Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = transmucosal oral delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2479 KiB  
Review
Biopolymer Drug Delivery Systems for Oromucosal Application: Recent Trends in Pharmaceutical R&D
by Natallia V. Dubashynskaya, Valentina A. Petrova and Yury A. Skorik
Int. J. Mol. Sci. 2024, 25(10), 5359; https://doi.org/10.3390/ijms25105359 - 14 May 2024
Cited by 14 | Viewed by 3902
Abstract
Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter [...] Read more.
Oromucosal drug delivery, both local and transmucosal (buccal), is an effective alternative to traditional oral and parenteral dosage forms because it increases drug bioavailability and reduces systemic drug toxicity. The oral mucosa has a good blood supply, which ensures that drug molecules enter the systemic circulation directly, avoiding drug metabolism during the first passage through the liver. At the same time, the mucosa has a number of barriers, including mucus, epithelium, enzymes, and immunocompetent cells, that are designed to prevent the entry of foreign substances into the body, which also complicates the absorption of drugs. The development of oromucosal drug delivery systems based on mucoadhesive biopolymers and their derivatives (especially thiolated and catecholated derivatives) is a promising strategy for the pharmaceutical development of safe and effective dosage forms. Solid, semi-solid and liquid pharmaceutical formulations based on biopolymers have several advantageous properties, such as prolonged residence time on the mucosa due to high mucoadhesion, unidirectional and modified drug release capabilities, and enhanced drug permeability. Biopolymers are non-toxic, biocompatible, biodegradable and may possess intrinsic bioactivity. A rational approach to the design of oromucosal delivery systems requires an understanding of both the anatomy/physiology of the oral mucosa and the physicochemical and biopharmaceutical properties of the drug molecule/biopolymer, as presented in this review. This review summarizes the advances in the pharmaceutical development of mucoadhesive oromucosal dosage forms (e.g., patches, buccal tablets, and hydrogel systems), including nanotechnology-based biopolymer nanoparticle delivery systems (e.g., solid lipid particles, liposomes, biopolymer polyelectrolyte particles, hybrid nanoparticles, etc.). Full article
(This article belongs to the Special Issue Nano & Micro Materials in Healthcare 3.0)
Show Figures

Figure 1

24 pages, 3539 KiB  
Review
Challenges in Optimizing Nanoplatforms Used for Local and Systemic Delivery in the Oral Cavity
by Dorin Ioan Cocoș, Olimpia Dumitriu Buzia, Alin Laurențiu Tatu, Monica Dinu, Lawrence Chukwudi Nwabudike, Claudia Simona Stefan, Kamel Earar and Carmen Galea
Pharmaceutics 2024, 16(5), 626; https://doi.org/10.3390/pharmaceutics16050626 - 7 May 2024
Cited by 37 | Viewed by 2847
Abstract
In this study, we focused on innovative approaches to improve drug administration in oral pathology, especially by transmucosal and transdermal pathways. These improvements refer to the type of microneedles used (proposing needles in the saw), to the use of certain enhancers such as [...] Read more.
In this study, we focused on innovative approaches to improve drug administration in oral pathology, especially by transmucosal and transdermal pathways. These improvements refer to the type of microneedles used (proposing needles in the saw), to the use of certain enhancers such as essential oils (which, besides the amplifier action, also have intrinsic actions on oral health), to associations of active substances with synergistic action, as well as the use of copolymeric membranes, cemented directly on the tooth. We also propose a review of the principles of release at the level of the oral mucosa and of the main release systems used in oral pathology. Controlled failure systems applicable in oral pathology include the following: fast dissolving films, mucoadhesive tablets, hydrogels, intraoral mucoadhesive films, composite wafers, and smart drugs. The novelty elements brought by this paper refer to the possibilities of optimizing the localized drug delivery system in osteoarthritis of the temporomandibular joint, neuropathic pain, oral cancer, periodontitis, and pericoronitis, as well as in maintaining oral health. We would like to mention the possibility of incorporating natural products into the controlled failure systems used in oral pathology, paying special attention to essential oils. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

