Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = transmission radiation detectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5060 KB  
Article
A High-Fidelity Star Map Simulation Method for Airborne All-Time Three-FOV Star Sensor Under Dynamic Conditions
by Jingsong Zhou, Hui Zhang, Liang Fang, Xiaodong Gao, Kaili Lu, Wei Sun and Rujin Zhao
Remote Sens. 2025, 17(23), 3853; https://doi.org/10.3390/rs17233853 - 28 Nov 2025
Viewed by 477
Abstract
To address the lack of reliable test data for evaluating star sensor performance in dynamic airborne environments, this paper presents a high-fidelity star map simulation method for all-time three-Field of View (FOV) star sensors. A comprehensive simulation framework integrating stellar radiation, atmospheric transmission, [...] Read more.
To address the lack of reliable test data for evaluating star sensor performance in dynamic airborne environments, this paper presents a high-fidelity star map simulation method for all-time three-Field of View (FOV) star sensors. A comprehensive simulation framework integrating stellar radiation, atmospheric transmission, and detector noise models was developed to accurately model star trailing effects under dynamic conditions. First, a stellar position calculation model incorporating atmospheric refraction correction and platform motion parameters was established through coordinate transformations between the Geocentric Celestial Reference System (GCRS) and FOV coordinate system. Next, a complete energy transfer chain was constructed by combining star catalog data, atmospheric radiative properties, and detector noise characteristics. Finally, a quantitative evaluation system was introduced, employing metrics such as signal-to-noise ratio (SNR), total grayscale value (Gtotal), grayscale concentration index (GCI), and dynamic star displacement (DSD). Field experiments at 2388 m altitude (100.23°E, 26.86°N) demonstrated the average relative error of all evaluation metrics below 9% for static conditions and approximately 8% for dynamic scenarios between simulated and real star maps. The method effectively reproduces stellar radiation, atmospheric noise, and dynamic degradation, providing reliable simulation conditions for airborne star sensor testing and star trailing restoration algorithm development. Full article
Show Figures

Figure 1

11 pages, 3010 KB  
Article
Optimization of Tungsten Anode Target Design for High-Energy Microfocus X-Ray Sources via Geant4 Monte Carlo Simulation
by Yuetian Liu, Lili Li, Yiheng Liu, Xue Zhang, Liwei Xin, Zhengkun Fu, Jinshou Tian, Wei Zhao and Duan Luo
Photonics 2025, 12(11), 1062; https://doi.org/10.3390/photonics12111062 - 27 Oct 2025
Viewed by 904
Abstract
High-energy microfocus X-ray sources are increasingly applied in non-destructive testing, high-resolution imaging, and additive manufacturing. The design and optimization of the anode target critically determine source efficiency, spectral characteristics, and imaging performance. In this study, Monte Carlo simulations using the Geant4 toolkit were [...] Read more.
High-energy microfocus X-ray sources are increasingly applied in non-destructive testing, high-resolution imaging, and additive manufacturing. The design and optimization of the anode target critically determine source efficiency, spectral characteristics, and imaging performance. In this study, Monte Carlo simulations using the Geant4 toolkit were conducted to systematically evaluate transmission and reflection tungsten targets with varied thicknesses and incidence angles under electron beam energies ranging from 100 to 300 keV. The results reveal that, for a microfocus X-ray source operating at a maximum tube voltage of 225 kV, the optimal transmission tungsten target exhibits a thickness of 18 μm, whereas the optimal reflection tungsten target achieves maximum efficiency at a 30 μm thickness with a 25° incidence angle. A nearly linear relationship between electron energy and optimal transmission target thickness is established within the 100–300 keV range. Additionally, the influence of beryllium window thickness and filter materials on the emergent X-ray spectrum is analyzed, demonstrating pathways for spectral hardening and transmission optimization. This study further elucidates the angular–intensity distribution of emitted X-rays, providing critical insights into beam spatial characteristics. Collectively, these findings establish a theoretical foundation for target optimization, enabling enhanced X-ray source performance in high-resolution imaging and supporting applications in detector calibration, flatness correction, beam hardening correction, and radiation shielding design. Full article
(This article belongs to the Special Issue Ultrafast Dynamics Probed by Photonics and Electron-Based Techniques)
Show Figures

