-Ke Weng
Nutrients 2023, 15(17), 3723; https://doi.org/10.3390/nu15173723 - 25 Aug 2023
Cited by 6 | Viewed by 2992
Abstract
Several studies utilizing Rhodiola rosea, which contains a complex mixture of phytochemicals, reported some positive drug-drug interaction (DDI) findings based on in vitro CYP450’s enzyme inhibition, MAO-A and MAO-B inhibition, and preclinical pharmacokinetic studies in either rats or rabbits. However, variation in [...] Read more.
Several studies utilizing Rhodiola rosea, which contains a complex mixture of phytochemicals, reported some positive drug-drug interaction (DDI) findings based on in vitro CYP450’s enzyme inhibition, MAO-A and MAO-B inhibition, and preclinical pharmacokinetic studies in either rats or rabbits. However, variation in and multiplicity of constituents present in Rhodiola products is a cause for concern for accurately evaluating drug-drug interaction (DDI) risk. In this report, we examined the effects of bioengineered, nature-identical salidroside on the inhibition potential of salidroside on CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 utilizing human liver microsomes, the induction potential of salidroside on CYP1A2, CYP2B6 and CYP3A4 in cryopreserved human hepatocytes, the inhibitory potential of salidroside against recombinant human MAO-A and MAO-B, and the OATP human uptake transport inhibitory potential of salidroside using transfected HEK293-OATP1B1 and OATP1B3 cells. The results demonstrate that the bioengineered salidroside at a concentration exceeding the predicted plasma concentrations of <2 µM (based on 60 mg PO) shows no risk for drug-drug interaction due to CYP450, MAO enzymes, or OATP drug transport proteins. Our current studies further support the safe use of salidroside in combination with other drugs cleared by CYP or MAO metabolism or OATP-mediated disposition. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

17 pages, 4273 KiB  
Article
OAT3 Participates in Drug–Drug Interaction between Bentysrepinine and Entecavir through Interactions with M8—A Metabolite of Bentysrepinine—In Rats and Humans In Vitro
by Aijie Zhang, Fanlong Yang, Yang Yuan, Cai Li, Xiaokui Huo, Jing Liu, Shenzhi Zhou, Wei Li, Na Zhang, Jianfeng Liu, Shiqi Dong, Huirong Fan, Ying Peng and Jiang Zheng
Molecules 2023, 28(4), 1995; https://doi.org/10.3390/molecules28041995 - 20 Feb 2023
Cited by 4 | Viewed by 2319
Abstract
Bentysrepinine (Y101) is a novel phenylalanine dipeptide for the treatment of hepatitis B virus. Renal excretion played an important role in the elimination of Y101 and its metabolites, M8 and M9, in healthy Chinese subjects, although the molecular mechanisms of renal excretion and [...] Read more.
Bentysrepinine (Y101) is a novel phenylalanine dipeptide for the treatment of hepatitis B virus. Renal excretion played an important role in the elimination of Y101 and its metabolites, M8 and M9, in healthy Chinese subjects, although the molecular mechanisms of renal excretion and potential drug–drug interactions (DDIs) remain unclear. The present study aimed to determine the organic anion transporters (OATs) involved in the renal disposition of Y101 and to predict the potential DDI between Y101 and entecavir, the first-line agent against HBV and a substrate of OAT1/3. Pharmacokinetic studies and uptake assays using rat kidney slices, as well as hOAT1/3-HEK293 cells, were performed to evaluate potential DDI. The co-administration of probenecid (an inhibitor of OATs) significantly increased the plasma concentrations and area under the plasma concentration–time curves of M8 and M9 but not Y101, while reduced renal clearance and the cumulative urinary excretion of M8 were observed in rats. The time course of Y101 and M8 uptake via rat kidney slices was temperature-dependent. Moreover, the uptake of M8 was inhibited significantly by probenecid and benzylpenicillin, but not by p-aminohippurate or tetraethyl ammonium. M8 was found to be a substrate of hOAT3, but Y101 is not a substrate of either hOAT1 or hOAT3. Additionally, the entecavir inhibited the uptake of M8 in the hOAT3-transfected cells and rat kidney slices in vitro. Interestingly, no significant changes were observed in the pharmacokinetic parameters of Y101, M8 or entecavir, regardless of intravenous or oral co-administration of Y101 and entecavir in rats. In conclusion, M8 is a substrate of OAT3 in rats and humans. Furthermore, M8 also mediates the DDI between Y101 and entecavir in vitro, mediated by OAT3. We speculate that it would be safe to use Y101 with entecavir in clinical practice. Our results provide useful information with which to predict the DDIs between Y101 and other drugs that act as substrates of OAT3. Full article
(This article belongs to the Special Issue New Advances in Drug Metabolism and Pharmacokinetics)
Show Figures

