Clinical Pharmacology of Bulevirtide: Focus on Known and Potential Drug–Drug Interactions
Abstract
:1. Introduction
2. Data Sources
3. Pharmacodynamic Properties, Efficacy, and Safety
4. Bulevirtide Pharmacokinetics
5. In Vitro Enzymes and Transporters Inhibition Tests
6. Drug–Drug Interactions
6.1. Potential Drug–Drug Interactions Already Investigated in Humans
6.1.1. Tenofovir
6.1.2. Pravastatin
6.2. Possible Interactions with Anti-HIV and Anti-HCV Drugs
6.2.1. OATP1B1 and OATP1B3
6.2.2. Cytochrome P450: CYP3A4/2C9/2C19
6.3. Interactions with Other Drugs
7. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Hepatitis B. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 16 December 2024).
- WHO. Hepatitis D. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-d (accessed on 16 December 2024).
- Kwon, H.; Lok, A.S. Hepatitis B therapy. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vargas, J.; Amirache, F.; Boson, B.; Mialon, C.; Freitas, N.; Sureau, C.; Fusil, F.; Cosset, F.-L. Enveloped viruses distinct from HBV induce dissemination of hepatitis D virus in vivo. Nat. Commun. 2019, 10, 2098. [Google Scholar] [CrossRef] [PubMed]
- Urban, S.; Bartenschlager, R.; Kubitz, R.; Zoulim, F. Strategies to inhibit entry of HBV and HDV into hepatocytes. Gastroenterology 2014, 147, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Soriano, V.; Sherman, K.E.; Barreiro, P. Hepatitis delta and HIV infection. AIDS 2017, 31, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, G.; Gaeta, L.; Vitale, A.; Gaeta, G.B. Recent breakthroughs in the treatment of chronic hepatitis Delta. Infez. Med. 2022, 30, 204–210. [Google Scholar]
- Deterding, K.; Wedemeyer, H. Beyond Pegylated Interferon-Alpha: New Treatments for Hepatitis Delta. Aids Rev. 2019, 21, 126–134. [Google Scholar] [CrossRef]
- Pubchem. Bulevirtide Compound Summary. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Bulevirtide (accessed on 16 December 2024).
- Kang, C.; Syed, Y.Y. Bulevirtide: First Approval. Drugs 2020, 80, 1601–1605. [Google Scholar] [CrossRef]
- Brunetto, M.R.; Ricco, G.; Negro, F.; Wedemeyer, H.; Yurdaydin, C.; Asselah, T.; Papatheodoridis, G.; Gheorghe, L.; Agarwal, K.; Farci, P.; et al. EASL Clinical Practice Guidelines on hepatitis delta virus. J. Hepatol. 2023, 79, 433–460. [Google Scholar] [CrossRef]
- Mavilia, M.G.; Wu, G.Y. HBV-HCV Coinfection: Viral Interactions, Management, and Viral Reactivation. J. Clin. Transl. Hepatol. 2018, 6, 296. [Google Scholar] [CrossRef]
- EMA. European Medicines Agency. 2023. Available online: https://www.ema.europa.eu/en/homepage (accessed on 16 December 2024).
