Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,353)

Search Parameters:
Keywords = transport kinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5141 KiB  
Article
Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives
by Hao-Tong Han, Han-Sheng Zhu, Jin-Tao Zhang, Xin-Yun Tan, Yan-Xin Wu, Chang Liu, Xin-Yu Liu and Meng-Qi Ye
Microorganisms 2025, 13(8), 1839; https://doi.org/10.3390/microorganisms13081839 (registering DOI) - 7 Aug 2025
Abstract
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational [...] Read more.
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational efficiency. In our previous research, Rossellomorea sp. ZC255 demonstrated substantial potential for environmental bioremediation applications. This study investigated the removal characteristics and underlying mechanism of strain ZC255 and revealed that the maximum removal capacity was 253.4 mg/g biomass under the optimal conditions (pH 7.0, 28 °C, and 2% inoculum). The assessment of the biosorption process followed pseudo-second-order kinetics, while the adsorption isotherm may fit well with both the Langmuir and Freundlich models. Cell surface alterations on the Cu(II)-treated biomass were observed through scanning electron microscopy (SEM). Cu(II) binding functional groups were determined via Fourier transform infrared spectroscopy (FTIR) analysis. Simultaneously, the genomic analysis of strain ZC255 identified multiple genes potentially involved in heavy metal resistance, transport, and metabolic processes. These studies highlight the significance of strain ZC255 in the context of environmental heavy metal bioremediation research and provide a basis for using strain ZC255 as a copper removal biosorbent. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 6776 KiB  
Article
Computational Approaches to Assess Flow Rate Efficiency During In Situ Recovery of Uranium: From Reactive Transport to Streamline- and Trajectory-Based Methods
by Maksat Kurmanseiit, Nurlan Shayakhmetov, Daniar Aizhulov, Banu Abdullayeva and Madina Tungatarova
Minerals 2025, 15(8), 835; https://doi.org/10.3390/min15080835 - 6 Aug 2025
Abstract
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance [...] Read more.
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance of leaching solution. A reactive transport model incorporating uranium dissolution kinetics and acid–rock interactions were utilized to assess the accuracy of both traditional and proposed methods. The results reveal a significant spatial imbalance in sulfuric acid distribution, with up to 239.1 tons of acid migrating beyond the block boundaries. To reduce computational demands while maintaining predictive accuracy, two alternative methods, a streamline-based and a trajectory-based approach were proposed and verified. The streamline method showed close agreement with reactive transport modeling and was able to effectively identify the presence of intra-block reagent imbalance. The trajectory-based method provided detailed insight into flow dynamics but tended to overestimate acid overflow outside the block. Both alternative methods outperformed the conventional approach in terms of accuracy by accounting for geological heterogeneity and well spacing. The proposed methods have significantly lower computational costs, as they do not require solving complex systems of partial differential equations involved in reactive transport simulations. The proposed approaches can be used to analyze the efficiency of mineral In Situ Recovery at both the design and operational stages, as well as to determine optimal production regimes for reducing economic expenditures in a timely manner. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

88 pages, 15313 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
Show Figures

Figure 1

16 pages, 12003 KiB  
Article
Corrosion Mechanism of Austenitic Stainless Steel in Simulated Small Modular Reactor Primary Water Chemistry
by Iva Betova, Martin Bojinov and Vasil Karastoyanov
Metals 2025, 15(8), 875; https://doi.org/10.3390/met15080875 (registering DOI) - 4 Aug 2025
Viewed by 78
Abstract
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis [...] Read more.
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis of impedance spectra with a distribution of relaxation times revealed contributions from the oxide layer and its interface with the coolant. Glow-Discharge Optical Emission Spectroscopy (GDOES) was used to estimate the thickness and elemental composition of the formed oxides. A quantitative interpretation of the impedance data using the Mixed-Conduction Model allowed us to estimate the kinetic and transport parameters of oxide growth and dissolution, as well as iron dissolution through oxide. The film thicknesses following exposure agreed with ex-situ analyses. The obtained corrosion and release rates were used for comparison with laboratory and industrial data in nominal pressurized water reactor primary coolants. Full article
(This article belongs to the Special Issue Advances in Corrosion and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

16 pages, 4328 KiB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Viewed by 188
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