Figure 1

14 pages, 1715 KiB  
Article
Itraconazole-Induced Increases in Gilteritinib Exposure Are Mediated by CYP3A and OATP1B
by Dominique A. Garrison, Yan Jin, Zahra Talebi, Shuiying Hu, Alex Sparreboom, Sharyn D. Baker and Eric D. Eisenmann
Molecules 2022, 27(20), 6815; https://doi.org/10.3390/molecules27206815 - 12 Oct 2022
Cited by 7 | Viewed by 2680
Abstract
Gilteritinib, an FDA-approved tyrosine kinase inhibitor approved for the treatment of relapsed/refractory FLT3-mutated acute myeloid leukemia, is primarily eliminated via CYP3A4-mediated metabolism, a pathway that is sensitive to the co-administration of known CYP3A4 inhibitors, such as itraconazole. However, the precise mechanism by which [...] Read more.
Gilteritinib, an FDA-approved tyrosine kinase inhibitor approved for the treatment of relapsed/refractory FLT3-mutated acute myeloid leukemia, is primarily eliminated via CYP3A4-mediated metabolism, a pathway that is sensitive to the co-administration of known CYP3A4 inhibitors, such as itraconazole. However, the precise mechanism by which itraconazole and other CYP3A-modulating drugs affect the absorption and disposition of gilteritinib remains unclear. In the present investigation, we demonstrate that pretreatment with itraconazole is associated with a significant increase in the systemic exposure to gilteritinib in mice, recapitulating the observed clinical drug–drug interaction. However, the plasma levels of gilteritinib were only modestly increased in CYP3A-deficient mice and not further influenced by itraconazole. Ensuing in vitro and in vivo studies revealed that gilteritinib is a transported substrate of OATP1B-type transporters, that gilteritinib exposure is increased in mice with OATP1B2 deficiency, and that the ability of itraconazole to inhibit OATP1B-type transport in vivo is contingent on its metabolism by CYP3A isoforms. These findings provide new insight into the pharmacokinetic properties of gilteritinib and into the molecular mechanisms underlying drug–drug interactions with itraconazole. Full article
Show Figures

Graphical abstract

15 pages, 792 KiB  
Article
Genetic Variants of ABC and SLC Transporter Genes and Chronic Myeloid Leukaemia: Impact on Susceptibility and Prognosis
by Raquel Alves, Ana Cristina Gonçalves, Joana Jorge, Gilberto Marques, André B. Ribeiro, Rita Tenreiro, Margarida Coucelo, Joana Diamond, Bárbara Oliveiros, Amélia Pereira, Paulo Freitas-Tavares, António M. Almeida and Ana Bela Sarmento-Ribeiro
Int. J. Mol. Sci. 2022, 23(17), 9815; https://doi.org/10.3390/ijms23179815 - 29 Aug 2022
Cited by 7 | Viewed by 2668
Abstract
Solute carrier (SLC) and ATP-binding cassette (ABC) transporters comprise a variety of proteins expressed on cell membranes responsible for intrusion or extrusion of substrates, respectively, including nutrients, xenobiotics, and chemotherapeutic agents. These transporters mediate the cellular disposition of tyrosine kinase inhibitors (TKIs), and [...] Read more.
Solute carrier (SLC) and ATP-binding cassette (ABC) transporters comprise a variety of proteins expressed on cell membranes responsible for intrusion or extrusion of substrates, respectively, including nutrients, xenobiotics, and chemotherapeutic agents. These transporters mediate the cellular disposition of tyrosine kinase inhibitors (TKIs), and their genetic variants could affect its function, potentially predisposing patients to chronic myeloid leukaemia (CML) and modulating treatment response. We explored the impact of genetic variability (single nucleotide variants—SNVs) of drug transporter genes (ABCB1, ABCG2, SLC22A1, and SLC22A5) on CML susceptibility, drug response, and BCR-ABL1 mutation status. We genotyped 10 SNVs by tetra-primers-AMRS-PCR in 198 CML patients and 404 controls, and assessed their role in CML susceptibility and prognosis. We identified five SNVs associated with CML predisposition, with some variants increasing disease risk, including TT genotype ABCB1 (rs1045642), and others showing a protective effect (GG genotype SLC22A5 rs274558). We also observed different haplotypes and genotypic profiles associated with CML predisposition. Relating to drug response impact, we found that CML patients with the CC genotype (rs2231142 ABCG2) had an increased risk of TKI resistance (six-fold). Additionally, CML patients carrying the CG genotype (rs683369 SLC22A1) presented a 4.54-fold higher risk of BCR-ABL1 mutations. Our results suggest that drug transporters’ SNVs might be involved in CML susceptibility and TKI response, and predict the risk of BCR-ABL1 mutations, highlighting the impact that SNVs could have in therapeutic selection. Full article
(This article belongs to the Special Issue Genetic and Molecular Susceptibility in Human Diseases)
Show Figures