- Zhu, V.; Burhenne, J.; Weiss, J.; Haag, M.; Hofmann, U.; Schwab, M.; Urban, S.; Mikus, G.; Czock, D.; Haefeli, W.E.; et al. Evaluation of the drug-drug interaction potential of the novel hepatitis B and D virus entry inhibitor bulevirtide at OATP1B in healthy volunteers. Front. Pharmacol. 2023, 14, 1128547. [Google Scholar] [CrossRef]
- Schulze, A.; Schieck, A.; Ni, Y.; Mier, W.; Urban, S. Fine Mapping of Pre-S Sequence Requirements for Hepatitis B Virus Large Envelope Protein-Mediated Receptor Interaction. J. Virol. 2010, 84, 1989–2000. [Google Scholar] [CrossRef] [PubMed]
- Bogomolov, P.; Alexandrov, A.; Voronkova, N.; Macievich, M.; Kokina, K.; Petrachenkova, M.; Lehr, T.; Lempp, F.A.; Wedemeyer, H.; Haag, M.; et al. Treatment of chronic hepatitis D with the entry inhibitor myrcludex B: First results of a phase Ib/IIa study. J. Hepatol. 2016, 65, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Wedemeyer, H.; Schöneweis, K.; Bogomolov, P.; Blank, A.; Voronkova, N.; Stepanova, T.; Sagalova, O.; Chulanov, V.; Osipenko, M.; Morozov, V.; et al. Safety and efficacy of bulevirtide in combination with tenofovir disoproxil fumarate in patients with hepatitis B virus and hepatitis D virus coinfection (MYR202): A multicentre, randomised, parallel-group, open-label, phase 2 trial. Lancet Infect. Dis. 2023, 23, 117–129. [Google Scholar] [CrossRef]
- Blank, A.; Eidam, A.; Haag, M.; Hohmann, N.; Burhenne, J.; Schwab, M.; van de Graaf, S.; Meyer, M.R.; Maurer, H.; Meier, K.; et al. The NTCP-inhibitor Myrcludex B: Effects on Bile Acid Disposition and Tenofovir Pharmacokinetics. Clin. Pharmacol. Ther. 2018, 103, 341–348. [Google Scholar] [CrossRef]
- Soriano, V.; Moreno-Torres, V.; Treviño, A.; Corral, O.; de Mendoza, C. Bulevirtide in the Treatment of Hepatitis Delta: Drug Discovery, Clinical Development and Place in Therapy. Drug Des. Dev. Ther. 2023, 17, 155–166. [Google Scholar] [CrossRef]
- Blank, A.; Markert, C.; Hohmann, N.; Carls, A.; Mikus, G.; Lehr, T.; Alexandrov, A.; Haag, M.; Schwab, M.; Urban, S.; et al. First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B. J. Hepatol. 2016, 65, 483–489. [Google Scholar] [CrossRef]
- Soriano, V.; de Mendoza, C.; Treviño, A.; Ramos-Rincón, J.M.; Moreno-Torres, V.; Corral, O.; Barreiro, P. Treatment of hepatitis delta and HIV infection. Liver Int. 2023, 43, 108–115. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Aleman, S.; Brunetto, M.; Blank, A.; Andreone, P.; Bogomolov, P.; Chulanov, V.; Mamonova, N.; Geyvandova, N.; Morozov, V.; et al. Bulevirtide monotherapy in patients with chronic HDV: Efficacy and safety results through week 96 from a phase III randomized trial. J. Hepatol. 2024, 81, 621–629. [Google Scholar] [CrossRef]
- Asselah, T.; Chulanov, V.; Lampertico, P.; Wedemeyer, H.; Streinu-Cercel, A.; Pântea, V.; Lazar, S.; Placinta, G.; Gherlan, G.S.; Bogomolov, P.; et al. Bulevirtide Combined with Pegylated Interferon for Chronic Hepatitis D. N. Engl. J. Med. 2024, 391, 133–143. [Google Scholar] [CrossRef]
- Asif, B.; Koh, C. Hepatitis D virus (HDV): Investigational therapeutic agents in clinical trials. Expert Opin. Investig. Drugs 2022, 31, 905–920. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Bogomolov, P.; Blank, A.; Allweiss, L.; Dandri-Petersen, M.; Bremer, B.; Voronkova, N.; Schöneweis, K.; Pathil, A.; Burhenne, J.; et al. Final results of a multicenter, open-label phase 2b clinical trial to assess safety and efficacy of Myrcludex B in combination with Tenofovir in patients with chronic HBV/HDV co-infection. J. Hepatol. 2018, 68, S3. [Google Scholar] [CrossRef]