13 pages, 2008 KiB  
Article
Hierarchical Flaky Spinel Structure with Al and Mn Co-Doping Towards Preferable Oxygen Evolution Performance
by Hengfen Shen, Hao Du, Peng Li and Mei Wang
Materials 2025, 18(15), 3633; https://doi.org/10.3390/ma18153633 - 1 Aug 2025
Viewed by 209
Abstract
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous [...] Read more.
As an efficient clean energy technology, water electrolysis for hydrogen production has its efficiency limited by the sluggish oxygen evolution reaction (OER) kinetics, which drives the demand for the development of high-performance anode OER catalysts. This work constructs bimetallic (Al, Mn) co-doped nanoporous spinel CoFe2O4 (np-CFO) with a tunable structure and composition as an OER catalyst through a simple two-step dealloying strategy. The as-formed np-CFO (Al and Mn) features a hierarchical flaky configuration; that is, there are a large number of fine nanosheets attached to the surface of a regular micron-sized flake, which not only increases the number of active sites but also enhances mass transport efficiency. Consequently, the optimized catalyst exhibits a low OER overpotential of only 320 mV at a current density of 10 mA cm−2, a minimal Tafel slope of 45.09 mV dec−1, and exceptional durability. Even under industrial conditions (6 M KOH, 60 °C), it only needs 1.83 V to achieve a current density of 500 mA cm−2 and can maintain good stability for approximately 100 h at this high current density. Theoretical simulations indicate that Al and Mn co-doping could indeed optimize the electronic structure of CFO and thus decrease the energy barrier of OER to 1.35 eV. This work offers a practical approach towards synthesizing efficient and stable OER catalysts. Full article
(This article belongs to the Special Issue High-Performance Materials for Energy Conversion)
Show Figures

Figure 1

12 pages, 2519 KiB  
Article
Mathematical Formulation of Causal Propagation in Relativistic Ideal Fluids
by Dominique Brun-Battistini, Alfredo Sandoval-Villalbazo and Hernando Efrain Caicedo-Ortiz
Axioms 2025, 14(8), 598; https://doi.org/10.3390/axioms14080598 - 1 Aug 2025
Viewed by 178
Abstract
We establish a rigorous kinetic-theoretical framework to analyze causal propagation in thermal transport phenomena within relativistic ideal fluids, building a more rigorous framework based on the kinetic theory of gases. Specifically, we provide a refined derivation of the wave equation governing thermal and [...] Read more.
We establish a rigorous kinetic-theoretical framework to analyze causal propagation in thermal transport phenomena within relativistic ideal fluids, building a more rigorous framework based on the kinetic theory of gases. Specifically, we provide a refined derivation of the wave equation governing thermal and density fluctuations, clarifying its hyperbolic nature and the associated characteristic propagation speeds. The analysis confirms that thermal fluctuations in a simple non-degenerate relativistic fluid satisfy a causal wave equation in the Euler regime, and it recovers the classical expression for the speed of sound in the non-relativistic limit. This work offers enhanced mathematical and physical insights, reinforcing the validity of the hyperbolic description and suggesting a foundation for future studies in dissipative relativistic hydrodynamics. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

27 pages, 10150 KiB  
Article
Numerical Simulation and Experimental Study of the Thermal Wick-Debinding Used in Low-Pressure Powder Injection Molding
by Mohamed Amine Turki, Dorian Delbergue, Gabriel Marcil-St-Onge and Vincent Demers
Powders 2025, 4(3), 22; https://doi.org/10.3390/powders4030022 - 1 Aug 2025
Viewed by 126
Abstract
Thermal wick-debinding, commonly used in low-pressure injection molding, remains challenging due to complex interactions between binder transport, capillary forces, and thermal effects. This study presents a numerical simulation of binder removal kinetics by coupling Darcy’s law with the Phase Transport in Porous Media [...] Read more.
Thermal wick-debinding, commonly used in low-pressure injection molding, remains challenging due to complex interactions between binder transport, capillary forces, and thermal effects. This study presents a numerical simulation of binder removal kinetics by coupling Darcy’s law with the Phase Transport in Porous Media interface in COMSOL Multiphysics. The model was validated and subsequently used to study the influence of key debinding parameters. Contrary to the Level Set method, which predicts isolated binder clusters, the Multiphase Flow in Porous Media method proposed in this work more accurately reflects the physical behavior of the process, capturing a continuous binder extraction throughout the green part and a uniform binder distribution within the wicking medium. The model successfully predicted the experimentally observed decrease in binder saturation with increasing debinding temperature or time, with deviation limited 3–10 vol. % (attributed to a mandatory brushing operation, which may underestimate the residual binder mass). The model was then used to optimize the debinding process: for a temperature of 100 °C and an inter-part gap distance of 5 mm, the debinding time was minimized to 7 h. These findings highlight the model’s practical utility for process design, offering a valuable tool for determining optimal debinding parameters and improving productivity. Full article
Show Figures