27 pages, 2278 KiB  
Review
Strategies to Improve Cannabidiol Bioavailability and Drug Delivery
by Saoirse Elizabeth O’Sullivan, Sanne Skov Jensen, Aditya Reddy Kolli, Gitte Nykjær Nikolajsen, Heidi Ziegler Bruun and Julia Hoeng
Pharmaceuticals 2024, 17(2), 244; https://doi.org/10.3390/ph17020244 - 13 Feb 2024
Cited by 18 | Viewed by 8136
Abstract
The poor physicochemical properties of cannabidiol (CBD) hamper its clinical development. The aim of this review was to examine the literature to identify novel oral products and delivery strategies for CBD, while assessing their clinical implications and translatability. Evaluation of the published literature [...] Read more.
The poor physicochemical properties of cannabidiol (CBD) hamper its clinical development. The aim of this review was to examine the literature to identify novel oral products and delivery strategies for CBD, while assessing their clinical implications and translatability. Evaluation of the published literature revealed that oral CBD strategies are primarily focused on lipid-based and emulsion solutions or encapsulations, which improve the overall pharmacokinetics (PK) of CBD. Some emulsion formulations demonstrate more rapid systemic delivery. Variability in the PK effects of different oral CBD products is apparent across species. Several novel administration routes exist for CBD delivery that may offer promise for specific indications. For example, intranasal administration and inhalation allow quick delivery of CBD to the plasma and the brain, whereas transdermal and transmucosal administration routes deliver CBD systemically more slowly. There are limited but promising data on novel delivery routes such as intramuscular and subcutaneous. Very limited data show that CBD is generally well distributed across tissues and that some CBD products enable increased delivery of CBD to different brain regions. However, evidence is limited regarding whether changes in CBD PK profiles and tissue distribution equate to superior therapeutic efficacy across indications and whether specific CBD products might be suited to particular indications. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

31 pages, 2712 KiB  
Review
Hydrogel-Forming Microneedles with Applications in Oral Diseases Management
by Yuqing Li, Duohang Bi, Zhekai Hu, Yanqi Yang, Yijing Liu and Wai Keung Leung
Materials 2023, 16(13), 4805; https://doi.org/10.3390/ma16134805 - 3 Jul 2023
Cited by 29 | Viewed by 7529
Abstract
Controlled drug delivery in the oral cavity poses challenges such as bacterial contamination, saliva dilution, and inactivation by salivary enzymes upon ingestion. Microneedles offer a location-specific, minimally invasive, and retentive approach. Hydrogel-forming microneedles (HFMs) have emerged for dental diagnostics and therapeutics. HFMs penetrate [...] Read more.
Controlled drug delivery in the oral cavity poses challenges such as bacterial contamination, saliva dilution, and inactivation by salivary enzymes upon ingestion. Microneedles offer a location-specific, minimally invasive, and retentive approach. Hydrogel-forming microneedles (HFMs) have emerged for dental diagnostics and therapeutics. HFMs penetrate the stratum corneum, undergo swelling upon contact, secure attachment, and enable sustained transdermal or transmucosal drug delivery. Commonly employed polymers such as polyvinyl alcohol (PVA) and polyvinyl pyrrolidone are crosslinked with tartaric acid or its derivatives while incorporating therapeutic agents. Microneedle patches provide suture-free and painless drug delivery to keratinized or non-keratinized mucosa, facilitating site-specific treatment and patient compliance. This review comprehensively discusses HFMs’ applications in dentistry such as local anesthesia, oral ulcer management, periodontal treatment, etc., encompassing animal experiments, clinical trials, and their fundamental impact and limitations, for example, restricted drug carrying capacity and, until now, a low number of dental clinical trial reports. The review explores the advantages and future perspectives of HFMs for oral drug delivery. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials for Biomedical Engineering (Second Volume))
Show Figures