Figure 1

5 pages, 1330 KB  
Abstract
Understanding and Controlling Interference in Sub-Terahertz Wave Measurements
by Tomoaki Date, Seiya Miyazaki and Tadao Tanabe
Proceedings 2025, 129(1), 51; https://doi.org/10.3390/proceedings2025129051 - 12 Sep 2025
Viewed by 465
Abstract
Interference caused by multiple reflections is a critical issue in transmission measurements using continuous wave (CW) terahertz and sub-terahertz radiation. This study proposes a practical method to reduce interference effects and improve the stability of transmittance measurements. By deriving analytical expressions for interference [...] Read more.
Interference caused by multiple reflections is a critical issue in transmission measurements using continuous wave (CW) terahertz and sub-terahertz radiation. This study proposes a practical method to reduce interference effects and improve the stability of transmittance measurements. By deriving analytical expressions for interference patterns under both normal and oblique incidence conditions, we demonstrate that oblique incidence simplifies the interference behavior and allows the reliable extraction of transmittance values from maximum and minimum signal intensities. Using a 95 GHz CW oscillator (Model SFD-753114-103-10SF-P1, Eravant, Torrance, CA, USA) and a 1 mm-thick PET sample, we conducted transmission measurements while varying the detector position. The derived method enabled the calculation of interference-free transmittance values that were consistent across different sample positions. This approach offers a practical technique for material characterization, especially in applications such as nondestructive testing and plastic recycling. Full article
Show Figures

Figure 1

19 pages, 3731 KB  
Article
Electric Field Measurement in Radiative Hyperthermia Applications
by Marco Di Cristofano, Luca Lalli, Giorgia Paglialunga and Marta Cavagnaro
Sensors 2025, 25(14), 4392; https://doi.org/10.3390/s25144392 - 14 Jul 2025
Viewed by 1145
Abstract
Oncological hyperthermia (HT) is a medical technique aimed at heating a specific region of the human body containing a tumour. The heat makes the tumour cells more sensitive to the cytotoxic effects of radiotherapy and chemotherapy. Electromagnetic (EM) HT devices radiate a single-frequency [...] Read more.
Oncological hyperthermia (HT) is a medical technique aimed at heating a specific region of the human body containing a tumour. The heat makes the tumour cells more sensitive to the cytotoxic effects of radiotherapy and chemotherapy. Electromagnetic (EM) HT devices radiate a single-frequency EM field that induces a temperature increase in the treated region of the body. The typical radiative HT frequencies are between 60 and 150 MHz for deep HT applications, while 434 MHz and 915 MHz are used for superficial HT. The input EM power can reach up to 2000 W in deep HT and 250 W in superficial applications, and the E-field should be linearly polarized. This study proposes the development and use of E-field sensors to measure the distribution and evaluate the polarization of the E-field radiated by HT devices inside equivalent phantoms. This information is fundamental for the validation and assessment of HT systems. The sensor is constituted by three mutually orthogonal probes. Each probe is composed of a dipole, a diode, and a high-impedance transmission line. The fundamental difference in the operability of this sensor with respect to the standard E-field square-law detectors lies in the high-power values of the considered EM sources. Numerical analyses were performed to optimize the design of the E-field sensor in the whole radiative HT frequency range and to characterize the sensor behaviour at the power levels of HT. Then the sensor was realized, and measurements were carried out to evaluate the E-field radiated by commercial HT systems. The results show the suitability of the developed sensor to measure the E-field radiated by HT applicators. Additionally, in the measured devices, the linear polarization is evidenced. Accordingly, the work shows that in these devices, a single probe can be used to completely characterize the field distribution. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

15 pages, 2442 KB  
Article
Complete Dosimetric Characterization of an In-House Manufactured SFRT Grid Collimator by 3D Printing with PLA-W Composite Filament
by José Velásquez, Melani Fuentealba and Mauricio Santibáñez
Polymers 2025, 17(11), 1496; https://doi.org/10.3390/polym17111496 - 28 May 2025
Cited by 1 | Viewed by 773
Abstract
This study presents a comprehensive dosimetric characterization and commissioning of a grid-type collimator manufactured via 3D printing using PLA-W composite filament, following an international protocol for small-field dosimetry. PLA doped with high concentrations of tungsten (>90% w/w) enables the fabrication [...] Read more.
This study presents a comprehensive dosimetric characterization and commissioning of a grid-type collimator manufactured via 3D printing using PLA-W composite filament, following an international protocol for small-field dosimetry. PLA doped with high concentrations of tungsten (>90% w/w) enables the fabrication of miniaturized collimators (<1 cm) with complex geometries, suitable for non-conventional radiotherapy applications. However, accurate assessment of spatial dose modulation is challenged by penumbra overlap between closely spaced beamlets, limiting the application of conventional instrumentation and protocols. To address this, absolute and relative dose distributions were evaluated for various radiation field configurations (number of beamlets) in both lateral and depth directions. Measurements were performed according to the IAEA TRS-483 protocol, using micro-ionization chambers and diode detectors. Additionally, long-term stability assessments were carried out to evaluate both the structural integrity and modulation performance of the printed grid over time. Point dose measurements using the same detectors were repeated after one year, and 2D surface dose distributions measured with EBT3 films were compared to SRS MapCHECK measurements two years later. The generated radiation field size of the central beamlet (FWHM) differed by less than 0.2% (15.8 mm) from the physical projection size (15.6 mm) and the lateral transmission due simultaneous beamlets resulted in FWHM variations of less than 3.8%, confirming manufacturing precision and collimator capability. Output factor measurements increased with the number of beamlets, from 0.75 for a single beamlet to 0.82 for the full beamlets configuration. No significant changes were observed in the depth of maximum dose across the different beamlets configurations (1.20 ± 0.20 cm). On the other hand, the long-term evaluations show no relevant changes in the FWHM or VPR, confirming the performance and reliability of the system. These results support the clinical feasibility and lasting performance stability of in-house manufactured grid collimators using PLA-W filaments and accessible 3D printing technology. Full article
(This article belongs to the Special Issue Polymeric Materials for 3D Printing)
Show Figures