- Lampertico, P.; Roulot, D.; Wedemeyer, H. Bulevirtide with or without pegIFNα for patients with compensated chronic hepatitis delta: From clinical trials to real-world studies. J. Hepatol. 2022, 77, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Anolli, M.; Degasperi, E.; Jachs, M.; Reiberger, T.; De Ledinghen, V.; Metivier, S.; D’Offizi, G.; di Maria, F.; Schramm, C.; Schmidt, H.; et al. Virological and clinical outcomes of patients with HDV-related compensated cirrhosis treated with Bulevirtide monotherapy for 96 weeks: A retrospective multicenter european study (SAVE-D). Dig. Liver Dis. 2024, 56, S7–S8. [Google Scholar] [CrossRef]
- Dietz-Fricke, C.; Tacke, F.; Zöllner, C.; Demir, M.; Schmidt, H.H.; Schramm, C.; Willuweit, K.; Lange, C.M.; Weber, S.; Denk, G.; et al. Treating hepatitis D with bulevirtide—Real-world experience from 114 patients. JHEP Rep. 2023, 5, 100686. [Google Scholar] [CrossRef]
- Jachs, M.; Panzer, M.; Hartl, L.; Schwarz, M.; Balcar, L.; Camp, J.V.; Munda, P.; Mandorfer, M.; Trauner, M.; Aberle, S.W.; et al. Long-term follow-up of patients discontinuing bulevirtide treatment upon long-term HDV-RNA suppression. JHEP Rep. 2023, 5, 100751. [Google Scholar] [CrossRef]
- Buti, M.; Wedemeyer, H.; Aleman, S.; Chulanov, V.; Morozov, V.; Sagalova, O.; Stepanova, T.; Gish, R.G.; Lloyd, A.; Kaushik, A.M.; et al. Patient-reported outcomes in chronic hepatitis delta: An exploratory analysis of the Phase III MYR301 trial of bulevirtide. J. Hepatol. 2024, 82, 28–36. [Google Scholar] [CrossRef]
- Degasperi, E.; Anolli, M.P.; Renteria, S.C.U.; Sambarino, D.; Borghi, M.; Perbellini, R.; Scholtes, C.; Facchetti, F.; Loglio, A.; Monico, S.; et al. Bulevirtide monotherapy for 48 weeks in patients with HDV-related compensated cirrhosis and clinically significant portal hypertension. J. Hepatol. 2022, 77, 1525–1531. [Google Scholar] [CrossRef]
- Wedemeyer, H.; Schöneweis, K.; Bogomolov, P.O.; Chulanov, V.; Stepanova, T.; Viacheslav, M.; Allweiss, L.; Dandri, M.; Ciesek, S.; Dittmer, U.; et al. 48 weeks of high dose (10 mg) bulevirtide as monotherapy or with peginterferon alfa-2a in patients with chronic HBV/HDV co-infection. J. Hepatol. 2020, 73, S52–S53. [Google Scholar] [CrossRef]
- de Lédinghen, V.; Fougerou-Leurent, C.; Le Pabic, E.; Pol, S.; Alfaiate, D.; Lacombe, K.; Hilleret, M.-N.; Lascoux-Combe, C.; Minello, A.; Billaud, E.; et al. Treatment with bulevirtide in HIV-infected patients with chronic hepatitis D: ANRS HD EP01 BuleDelta and compassionate cohort. JHEP Rep. 2024, 6, 101057. [Google Scholar] [CrossRef]
- Sauter, M.; Blank, A.; Stoll, F.; Lutz, N.; Haefeli, W.E.; Burhenne, J. Intact plasma quantification of the large therapeutic lipopeptide bulevirtide. Anal. Bioanal. Chem. 2021, 413, 5645–5654. [Google Scholar] [CrossRef]
- Blank, A.; Meier, K.; Urban, S.; Haefeli, W.E.; Weiss, J. Drug–drug interaction potential of the HBV and HDV entry inhibitor myrcludex B assessed in vitro. Antivir. Ther. 2018, 23, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Schmidbauer, C.; Chromy, D.; Schmidbauer, V.U.; Schwarz, M.; Jachs, M.; Bauer, D.J.M.; Binter, T.; Apata, M.; Nguyen, D.T.; Mandorfer, M.; et al. Epidemiological trends of HBV and HDV coinfection among Viennese HIV+ patients. Liver Int. 2021, 41, 2622–2634. [Google Scholar] [CrossRef]
- Singh, K.P.; Crane, M.; Audsley, J.; Avihingsanon, A.; Sasadeusz, J.; Lewin, S.R. HIV-hepatitis B virus coinfection. AIDS 2017, 31, 2035–2052. [Google Scholar] [CrossRef]
- Kis, O.; Robillard, K.; Chan, G.N.; Bendayan, R. The complexities of antiretroviral drug–drug interactions: Role of ABC and SLC transporters. Trends Pharmacol. Sci. 2010, 31, 22–35. [Google Scholar] [CrossRef]
- Yang, M.; Xu, X. Important roles of transporters in the pharmacokinetics of anti-viral nucleoside/nucleotide analogs. Expert Opin. Drug Metab. Toxicol. 2022, 18, 483–505. [Google Scholar] [CrossRef]
- FDA. Drug Development and Drug Interactions | Table of Substrates, Inhibitors and Inducers. 2020. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers (accessed on 16 December 2024).