Graphical abstract

18 pages, 3422 KiB  
Article
Three-Dimensional Oral Mucosal Equivalents as Models for Transmucosal Drug Permeation Studies
by Azra Riaz, Sanna Gidvall, Zdenka Prgomet, Aura Rocio Hernandez, Tautgirdas Ruzgas, Emelie J. Nilsson, Julia Davies and Sabrina Valetti
Pharmaceutics 2023, 15(5), 1513; https://doi.org/10.3390/pharmaceutics15051513 - 17 May 2023
Cited by 11 | Viewed by 2966
Abstract
Oral transmucosal administration, where drugs are absorbed directly through the non-keratinized, lining mucosa of the mouth, represents a solution to drug delivery with several advantages. Oral mucosal equivalents (OME) developed as 3D in vitro models are of great interest since they express the [...] Read more.
Oral transmucosal administration, where drugs are absorbed directly through the non-keratinized, lining mucosa of the mouth, represents a solution to drug delivery with several advantages. Oral mucosal equivalents (OME) developed as 3D in vitro models are of great interest since they express the correct cell differentiation and tissue architecture, simulating the in vivo conditions better than monolayer cultures or animal tissues. The aim of this work was to develop OME to be used as a membrane for drug permeation studies. We developed both full-thickness (i.e., connective plus epithelial tissue) and split-thickness (i.e., only epithelial tissue) OME using non-tumor-derived human keratinocytes OKF6 TERT-2 obtained from the floor of the mouth. All the OME developed here presented similar transepithelial electrical resistance (TEER) values, comparable to the commercial EpiOral™. Using eletriptan hydrobromide as a model drug, we found that the full-thickness OME had similar drug flux to EpiOral™ (28.8 vs. 29.6 µg/cm2/h), suggesting that the model had the same permeation barrier properties. Furthermore, full-thickness OME showed an increase in ceramide content together with a decrease in phospholipids in comparison to the monolayer culture, indicating that lipid differentiation occurred due to the tissue-engineering protocols. The split-thickness mucosal model resulted in 4–5 cell layers with basal cells still undergoing mitosis. The optimum period at the air–liquid interface for this model was twenty-one days; after longer times, signs of apoptosis appeared. Following the 3R principles, we found that the addition of Ca2+, retinoic acid, linoleic acid, epidermal growth factor and bovine pituitary extract was important but not sufficient to fully replace the fetal bovine serum. Finally, the OME models presented here offer a longer shelf-life than the pre-existing models, which paves the way for the further investigation of broader pharmaceutical applications (i.e., long-term drug exposure, effect on the keratinocytes’ differentiation and inflammatory conditions, etc.). Full article
Show Figures

Graphical abstract

17 pages, 3776 KiB  
Article
Characterization of an In Vitro/Ex Vivo Mucoadhesiveness Measurement Method of PVA Films
by Laura Müller, Christoph Rosenbaum, Julius Krause and Werner Weitschies
Polymers 2022, 14(23), 5146; https://doi.org/10.3390/polym14235146 - 26 Nov 2022
Cited by 8 | Viewed by 3103
Abstract
Transmucosal drug delivery systems can be an attractive alternative to conventional oral dosage forms such as tablets. There are numerous in vitro methods to estimate the behavior of mucoadhesive dosage forms in vivo. In this work, a tensile test system was used to [...] Read more.
Transmucosal drug delivery systems can be an attractive alternative to conventional oral dosage forms such as tablets. There are numerous in vitro methods to estimate the behavior of mucoadhesive dosage forms in vivo. In this work, a tensile test system was used to measure the mucoadhesion of polyvinyl alcohol films. An in vitro screening of potential influencing variables was performed on biomimetic agar/mucin gels. Among the test device-specific factors, contact time and withdrawal speed were identified as influencing parameters. In addition, influencing factors such as the sample area, which showed a linear relationship in relation to the resulting work, and the liquid addition, which led to an abrupt decrease in adhesion, could be identified. The influence of tissue preparation was investigated in ex vivo experiments on porcine small intestinal tissue. It was found that lower values of Fmax and Wad were obtained on processed and fresh tissue than on processed and thawed tissue. Film adhesion on fresh, unprocessed tissue was lowest in most of the animals tested. Comparison of ex vivo measurements on porcine small intestinal tissue with in vitro measurements on agar/mucin gels illustrates the inter- and intra-individual variability of biological tissue. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Membranes and Films)
Show Figures