Graphical abstract

15 pages, 1889 KiB  
Article
Influence of Mixing Duration and Absorption Characteristics of Superabsorbent Polymers on the Fresh and Hardened Properties of High-Performance Concrete
by Yu-Cun Gu and Kamal H. Khayat
Materials 2025, 18(15), 3609; https://doi.org/10.3390/ma18153609 - 31 Jul 2025
Viewed by 246
Abstract
This study investigates the combined influence of superabsorbent polymers (SAPs) with distinct absorption kinetics and extended mixing sequences on the rheological, mechanical, and transport properties of high-performance concrete (HPC). Two SAPs—an ionic acrylamide-co-acrylic acid copolymer (SAP-P) and a non-ionic acrylamide polymer (SAP-B)—were incorporated [...] Read more.
This study investigates the combined influence of superabsorbent polymers (SAPs) with distinct absorption kinetics and extended mixing sequences on the rheological, mechanical, and transport properties of high-performance concrete (HPC). Two SAPs—an ionic acrylamide-co-acrylic acid copolymer (SAP-P) and a non-ionic acrylamide polymer (SAP-B)—were incorporated at an internal curing level of 100%. The impact of extended mixing times (3, 5, and 7 min) following SAP addition was systematically evaluated. Results showed that longer mixing durations led to increased superplasticizer demand and higher plastic viscosity due to continued water absorption by SAPs. However, yield stress remained relatively stable owing to the dispersing effect of the added superplasticizer. Both SAPs significantly enhanced the static yield stress and improved fresh stability, as evidenced by reduced surface settlement. Despite the rheological changes, mechanical properties—including compressive and flexural strengths and modulus of elasticity—were consistently improved, regardless of mixing duration. SAP incorporation also led to notable reductions in autogenous and drying shrinkage, as well as enhanced electrical resistivity, indicating better durability performance. These findings suggest that a 3 min extended mixing time is sufficient for effective SAP dispersion without compromising performance. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

21 pages, 6717 KiB  
Article
Structure Design by Knitting: Combined Wicking and Drying Behaviour in Single Jersey Fabrics Made from Polyester Yarns
by Leon Pauly, Lukas Maier, Sibylle Schmied, Ulrich Nieken and Götz T. Gresser
Fibers 2025, 13(8), 103; https://doi.org/10.3390/fib13080103 - 31 Jul 2025
Viewed by 138
Abstract
The kinetics of liquid transport in textiles are determined by the thermodynamic boundary conditions and the substrate’s structure. The knitting process offers a wide range of possibilities for modifying the fabric structure, making it ideal for high-performance garments and technical applications. Given the [...] Read more.
The kinetics of liquid transport in textiles are determined by the thermodynamic boundary conditions and the substrate’s structure. The knitting process offers a wide range of possibilities for modifying the fabric structure, making it ideal for high-performance garments and technical applications. Given the highly complex nature of textiles’ interaction with liquids, this paper investigates how fabric structure affects combined wicking and drying behaviour. This facilitates comprehension of the underlying transport processes on the yarn and fabric scale, which is important for understanding the behaviour of the material as a whole. The presented experiment combines analysis of wicking through radial liquid spread using imaging techniques and analysis of the drying process through gravimetric measurement of evaporation. Eight samples of single jersey knitted fabrics were produced using polyester yarns of different texturization and fibre diameters on flat and circular knitting machines. The fabrics demonstrate significantly different wicking behaviours depending on their structure. The fabric’s drying time and rate are directly linked to the macroscopic spread of the liquid. Large inter-yarn pores hinder liquid spread. For the lowest liquid saturations, the yarn structure plays a critical role. Using fine, dense yarns can hinder convective drying within the yarn. Textured yarns tend to exhibit higher specific drying rates. The results offer a comprehensive insight into the interplay between the fabric’s structure and its wicking and drying behaviour, which is crucial for the development of functional fabrics in the knitting process. Full article
Show Figures

Figure 1

52 pages, 4770 KiB  
Review
Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine
by Qi-Xiang Wu, Natalia De Isla and Lei Zhang
Int. J. Mol. Sci. 2025, 26(15), 7384; https://doi.org/10.3390/ijms26157384 - 30 Jul 2025
Viewed by 496
Abstract
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like [...] Read more.
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like donor cell dependency and immune rejection. The key to success relies on biomaterial-engineered delivery platforms that ensure tissue-specific targeting and efficient intracellular transport. Viral vectors and non-viral carriers are strategically modified to enhance nucleic acid stability and cellular uptake, and integrate them into injectable or 3D-printed scaffolds. These scaffolds not only control nucleic acid release but also mimic native extracellular microenvironments to support stem cell recruitment and tissue regeneration. This review explores three key aspects: the mechanisms of gene editing in tissue repair; advancements in viral and non-viral vector engineering; and innovations in biomaterial scaffolds, including stimuli-responsive hydrogels and 3D-printed matrices. We evaluate scaffold fabrication methodologies, nucleic acid loading–release kinetics, and their biological impacts. Despite progress in spatiotemporal gene delivery control, challenges remain in balancing vector biocompatibility, manufacturing scalability, and long-term safety. Future research should focus on multifunctional “smart” scaffolds with CRISPR-based editing tools, multi-stimuli responsiveness, and patient-specific designs. This work systematically integrates the latest methodological advances, outlines actionable strategies for future investigations and advances clinical translation perspectives beyond the existing literature. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