Figure 1

37 pages, 6344 KB  
Review
IR Sensors, Related Materials, and Applications
by Nikolaos Argirusis, Achilleas Achilleos, Niyaz Alizadeh, Christos Argirusis and Georgia Sourkouni
Sensors 2025, 25(3), 673; https://doi.org/10.3390/s25030673 - 23 Jan 2025
Cited by 23 | Viewed by 14903
Abstract
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing [...] Read more.
Infrared (IR) sensors are widely used in various applications due to their ability to detect infrared radiation. Currently, infrared detector technology is in its third generation and faces enormous challenges. IR radiation propagation is categorized into distinct transmission windows with the most intriguing aspects of thermal imaging being mid-wave infrared (MWIR) and long-wave infrared (LWIR). Infrared detectors for thermal imaging have many uses in industrial applications, security, search and rescue, surveillance, medical, research, meteorology, climatology, and astronomy. Presently, high-performance infrared imaging technology mostly relies on epitaxially grown structures of the small-bandgap bulk alloy mercury–cadmium–telluride (MCT), indium antimonide (InSb), and GaAs-based quantum well infrared photodetectors (QWIPs), contingent upon the application and wavelength range. Nanostructures and nanomaterials exhibiting appropriate electrical and mechanical properties including two-dimensional materials, graphene, quantum dots (QDs), quantum dot in well (DWELL), and colloidal quantum dot (CQD) will significantly enhance the electronic characteristics of infrared photodetectors, transition metal dichalcogenides, and metal oxides, which are garnering heightened interest. The present manuscript gives an overview of IR sensors, their types, materials commonly used in them, and examples of related applications. Finally, a summary of the manuscript and an outlook on prospects are given. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

15 pages, 671 KB  
Article
Simulation Study of Low-Dose 4D-STEM Phase Contrast Techniques at the Nanoscale in SEM
by Zvonimír Jílek, Tomáš Radlička and Vladislav Krzyžánek
Nanomaterials 2025, 15(1), 70; https://doi.org/10.3390/nano15010070 - 4 Jan 2025
Cited by 1 | Viewed by 2483
Abstract
Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore [...] Read more.
Phase contrast imaging is well-suited for studying weakly scattering samples. Its strength lies in its ability to measure how the phase of the electron beam is affected by the sample, even when other imaging techniques yield low contrast. In this study, we explore via simulations two phase contrast techniques: integrated center of mass (iCOM) and ptychography, specifically using the extended ptychographical iterative engine (ePIE). We simulate the four-dimensional scanning transmission electron microscopy (4D-STEM) datasets for specific parameters corresponding to a scanning electron microscope (SEM) with an immersive objective and a given pixelated detector. The performance of these phase contrast techniques is analyzed using a contrast transfer function. Simulated datasets from a sample consisting of graphene sheets and carbon nanotubes are used for iCOM and ePIE reconstructions for two aperture sizes and two electron doses. We highlight the influence of aperture size, showing that for a smaller aperture, the radiation dose is spent mostly on larger sample features, which may aid in imaging sensitive samples while minimizing radiation damage. Full article
(This article belongs to the Special Issue Transmission Electron Microscopy for Nanomaterials Research Advances)
Show Figures