Figure 1

19 pages, 3613 KiB  
Review
Mucoadhesive Nanocarriers as a Promising Strategy to Enhance Intracellular Delivery against Oral Cavity Carcinoma
by Manisha Pandey, Hira Choudhury, Jenifer Ngu Shao Ying, Jessica Foo Sze Ling, Jong Ting, Jocelyn Su Szhiou Ting, Ivory Kuek Zhia Hwen, Ho Wan Suen, Hazimah Syazwani Samsul Kamar, Bapi Gorain, Neha Jain and Mohd Cairul Iqbal Mohd Amin
Pharmaceutics 2022, 14(4), 795; https://doi.org/10.3390/pharmaceutics14040795 - 5 Apr 2022
Cited by 22 | Viewed by 4192
Abstract
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this [...] Read more.
Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients’ prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble anti-cancer drugs can be enhanced due to the increased permeability of the ulcerous mucosa lining in the disease state and by bypassing the hepatic first-pass metabolism. However, some challenges in oral transmucosal drug delivery include the drugs’ taste, the limited surface area of the membrane lining the oral cavity, and flushing and enzymatic degradation by saliva. Therefore, mucoadhesive nanocarriers have emerged as promising platforms for controlled, targeted drug delivery in the oral cavity. The surface functionalization of nanocarriers with various moieties allows for drug targeting, bioavailability enhancement, and biodistribution at the site of action, while the mucoadhesive feature prolongs the drug’s residence time for preferential accumulation to optimize the therapeutic effect and reduce systemic toxicity. This review has been focused to highlight the potential of various nanocarriers (e.g., nanoparticles, nanoemulsions, nanocapsules, and liposomes) in conferring targeting, solubility and bioavailability enhancement of actives and mucoadhesive properties as novel tumor-targeted drug delivery approaches in oral cancer treatment. Full article
Show Figures

Figure 1

15 pages, 22595 KiB  
Article
Lidocaine-Loaded Hyaluronic Acid Adhesive Microneedle Patch for Oral Mucosal Topical Anesthesia
by Tingting Zhu, Xixi Yu, Xin Yi, Xiaoli Guo, Longhao Li, Yuanping Hao and Wanchun Wang
Pharmaceutics 2022, 14(4), 686; https://doi.org/10.3390/pharmaceutics14040686 - 22 Mar 2022
Cited by 43 | Viewed by 6892
Abstract
The pain and fear caused by direct local injection of anesthetic or the poor experience with surface anesthetic cream increase the difficulty of clinical treatment for oral diseases. To address this problem, a hyaluronic acid microneedle patch (Li-HAMNs) that consists of fast-dissolving lidocaine [...] Read more.
The pain and fear caused by direct local injection of anesthetic or the poor experience with surface anesthetic cream increase the difficulty of clinical treatment for oral diseases. To address this problem, a hyaluronic acid microneedle patch (Li-HAMNs) that consists of fast-dissolving lidocaine hydrochloride (LDC)-loaded tips and a wet-adhesive backing layer made of polyvinyl alcohol (PVA)/carboxymethylcellulose sodium (CMC-Na) was fabricated to explore its potential use in dental topical anesthesia. Li-HAMNs could puncture the stratum corneum with an insertion depth of about 279 μm in the isolated porcine oral mucosal. The fast-dissolving tips could release LDC to improve the patients’ convenience and compliance. Importantly, the backing layer, which has good adhesion ability and water-absorbing properties, could surmount the contraction and extension of oral masticatory muscles and the saliva scour. In the tail flick test, the topical anesthesia efficacy of the Li-HAMNs group was much better than clinical lidocaine cream (EMLA cream, LDC, 1.2 mg) in spite of a relatively lower LDC dose with Li-HAMNs (LDC, 0.5 mg). It is believed that the proposed adhesive microneedle patch could enhance transmucosal delivery of anesthetics and thus open a new chapter in the painless treatment of oral diseases. Full article
(This article belongs to the Special Issue Advanced Colloidal Systems for Multimodal Drug Delivery)
Show Figures