14 pages, 3688 KiB  
Article
Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries
by Yue Yan, Bingxian Zhu, Zhengzheng Xia, Hui Wang, Weijuan Xu, Ying Xin, Qingshan Zhao and Mingbo Wu
Molecules 2025, 30(15), 3203; https://doi.org/10.3390/molecules30153203 - 30 Jul 2025
Viewed by 253
Abstract
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to [...] Read more.
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to fabricate oxygen-vacancy-rich SnO2 dots anchored on reduced graphene oxide (rGO), which are encapsulated within N-doped carbon nanofibers (denoted as ov-SnO2/rGO@N-CNFs) through electrospinning and subsequent carbonization. The introduction of rich oxygen vacancies establishes additional sodium intercalation sites and enhances Na+ diffusion kinetics, while the conductive N-doped carbon network effectively facilitates charge transport and mitigates SnO2 aggregation. Benefiting from the well-designed architecture, the hierarchical ov-SnO2/rGO@N-CNFs electrode achieves remarkable reversible specific capacities of 351 mAh g−1 after 100 cycles at 0.1 A g−1 and 257.3 mAh g−1 after 2000 cycles at 1.0 A g−1 and maintains 177 mAh g−1 even after 8000 cycles at 5.0 A g−1, demonstrating exceptional long-term cycling stability and rate capability. This work offers a versatile design strategy for developing high-performance anode materials through synergistic interface engineering for SIBs. Full article
Show Figures

Graphical abstract

13 pages, 3341 KiB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Viewed by 227
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

17 pages, 3329 KiB  
Article
Mechanistic Insights into Corrosion and Protective Coating Performance of X80 Pipeline Steel in Xinjiang’s Cyclic Freeze–Thaw Saline Soil Environments
by Gang Cheng, Yuqi Wang, Yiming Dai, Shiyi Zhang, Bin Wei, Chang Xiao and Xian Zhang
Coatings 2025, 15(8), 881; https://doi.org/10.3390/coatings15080881 - 28 Jul 2025
Viewed by 464
Abstract
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to [...] Read more.
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to quantify temporal–spatial corrosion behavior across 30 freeze–thaw cycles. Experimental results revealed a distinctive corrosion resistance pattern: initial improvement (cycles 1–10) attributed to protective oxide layer formation, followed by accelerated degradation (cycles 10–30) due to microcrack propagation and chloride accumulation. Synchrotron X-ray diffraction analyses identified sulfate–chloride ion synergism as the primary driver of localized corrosion disparities in heterogeneous soil matrices. A comparative evaluation of asphalt-coated specimens demonstrated a 62%–89% corrosion rate reduction, with effectiveness directly correlating with coating integrity and thickness (200–500 μm range). Molecular dynamics simulations using Materials Studio revealed atomic-scale ion transport dynamics at coating–substrate interfaces, showing preferential Cl permeation through coating defects. These multiscale findings establish quantitative relationships between environmental stressors, coating parameters, and corrosion kinetics, providing a mechanistic framework for optimizing protective coatings in cold-region pipeline applications. Full article
Show Figures

Figure 1

15 pages, 2921 KiB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Co-Modified with Borate and NiFeOx
by Siqiang Cheng, Yun Cheng, Taoyun Zhou, Shilin Li, Dong Xie and Xinyu Li
Micromachines 2025, 16(8), 866; https://doi.org/10.3390/mi16080866 - 27 Jul 2025
Viewed by 262
Abstract
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge [...] Read more.
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge transport, sluggish surface kinetics, and photocorrosion. In this study, porous monoclinic BiVO4 films are fabricated via a simplified successive ionic layer adsorption and reaction (SILAR) method, followed by borate treatment and PEC deposition of NiFeOx. The resulting B/BiVO4/NiFeOx photoanode exhibits a significantly enhanced photocurrent density of 2.45 mA cm−2 at 1.23 V vs. RHE—5.3 times higher than pristine BiVO4. It also achieves an ABPE of 0.77% and a charge transfer efficiency of 79.5%. These results demonstrate that dual surface modification via borate and NiFeOx is a cost-effective strategy to improve BiVO4-based PEC water splitting performance. This work provides a promising pathway for the scalable development of efficient and economically viable photoanodes for solar hydrogen production. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

Back to TopTop