Figure 1

27 pages, 4282 KiB  
Article
Is P-Glycoprotein Functionally Expressed in the Limiting Membrane of Endolysosomes? A Biochemical and Ultrastructural Study in the Rat Liver
by Birthe Gericke, Inka Wienböker, Gudrun Brandes and Wolfgang Löscher
Cells 2022, 11(9), 1556; https://doi.org/10.3390/cells11091556 - 5 May 2022
Cited by 8 | Viewed by 4088
Abstract
The drug efflux transporter P-glycoprotein (Pgp; ABCB1) plays an important role in drug absorption, disposition, and elimination. There is an ongoing debate whether, in addition to its localization at the plasma membrane, Pgp may also be expressed at the limiting membrane of endolysosomes [...] Read more.
The drug efflux transporter P-glycoprotein (Pgp; ABCB1) plays an important role in drug absorption, disposition, and elimination. There is an ongoing debate whether, in addition to its localization at the plasma membrane, Pgp may also be expressed at the limiting membrane of endolysosomes (ELs), mediating active EL drug sequestration. If true, this would be an important mechanism to prevent drugs from reaching their intracellular targets. However, direct evidence demonstrating the functional expression of Pgp at the limiting membrane of ELs is lacking. This prompted us to perform a biochemical and ultrastructural study on the intracellular localization of Pgp in native rat liver. For this purpose, we established an improved subcellular fractionation procedure for the enrichment of ELs and employed different biochemical and ultrastructural methods to characterize the Pgp localization and function in the enriched EL fractions. Whereas the biochemical methods seemed to indicate that Pgp is functionally expressed at EL limiting membranes, transmission electron microscopy (TEM) indicated that this only occurs rarely, if at all. Instead, Pgp was found in the limiting membrane of early endosomes and intraluminal vesicles. In additional TEM experiments, using a Pgp-overexpressing brain microvessel endothelial cell line (hCMEC/D3-MDR1-EGFP), we examined whether Pgp is expressed at the limiting membrane of ELs when cells are exposed to high levels of the Pgp substrate doxorubicin. Pgp was seen in early endosomes but only rarely in endolysosomes, whereas Pgp immunogold labeling was detected in large autophagosomes. In summary, our data demonstrate the importance of combining biochemical and ultrastructural methods to investigate the relationship between Pgp localization and function. Full article
Show Figures

Figure 1

24 pages, 1152 KiB  
Review
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction
by Regiane Stafim da Cunha, Carolina Amaral Bueno Azevedo, Carlos Alexandre Falconi, Fernanda Fogaça Ruiz, Sophie Liabeuf, Marcela Sorelli Carneiro-Ramos and Andréa Emilia Marques Stinghen
Toxins 2022, 14(3), 177; https://doi.org/10.3390/toxins14030177 - 26 Feb 2022
Cited by 24 | Viewed by 5624
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by [...] Read more.
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice. Full article
(This article belongs to the Special Issue Uremic Toxins and Drugs)
Show Figures

Graphical abstract

15 pages, 2625 KiB  
Article
Physiologically Based Pharmacokinetic (PBPK) Modeling for Predicting Brain Levels of Drug in Rat
by Bárbara Sánchez-Dengra, Isabel Gonzalez-Alvarez, Marival Bermejo and Marta Gonzalez-Alvarez
Pharmaceutics 2021, 13(9), 1402; https://doi.org/10.3390/pharmaceutics13091402 - 3 Sep 2021
Cited by 9 | Viewed by 3694
Abstract
One of the main obstacles in neurological disease treatment is the presence of the blood–brain barrier. New predictive high-throughput screening tools are essential to avoid costly failures in the advanced phases of development and to contribute to the 3 Rs policy. The objective [...] Read more.
One of the main obstacles in neurological disease treatment is the presence of the blood–brain barrier. New predictive high-throughput screening tools are essential to avoid costly failures in the advanced phases of development and to contribute to the 3 Rs policy. The objective of this work was to jointly develop a new in vitro system coupled with a physiological-based pharmacokinetic (PBPK) model able to predict brain concentration levels of different drugs in rats. Data from in vitro tests with three different cells lines (MDCK, MDCK-MDR1 and hCMEC/D3) were used together with PK parameters and three scaling factors for adjusting the model predictions to the brain and plasma profiles of six model drugs. Later, preliminary quantitative structure–property relationships (QSPRs) were constructed between the scaling factors and the lipophilicity of drugs. The predictability of the model was evaluated by internal validation. It was concluded that the PBPK model, incorporating the barrier resistance to transport, the disposition within the brain and the drug–brain binding combined with MDCK data, provided the best predictions for passive diffusion and carrier-mediated transported drugs, while in the other cell lines, active transport influence can bias predictions. Full article
Show Figures

Graphical abstract

Back to TopTop