Figure 1

15 pages, 2789 KiB  
Article
Mucoadhesion and Mucopenetration of Cannabidiol (CBD)-Loaded Mesoporous Carrier Systems for Buccal Drug Delivery
by Ulrike Söpper, Anja Hoffmann and Rolf Daniels
Sci. Pharm. 2021, 89(3), 35; https://doi.org/10.3390/scipharm89030035 - 2 Aug 2021
Cited by 11 | Viewed by 6395
Abstract
Transmucosal drug delivery represents a promising noninvasive option when drugs are employed which have a low oral bioavailability like CBD. However, this concept can only be successful as long as the formulation provides sufficient buccal retention and mucosal penetration. In this study, mucoadhesive [...] Read more.
Transmucosal drug delivery represents a promising noninvasive option when drugs are employed which have a low oral bioavailability like CBD. However, this concept can only be successful as long as the formulation provides sufficient buccal retention and mucosal penetration. In this study, mucoadhesive carrier systems were evaluated consisting of CBD-loaded silica (Aeroperl 300) carriers, mucoadhesive polymers (Hypromellose (HPMC), chitosan and carbomer) and propylene glycol as a penetration enhancer. Mucoadhesive effect, drug release and penetration ability were evaluated for each carrier system. The results show that the addition of HPMC and carbomer substantially improve mucoadhesion compared to pure CBD, with an increase of 16-fold and 20-fold, respectively. However, due to their strong swelling, HPMC and carbomer hinder the penetration of CBD and rely on co-administration of propylene glycol as an enhancer to achieve sufficient mucosal absorption. Chitosan, on the other hand, achieves an 8-fold increase in mucoadhesion and enhances the amount of CBD absorbed by three times compared to pure CBD. Thus, chitosan represents a promising polymer to combine both effects. Considering the results, the development of silica-based buccal drug delivery systems is a promising approach for the effective delivery of CBD. Full article
Show Figures

Figure 1

36 pages, 2575 KiB  
Review
Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers
by Andreea Teodora Iacob, Florentina Geanina Lupascu, Maria Apotrosoaei, Ioana Mirela Vasincu, Roxana Georgiana Tauser, Dan Lupascu, Simona Eliza Giusca, Irina-Draga Caruntu and Lenuta Profire
Pharmaceutics 2021, 13(4), 587; https://doi.org/10.3390/pharmaceutics13040587 - 20 Apr 2021
Cited by 97 | Viewed by 10171
Abstract
In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan [...] Read more.
In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DNA (DNAs) and short interfering RNA (siRNA). This review targets the latest biomedical approaches for CS based nanocarriers such as nanoparticles (NPs) nanofibers (NFs), nanogels (NGs) and chitosan coated liposomes (LPs) and their potential applications for medical and pharmaceutical fields. The advantages and challenges of reviewed CS based nanocarriers for different routes of administration (oral, transmucosal, pulmonary and transdermal) with reference to classical formulations are also emphasized. Full article
(This article belongs to the Special Issue Advanced Nanoscience of Biomaterials for Biomedical Applications)
Show Figures