- Hatanaka, T. Clinical pharmacokinetics of pravastatin: Mechanisms of pharmacokinetic events. Clin. Pharmacokinet. 2000, 39, 397–412. [Google Scholar] [CrossRef]
- Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 2009, 158, 693–705. [Google Scholar] [CrossRef]
- Moore, K.; Thakkar, N.; Magee, M.; Sevinsky, H.; Vakkalagadda, B.; Lubin, S.; Llamoso, C.; Ackerman, P. Pharmacokinetics of Temsavir, the Active Moiety of the HIV-1 Attachment Inhibitor Prodrug, Fostemsavir, Coadministered with Cobicistat, Etravirine, Darunavir/Cobicistat, or Darunavir/Ritonavir with or without Etravirine in Healthy Participants. Antimicrob. Agents Chemother. 2022, 66, e022512. [Google Scholar] [CrossRef]
- Siccardi, M.; D’Avolio, A.; Nozza, S.; Simiele, M.; Baietto, L.; Stefani, F.R.; Moss, D.; Kwan, W.-S.; Castagna, A.; Lazzarin, A.; et al. Maraviroc is a substrate for OATP1B1 in vitro and maraviroc plasma concentrations are influenced by SLCO1B1 521 T>C polymorphism. Pharmacogenetics Genom. 2010, 20, 759–765. [Google Scholar] [CrossRef]
- Kosloski, M.P.; Bow, D.A.; Kikuchi, R.; Wang, H.; Kim, E.J.; Marsh, K.; Mensa, F.; Kort, J.; Liu, W. Translation of In Vitro Transport Inhibition Studies to Clinical Drug-Drug Interactions for Glecaprevir and Pibrentasvir. J. Pharmacol. Exp. Ther. 2019, 370, 278–287. [Google Scholar] [CrossRef]
- Mogalian, E.; German, P.; Kearney, B.P.; Yang, C.Y.; Brainard, D.; McNally, J.; Moorehead, L.; Mathias, A. Use of Multiple Probes to Assess Transporter- and Cytochrome P450-Mediated Drug–Drug Interaction Potential of the Pangenotypic HCV NS5A Inhibitor Velpatasvir. Clin. Pharmacokinet. 2016, 55, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Petrie, I.D.; Levy, R.H.; Ragueneau-Majlessi, I. Mechanisms and Clinical Significance of Pharmacokinetic-Based Drug-Drug Interactions with Drugs Approved by the U.S. Food and Drug Administration in 2017. Drug Metab. Dispos. 2019, 47, 135–144. [Google Scholar] [CrossRef] [PubMed]
- EMA. Hepcludex Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/hepcludex-epar-product-information_en.pdf (accessed on 16 December 2024).
- Pinchera, B.; Carrano, R.; Salemi, F.; Piccione, A.; Schettino, E.; Cuccurullo, F.; Buonomo, A.R.; Gentile, I. Bulevirtide Treatment of Hepatitis Delta Virus Infection in a Kidney Transplant Recipient: A Case Report. Exp. Clin. Transplant. 2024, 22, 810–813. [Google Scholar] [PubMed]
- De Nicolò, A.; Pinon, M.; Palermiti, A.; Nonnato, A.; Manca, A.; Mula, J.; Catalano, S.; Tandoi, F.; Romagnoli, R.; D’Avolio, A.; et al. Monitoring Tacrolimus Concentrations in Whole Blood and Peripheral Blood Mononuclear Cells: Inter- and Intra-Patient Variability in a Cohort of Pediatric Patients. Front. Pharmacol. 2021, 12, 750433. [Google Scholar] [CrossRef]
- EMA. Viread Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/viread-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Emtricitabine Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/emtricitabine/tenofovir-disoproxil-mylan-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Lamivudine Teva Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/lamivudine-teva-pharma-bv-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Vemlidy Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/vemlidy-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Ziagen Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/ziagen-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Zidovudine Teva Product Information. Available online: https://www.ema.europa.eu/documents/product-information/lamivudine/zidovudine-teva-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Pifeltro Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/pifeltro-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Sustiva Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/sustiva-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Intelence Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/intelence-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Nevirapine Teva Product Information. Available online: https://www.ema.europa.eu/documents/product-information/nevirapine-teva-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Edurant Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/edurant-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Reyataz Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/reyataz-epar-product-information_it.pdf (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Atazanavir. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133245&interaction_ids%5B%5D=133246&interaction_ids%5B%5D=133247 (accessed on 16 December 2024).