Figure 1

21 pages, 3195 KiB  
Article
Pharmacokinetic Model Analysis of Supralingual, Oral and Intravenous Deliveries of Mycophenolic Acid
by Xiuqing Gao, Lei Wu, Robert Y. L. Tsai, Jing Ma, Xiaohua Liu, Diana S.-L. Chow, Dong Liang and Huan Xie
Pharmaceutics 2021, 13(4), 574; https://doi.org/10.3390/pharmaceutics13040574 - 17 Apr 2021
Cited by 4 | Viewed by 3338
Abstract
Mycophenolic acid (MPA) is commonly used for organ rejection prophylaxis via oral administration in the clinic. Recent studies have shown that MPA also has anticancer activities. To explore new therapeutic options for oral precancerous/cancerous lesions, MPA was designed to release topically on the [...] Read more.
Mycophenolic acid (MPA) is commonly used for organ rejection prophylaxis via oral administration in the clinic. Recent studies have shown that MPA also has anticancer activities. To explore new therapeutic options for oral precancerous/cancerous lesions, MPA was designed to release topically on the dorsal tongue surface via a mucoadhesive patch. The objective of this study was to establish the pharmacokinetic (PK) and tongue tissue distribution of mucoadhesive MPA patch formulation after supralingual administration in rats and also compare the PK differences between oral, intravenous, and supralingual administration of MPA. Blood samples were collected from Sprague Dawley rats before and after a single intravenous bolus injection, a single oral dose, or a mucoadhesive patch administration on the dorsal tongue surface for 4 h, all with a dose of 0.5 mg/kg of MPA. Plots of MPA plasma concentration versus time were obtained. As multiple peaks were found in all three curves, the enterohepatic recycling (EHR) model in the Phoenix software was adapted to describe their PK parameters with an individual PK analysis method. The mean half-lives of intravenous and oral administrations were 10.5 h and 7.4 h, respectively. The estimated bioavailability after oral and supralingual administration was 72.4% and 7.6%, respectively. There was a 0.5 h lag-time presented after supralingual administration. The results suggest that the systemic plasma MPA concentrations were much lower in rats receiving supralingual administration compared to those receiving doses from the other two routes, and the amount of MPA accumulated in the tongue after patch application showed a sustained drug release pattern. Studies on the dynamic of drug retention in the tongue after supralingual administration showed that ~3.8% of the dose was accumulated inside of tongue right after the patch removal, ~0.11% of the dose remained after 20 h, and ~20.6% of MPA was not released from the patches 4 h after application. The data demonstrate that supralingual application of an MPA patch can deliver a high amount of drug at the site of administration with little systemic circulation exposure, hence lowering the potential gastrointestinal side effects associated with oral administration. Thus, supralingual administration is a potential alternative route for treating oral lesions. Full article
(This article belongs to the Special Issue Transport and Metabolism of Small-Molecule Drugs)
Show Figures

Figure 1

19 pages, 5888 KiB  
Article
Iontosomes: Electroresponsive Liposomes for Topical Iontophoretic Delivery of Chemotherapeutics to the Buccal Mucosa
by Kiran Sonaje, Vasundhara Tyagi, Yong Chen and Yogeshvar N. Kalia
Pharmaceutics 2021, 13(1), 88; https://doi.org/10.3390/pharmaceutics13010088 - 11 Jan 2021
Cited by 16 | Viewed by 3022
Abstract
The targeted local delivery of anticancer therapeutics offers an alternative to systemic chemotherapy for oral cancers not amenable to surgical excision. However, epithelial barrier function can pose a challenge to their passive topical delivery. The charged, deformable liposomes—“iontosomes”—described here are able to overcome [...] Read more.
The targeted local delivery of anticancer therapeutics offers an alternative to systemic chemotherapy for oral cancers not amenable to surgical excision. However, epithelial barrier function can pose a challenge to their passive topical delivery. The charged, deformable liposomes—“iontosomes”—described here are able to overcome the buccal mucosal barrier via a combination of the electrical potential gradient imposed by iontophoresis and their shape-deforming characteristics. Two chemotherapeutic agents with very different physicochemical properties, cisplatin (CDDP) and docetaxel (DTX), were co-encapsulated in cationic iontosomes comprising 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and Lipoid-S75. The entrapment of CDDP was improved by formulating it in anionic reverse micelles of dipalmitoyl-sn-glycero-3-phospho-rac-glycerol sodium (DPPG) prior to loading in the iontosomes. Cryo-TEM imaging clearly demonstrated the iontosomes’ electroresponsive shape-deformable properties. The in vitro transport study using porcine mucosa indicated that iontosomes did not enter the mucosa without an external driving force. However, anodal iontophoresis resulted in significant amounts of co-encapsulated CDDP and DTX being deposited in the buccal mucosa; e.g., after current application for 10 min, the deposition of CDDP and DTX was 13.54 ± 1.78 and 10.75 ± 1.75 μg/cm2 cf. 0.20 ± 0.07 and 0.19 ± 0.09 μg/cm2 for the passive controls—i.e., 67.7- and 56.6-fold increases—without any noticeable increase in their transmucosal permeation. Confocal microscopy confirmed that the iontosomes penetrated the mucosa through the intercellular spaces and that the penetration depth could be controlled by varying the duration of current application. Overall, the results suggest that the combination of topical iontophoresis with a suitable nanocarrier system can be used to deliver multiple “physicochemically incompatible” chemotherapeutics selectively to oral cancers while decreasing the extent of systemic absorption and the associated risk of side effects. Full article
(This article belongs to the Special Issue New Formulations for Cancer Therapy)
Show Figures

Graphical abstract

18 pages, 2550 KiB  
Article
Investigating the Potential of Transmucosal Delivery of Febuxostat from Oral Lyophilized Tablets Loaded with a Self-Nanoemulsifying Delivery System
by Yasir A. Al-Amodi, Khaled M Hosny, Waleed S. Alharbi, Martin K. Safo and Khalid M El-Say
Pharmaceutics 2020, 12(6), 534; https://doi.org/10.3390/pharmaceutics12060534 - 10 Jun 2020
Cited by 20 | Viewed by 4389
Abstract
Gout is the most familiar inflammatory arthritis condition caused by the elevation of uric acid in the bloodstream. Febuxostat (FBX) is the latest drug approved by the United States Food and Drug Administration (US FDA) for the treatment of gout and hyperuricemia. FBX [...] Read more.
Gout is the most familiar inflammatory arthritis condition caused by the elevation of uric acid in the bloodstream. Febuxostat (FBX) is the latest drug approved by the United States Food and Drug Administration (US FDA) for the treatment of gout and hyperuricemia. FBX is characterized by low solubility resulting in poor gastrointestinal bioavailability. This study aimed at improving the oral bioavailability of FBX by its incorporation into self-nanoemulsifying delivery systems (SNEDS) with minimum globule size and maximum stability index. The SNEDS-incorporated FBX was loaded into a carrier substrate with a large surface area and lyophilized with other excipients to produce a fluffy, porous-like structure tablet for the transmucosal delivery of FBX. The solubility of FBX was studied in various oils, surfactants, and cosurfactants. Extreme vertices design was utilized to optimize FBX-SNEDS, and subsequently loaded into lyophilized tablets along with suitable excipients. The percentages of the main tablet excipients were optimized using a Box–Behnken design to develop self-nanoemulsifying lyophilized tablets (SNELTs) with minimum disintegration time and maximum drug release. The pharmacokinetics parameters of the optimized FBX-SNELTs were tested in healthy human volunteers in comparison with the marketed FBX tablets. The results revealed that the optimized FBX-SNELTs increased the maximum plasma concentration (Cmax) and decreased the time to reach Cmax (Tmax) with a large area under the curve (AUC) as a result of the enhanced relative oral bioavailability of 146.4%. The significant enhancement of FBX bioavailability is expected to lead to reduced side effects and frequency of administration during the treatment of gout. Full article
Show Figures