- Elsby, R.; Coghlan, H.; Edgerton, J.; Hodgson, D.; Outteridge, S.; Atkinson, H. Mechanistic in vitro studies indicate that the clinical drug-drug interactions between protease inhibitors and rosuvastatin are driven by inhibition of intestinal BCRP and hepatic OATP1B1 with minimal contribution from OATP1B3, NTCP and OAT3. Pharmacol. Res. Perspect. 2023, 11, e01060. [Google Scholar] [CrossRef]
- EMA. Prezista Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/prezista-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Telzir Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/telzir-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Ritonavir Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/ritonavir-mylan-epar-product-information_it.pdf (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Ritonavir. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133254 (accessed on 16 December 2024).
- EMA. Aptivus Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/aptivus-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Lopinavir Product Information. Available online: https://www.ema.europa.eu/documents/product-information/lopinavir/ritonavir-mylan-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Fuzeon Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/fuzeon-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Celsentri Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/celsentri-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Vocabria Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/vocabria-epar-product-information_it.pdf (accessed on 16 December 2024).
- Podany, A.T.; Scarsi, K.K.; Pham, M.M.; Fletcher, C.V. Comparative Clinical Pharmacokinetics and Pharmacodynamics of HIV-1 Integrase Strand Transfer Inhibitors: An Updated Review. Clin. Pharmacokinet. 2020, 59, 1085–1107. [Google Scholar] [CrossRef]
- EMA. Tivicay Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/tivicay-epar-product-information_it.pdf (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Dolutegravir. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133222 (accessed on 16 December 2024).
- EMA. Isentress Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/isentress-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Bictarvy Product Information. Available online: https://www.ema.europa.eu/documents/product-information/biktarvy-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Genvoya Product Information. Available online: https://ec.europa.eu/health/documents/community-register/2017/20170324137350/anx_137350_en.pdf (accessed on 16 December 2024).
- EMA. Rukobia Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/rukobia-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Trogarzo Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/trogarzo-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Sunlenca Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/sunlenca-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Tybost Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/tybost-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Zepatier Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/zepatier-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Maviret Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/maviret-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Harvoni Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/harvoni-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Epclusa Product Information. Available online: https://ec.europa.eu/health/documents/community-register/2017/20171030139370/anx_139370_en.pdf (accessed on 16 December 2024).
- EMA. Viekirax Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/viekirax-epar-product-information_en.pdf (accessed on 16 December 2024).
- EMA. Sovaldi Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/sovaldi-epar-product-information_it.pdf (accessed on 16 December 2024).
- EMA. Exviera Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/exviera-epar-product-information_en.pdf (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Dasabuvir. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133175 (accessed on 16 December 2024).
- EMA. Vosevi Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/vosevi-epar-product-information_en.pdf (accessed on 16 December 2024).
- Tan, X.; Xiang, Y.; Shi, J.; Chen, L.; Yu, D. Targeting NTCP for liver disease treatment: A promising strategy. J. Pharm. Anal. 2024, 14, 100979. [Google Scholar] [CrossRef]
- University of Liverpool. Interaction Report Bulevirtide-Ketoconazole. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=132894 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Brincidofovir. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=138284 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Levothyroxine. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133428 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Ezetimibe. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133364 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Atorvastatin. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133361 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Fluvastatin. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133367 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Pitavastatin. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133370 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Pravastatin. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133371 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Rosuvastatin. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133372 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Cyclosporin. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133348 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Irbesartan. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133283 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Sulfasalazine. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133164 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Lopinavir. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133253 (accessed on 16 December 2024).
- University of Liverpool. Interaction Report Bulevirtide-Darunavir/Cobicistat. Available online: https://hep-druginteractions.org/downloads/ajd45jg-4er5-67oy-ur43-009ert.pdf?interaction_ids%5B%5D=133249 (accessed on 16 December 2024).