Graphical abstract

10 pages, 244 KiB  
Editorial
Transmucosal Absorption Enhancers in the Drug Delivery Field
by Sam Maher, Luca Casettari and Lisbeth Illum
Pharmaceutics 2019, 11(7), 339; https://doi.org/10.3390/pharmaceutics11070339 - 15 Jul 2019
Cited by 28 | Viewed by 7592
Abstract
Drug delivery systems that safely and consistently improve transport of poorly absorbed compounds across epithelial barriers are highly sought within the drug delivery field. The use of chemical permeation enhancers is one of the simplest and widely tested approaches to improve transmucosal permeability [...] Read more.
Drug delivery systems that safely and consistently improve transport of poorly absorbed compounds across epithelial barriers are highly sought within the drug delivery field. The use of chemical permeation enhancers is one of the simplest and widely tested approaches to improve transmucosal permeability via oral, nasal, buccal, ocular and pulmonary routes. To date, only a small number of permeation enhancers have progressed to clinical trials, and only one product that includes a permeation enhancer has reached the pharmaceutical market. This editorial is an introduction to the special issue entitled Transmucosal Absorption Enhancers in the Drug Delivery Field (https://www.mdpi.com/journal/pharmaceutics/special_issues/transmucosal_absorption_enhancers). The guest editors outline the scope of the issue, reflect on the results and the conclusions of the 19 articles published in the issue and provide an outlook on the use of permeation enhancers in the drug delivery field. Full article
(This article belongs to the Special Issue Transmucosal Absorption Enhancers in the Drug Delivery Field)
25 pages, 1036 KiB  
Review
Cannabinoid Delivery Systems for Pain and Inflammation Treatment
by Natascia Bruni, Carlo Della Pepa, Simonetta Oliaro-Bosso, Enrica Pessione, Daniela Gastaldi and Franco Dosio
Molecules 2018, 23(10), 2478; https://doi.org/10.3390/molecules23102478 - 27 Sep 2018
Cited by 214 | Viewed by 55928
Abstract
There is a growing body of evidence to suggest that cannabinoids are beneficial for a range of clinical conditions, including pain, inflammation, epilepsy, sleep disorders, the symptoms of multiple sclerosis, anorexia, schizophrenia and other conditions. The transformation of cannabinoids from herbal preparations into [...] Read more.
There is a growing body of evidence to suggest that cannabinoids are beneficial for a range of clinical conditions, including pain, inflammation, epilepsy, sleep disorders, the symptoms of multiple sclerosis, anorexia, schizophrenia and other conditions. The transformation of cannabinoids from herbal preparations into highly regulated prescription drugs is therefore progressing rapidly. The development of such drugs requires well-controlled clinical trials to be carried out in order to objectively establish therapeutic efficacy, dose ranges and safety. The low oral bioavailability of cannabinoids has led to feasible methods of administration, such as the transdermal route, intranasal administration and transmucosal adsorption, being proposed. The highly lipophilic nature of cannabinoids means that they are seen as suitable candidates for advanced nanosized drug delivery systems, which can be applied via a range of routes. Nanotechnology-based drug delivery strategies have flourished in several therapeutic fields in recent years and numerous drugs have reached the market. This review explores the most recent developments, from preclinical to advanced clinical trials, in the cannabinoid delivery field, and focuses particularly on pain and inflammation treatment. Likely future directions are also considered and reported. Full article
(This article belongs to the Special Issue Emerging Topics in (Endo)Cannabinoid Signalling)
Show Figures

Figure 1

Back to TopTop