Reference | Design | Population | Regimen | Pk Results | Clinical Implications |
---|---|---|---|---|---|
Zhu et al., 2023 [14] | Single-center, open-label, fixed-sequence drug–drug interaction trial | n = 19 healthy volunteers | 5 mg dose of BLV, given twice a day (bid) + 40 mg single-dose 40 mg pravastatin | - The average exposure of the sensitive OATP1B marker substrate pravastatin increased by only 32% with BLV at steady state. - BLV pharmacokinetics were not influenced by the co-administration of pravastatin. - Genetically reduced OATP1B1 activity was associated with statin-induced myotoxicity in patients with *5 or *15 haplotypes. Our SCLO1B1*5/*15 and *15/*15 carriers had 11–28% lower pravastatin AUC values during BLV, which was in contrast to our findings in the wild-type group (with the strongest increase in pravastatin exposure in the homozygous wild-type group). | - Mild, but probably clinically unrelevant in vivo inhibition of OATP1B-mediated pravastatin uptake into the liver |
Blank et al., 2018 [18] | Single-center, open-label, prospective trial assessing the influence of myrcludex B on steady-state tenofovir pharmacokinetics | n = 12 healthy volunteers | After basement assessment (trial day 1), days 2–7 245 mg of oral tenofovir disoproxil fumarate administrated once daily. Days 8–13: co-administration of 245 mg tenofovir + 10 mg myrcludex B subcuteneously (2 consecutive injections). | - Neither tenofovir AUC nor Cmax were significantly altered by myrcludex B. Myrcludex B had no significant effect on renal tenofovir clearance. - The co-administration of tenofovir and myrcludex B increased the mean overall plasma exposure of total bile acids. Moreover, renal excretion of bile acids increased almost 8-fold. - Compared to tenofovir monotherapy, the co-administration of tenofovir and myrculex B showed a weak inhibition of CYP3A activity (1.35-fold increase in midazolam AUC), expected to be not clinically relevant. | - No difference was observed in the pharmacokinetic profile between tenofovir monotherapy and tenofovir and myrcludex B co-administration, suggesting that the co-administration of the two drugs is safe and well tolerated. - The increase in total bile acids under myrcludex B treatment requires long-term monitoring of patients, although no serious adverse events were observed during the trial. - A weak influence of myrcludex B on CYP3A activity cannot neither be confirmed nor denied. |
Antiretrovirals NRTIs | ||||||
---|---|---|---|---|---|---|
Drug | Metabolic Substrate of | Transport | Inducer of | Inhibitor of | Notes (Interaction with BLV) | References |
Tenofovir disoproxil fumarate | Esterase enzymes in the gut and plasma | Weak inhibitor of cellular polymerases α, β, and γ | Low potential for interaction. In vivo data showed no interaction. | [51] | ||
Emtricitabine | Weak inhibitor of cellular polymerases | Low potential for interaction. No evidences of common metabolic patways. | [52] | |||
Lamivudine | Sulfotranferases | Weak inhibitor of cellular polymerases α, β | No evidences of common metabolic patways. | [53] | ||
Tenofovir Alafenamide | Cathepsin A in vitro substrate of OATP1B1 and OATP1B3 | P-gp; breast cancer resistance protein (BCRP) | Weak inhibitor of cellular polymerases α, β, and γ | BLV showed a weak inhibitory activity on OATP1B1 and OATP1B3, possibly affecting TAF metabolism. This inhibition was observed at the high 10 mg bid dose. | [54] | |
Abacavir | Alcohol dehydrogenase and glucuronyl transferase | Abacavir can potentially inhibit cytochrome P450 1A1 (CYP1A1). The drug shows a limited potential to inhibit CYP3A4-mediated metabolism. | Low potential for interaction. | [55] | ||
Zidovudine | UGT enzymes | Low potential for interaction. No evidence of common metabolic pathways. | [56] | |||
Antiretrovirals NNRTIs | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Doravirine | CYP3A4 | Weak inducer of CYP3A | A slight increase in doravirine exposure is possible with unlikely clinical relevance. | [57] | ||
Efavirenz | CYP450 | In vivo inducer of CYP3A4, CYP2B6 e UGT1A1. Possible inducer of CYP2C19 and CYP2C9. | It can induce possible late-onset neurotoxicity at concentrations above 6000 ng/mL (C trough). Clinically significant interaction is unlikely, but therapeutic drug monitoring of Efavirenz would be beneficial to improve the safety. | [58] | ||
Etravirine | Etravirine is metabolised by CYP3A4, CYP2C9 and CYP2C19. | Weak inducer of CYP3A4 | Weak inhibitor of CYP2C9, CYP2C19, and P-glycoprotein | No clinically relevant interaction is expected, considering the tolerability of Etravirine and the opposite effects on CYP3A4. | [59] | |
Nevirapine | CYP450, CYP3A | Inducer of CYP3A isoenzymes and potentially CYP2B6 | No clinically relevant interaction is expected, considering the good tolerability of Nevirapine. | [60] | ||
Rilpivirine | CYP3A | In vitro inhibitor of the MATE-2K transporter | No clinically relevant interaction is expected. | [61] | ||
Antiretrovirals PIs | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Atazanavir | CYP3A4 | CYP3A4 Possible inhibitor of NTCP | Co-administration with NTCP inhibitors is not recommended as it can alter BLV elimination. Co-administration should be avoided. | [62,63,64] | ||
Darunavir | CYP3A | CYP3A, CYP2D6 and P-gp | No clinically relevant interaction is expected considering the good tolerability of Darunavir. | [65] | ||
Fosanprenavir | CYP3A4 | No clinically relevant interaction is expected. | [66] | |||
Ritonavir | CYP3A4, CYP2D6 | CYP3A4 NTCP | Co-administration with NTCP inhibitors is not recommended as it may alter BLV elimination and/or its effect. Co-administration should be avoided. | [67,68] | ||
Tipranavir | CYP3A P-gp (in vitro) | CYP3A | CYP3A CYP 1A2, CYP 2C9, CYP 2C19 and CYP 2D6 P-gp (in vitro) | No clinically relevant interaction is expected due to the good tolerability of Tipranavir. | [69] | |
Lopinavir | CYP3A | CYP450 | Co-administration with NTCP inhibitors is not recommended as it may alter BLV elimination and/or its effect. Co-administration should be avoided. | [64,70] | ||
Antiretrovirals Fusion inhibitors | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Enfuvirtide | No evidence of common metabolic pathways. | [71] | ||||
Antiretrovirals CCR5 antagonist | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Maraviroc | CYP3A4 and CYP3A5 | Substrate of the transporters glycoprotein-P and OATP1B1 | No clinically relevant interaction is expected. | [44,72] | ||
Antiretrovirals Integrase strand transfer inhibitors | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Cabotegravir | UGT1A1 UGT1A9 P-gp BCRP | OAT1 OAT3 | No evidence of common metabolic pathways. | [73,74] | ||
Dolutegravir | UGT1A1 UGT1A3 UGT1A9 CYP 3A4 P-gp BCRP | OCT2 MATE OAT1 OAT3 | No evidence of common metabolic pathways. | [74,75,76] | ||
Raltegravir | UGT1A1 | No evidence of common metabolic pathways. | [74,77] | |||
Bictegravir | CYP3A UGT1A1 Pgp BRCP | No clinically relevant interaction is expected due to high tolerability of bictegravir, its partial dependence on CYP3A4 and the weak inhibitory effect of BLV. | [74,78] | |||
Elvitegravir | CYP3A UGT1A1/3 | CYP2C9 UGT | No clinically relevant interaction is expected due to high tolerability of elvitegravir. | [74,79] | ||
Antiretrovirals post attachment inhibitors | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Ibalizumab | Metabolism studies not cunducted | There is no evidence of common metabolic pathways between Ibalizumab and BLV. | [80] | |||
Antiretrovirals capsid inhibitors | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Lenacapavir | CYP3A P-gp UGT1A1 | CYP3A P-gp BCRP | Precautionary Lenacapavir TDM may be useful. | [81] | ||
Antiretrovirals pharmacokinetic enhancers | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Cobicistat | CYP3A CYP2D6 | CYP3A CYP2D6 P-gp BCRP MATE1 OATP1B1 OATP1B3 | No clinically relevant interaction is expected. | [43,82] | ||
Antiretrovirals attachment inhibitor | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Fostemsavir | P-gp BCRP CYP3A4 CYT P450 | OATP1B1, BCRP, MATE | No clinically relevant interaction is expected. | [43,83] |
NS5A Replication Complex Inhibitor | ||||||
---|---|---|---|---|---|---|
Drug | Metabolic Substrate of | Transport | Inducer of | Inhibitor of | Notes (Interaction with BLV) | References |
Elbasivir | CYP3A P-gp | BCRP | No clinically significant interaction is expected. | [84] | ||
Pibrentasvir/Glecaprevir | P-gp CYP3A | P-gp BCRP OATP1B1 OATP1B3 CYP3A UGT1A1 BSEP (bile salt export pump) | No clinically significant interaction is expected. | [45,85] | ||
Ledipasvir | P-gp BCRP | P-gp BCRP | No clinically significant interaction is expected. | [86] | ||
Velpatasvir | CYP2B6, CYP2C8, CYP3A4 | P-gp BRCP OATP1B | As a precautionary measure, close clinical monitoring is warrented for coadministered narrow therapeutic index drugs which are sensitive to CYP3A4 and OATPB1/3 substrates. Co-administration of these substrates should be avoided. | [46,87] | ||
Ombitasvir | Amide hydrolysis followed by oxidative metabolism | UGT1A1 | No clinically significant interaction is expected. | [88] | ||
NS5B polymerase inhibitor | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Sofosbuvir | P-gp BCRP | No clinically significant interaction is expected. | [89] | |||
Dasabuvir | P-gp BCRP OCT1 CYP2C8 CYP3A | P-gp UGT1A1 UGT1A4 UGT1A6 UGT2B7 | Precautionary Dasabuvir TDM may be useful. | [90,91] | ||
NS3/4A protease inhibitor | ||||||
Drug | Metabolic substrate of | Transport | Inducer of | Inhibitor of | Notes (interaction with BLV) | References |
Voxilaprevir | CYP3A4 | P-gp BCRP | P-gp BCRP OATP1B1 OATP1B3 | Precautionary Voxilaprevir TDM may be useful. | [92] | |
Grazoprevir | OATP1B P-gp CYP3A BCPR (potectially) | BCRP | Precautionary Grazoprevir TDM may be useful. | [84] | ||
Paritaprevir | CYP3A4 CYP3A5 OATP1B1 P-gp BRCP | OATP1B1 OATP1B3 P-gp (in vitro) UGT1A1 | Precautionary Paritaprevir TDM may be useful. | [47,88] | ||
Glecaprevir | P-gp CYP3A OATP1B1 OATP1B3 | P-gp BCRP OATP1B1 OATP1B3 CYP3A UGT1A1 BSEP (bile salt export pump) | Precautionary Glecaprevir TDM may be useful. | [45,47,85] |
Drug Class | Drug | NTCP Interactions | Therapeutic Alternatives | References |
---|---|---|---|---|
Antivirals anti-HIV (PIs) | Atazanavir (Reyataz) | Possible inhibitor of NTCP | Other unboosted antiretroviral regimens, avoiding boosted PIs | [62,63] |
Ritonavir | NTCP inhibitor | - | [67,68] | |
Antifungals | Ketoconazole | NTCP inhibitor | Triazoles for systemic treatment | [94] |
Antivirals | Brincidofovir | Metabolic substrate of NTCP | [95] | |
Treatment of hypothyroidism | Levothyroxine | Possible metabolic substrate of NTCP (since it is a thyroid hormone) | - | [96] |
Lipid Lowering Agents | Ezetimibe | NTCP inhibitor | [97] | |
Atorvastatin | NTCP inhibitor | [98] | ||
Fluvastatin | NTCP inhibitor | [99] | ||
Pitavastatin | NTCP inhibitor | [100] | ||
Pravastatin | NTCP inhibitor | [101] | ||
Rosuvastatin | NTCP inhibitor | [102] | ||
Immunosuppressants | Cyclosporin | Metabolic substrate of NTCP | Tacrolimus, Sirolimus, and/or Everolimus | [103] |
Hypertension, Heart Failure agents | Irbesartan | Metabolic substrate of NTCP | ARBs or ACE inhibitors | [104] |
Gastrointestinal Agents | Sulfasalazine | NTCP inhibitor | Mesalazine | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billi, M.; Soloperto, S.; Bonora, S.; D’Avolio, A.; De Nicolò, A. Clinical Pharmacology of Bulevirtide: Focus on Known and Potential Drug–Drug Interactions. Pharmaceutics 2025, 17, 250. https://doi.org/10.3390/pharmaceutics17020250
Billi M, Soloperto S, Bonora S, D’Avolio A, De Nicolò A. Clinical Pharmacology of Bulevirtide: Focus on Known and Potential Drug–Drug Interactions. Pharmaceutics. 2025; 17(2):250. https://doi.org/10.3390/pharmaceutics17020250
Chicago/Turabian StyleBilli, Martina, Sara Soloperto, Stefano Bonora, Antonio D’Avolio, and Amedeo De Nicolò. 2025. "Clinical Pharmacology of Bulevirtide: Focus on Known and Potential Drug–Drug Interactions" Pharmaceutics 17, no. 2: 250. https://doi.org/10.3390/pharmaceutics17020250
APA StyleBilli, M., Soloperto, S., Bonora, S., D’Avolio, A., & De Nicolò, A. (2025). Clinical Pharmacology of Bulevirtide: Focus on Known and Potential Drug–Drug Interactions. Pharmaceutics, 17(2), 250. https://doi.org/10.3390/pharmaceutics17020250