Figure 1

20 pages, 5072 KB  
Article
Characterization of Radiation Shielding Capabilities of High Concentration PLA-W Composite for 3D Printing of Radiation Therapy Collimators
by José Velásquez, Melani Fuentealba and Mauricio Santibáñez
Polymers 2024, 16(6), 769; https://doi.org/10.3390/polym16060769 - 11 Mar 2024
Cited by 6 | Viewed by 3242
Abstract
This work evaluates the radiation shielding capabilities of the PLA-W composite for MV energy photons emitted by a linear accelerator and the feasibility of manufacturing a clinically-used collimator grid in spatially fractionated radiotherapy (SFRT) using the material extrusion (MEX) 3D printing technique. The [...] Read more.
This work evaluates the radiation shielding capabilities of the PLA-W composite for MV energy photons emitted by a linear accelerator and the feasibility of manufacturing a clinically-used collimator grid in spatially fractionated radiotherapy (SFRT) using the material extrusion (MEX) 3D printing technique. The PLA-W filament used has a W concentration of 93% w/w and a green density of 7.51 g/cm3, characteristics that make it suitable for this purpose. Relevant parameters such as the density and homogeneity distribution of W in the manufactured samples determine the mass attenuation coefficient, directly affecting the radiation shielding capacities, so different printing parameters were evaluated, such as layer height, deposition speed, nozzle temperature, and infill, to improve the protection performance of the samples. Additionally, physical and mechanical tests were conducted to ensure structural stability and spatial variability over time, which are critical to ensure precise spatial modulation of radiation. Finally, a complete collimator grid measuring 9.3 × 9.3 × 7.1 cm3 (consisting of 39 conical collimators with a diameter of 0.92 cm and center-to-center spacing of 1.42 cm) was manufactured and experimentally evaluated on a clinical linear accelerator to measure the radiation shielding and dosimetric parameters such as mass attenuation coefficient, half-value layer (HVL), dosimetric collimator field size, and inter-collimator transmission using radiochromic films and 2D diode array detectors, obtaining values of 0.04692 cm2/g, 2.138 cm, 1.40 cm, and 15.6%, respectively, for the parameters in the study. This shows the viability of constructing a clinically-used collimator grid through 3D printing. Full article
Show Figures

Graphical abstract

14 pages, 5607 KB  
Article
Fabrication of a Gd2O3-Based Film to Shield from Space Radiation inside Aircraft and Its Effectiveness
by Seon-Chil Kim and Sung-Hwan Kim
Aerospace 2023, 10(11), 968; https://doi.org/10.3390/aerospace10110968 - 17 Nov 2023
Cited by 4 | Viewed by 2893
Abstract
Aircraft are exposed to cosmic radiation depending on their flight altitude and latitude. Therefore, flight attendants are exposed to radiation for long periods. In this study, a 0.3 mm thick fabric was designed with which to manufacture crew clothes to shield them against [...] Read more.
Aircraft are exposed to cosmic radiation depending on their flight altitude and latitude. Therefore, flight attendants are exposed to radiation for long periods. In this study, a 0.3 mm thick fabric was designed with which to manufacture crew clothes to shield them against external exposure to space radiation, and the shielding performance was analyzed based on empirical experiments in a real environment. Gadolinium oxide, which has a high neutron reaction cross-section, and tungsten, which is useful for gamma-ray shielding, were proposed as the main raw materials for the shielding fabric, and the shielding performance was evaluated using detectors on Arctic flight routes. Composite (KG-01) and single (KG-02) shielding materials were used. In the case of KG-01, the transmission dose rate was 90.7 ± 5.6% compared with the unshielded case, showing an average space-radiation dose reduction of 9.3%. With KG-02, the transmission dose rate was 103.1 ± 2.0% compared with the unshielded case, and the average dose rate increased by 3.1%; therefore, there was no shielding effect against space radiation. Considering the statistical error of the environmental radiation at aircraft flight altitudes, KG-01 had a shielding effect of at least 5%; however, KG-02 yielded no significant shielding effects. Full article
Show Figures

Figure 1

13 pages, 6429 KB  
Article
Combination of a Nondestructive Testing Method with Artificial Neural Network for Determining Thickness of Aluminum Sheets Regardless of Alloy’s Type
by Abdulilah Mohammad Mayet, Muhammad Umer Hameed Shah, Robert Hanus, Hassen Loukil, Muneer Parayangat, Mohammed Abdul Muqeet, Ehsan Eftekhari-Zadeh and Ramy Mohammed Aiesh Qaisi
Electronics 2023, 12(21), 4504; https://doi.org/10.3390/electronics12214504 - 2 Nov 2023
Cited by 1 | Viewed by 1684
Abstract
Non-destructive and reliable radiation-based gauges have been routinely used in industry to determine the thickness of metal layers. When the material’s composition is understood in advance, only then can the standard radiation thickness meter be relied upon. Errors in thickness measurements are to [...] Read more.
Non-destructive and reliable radiation-based gauges have been routinely used in industry to determine the thickness of metal layers. When the material’s composition is understood in advance, only then can the standard radiation thickness meter be relied upon. Errors in thickness measurements are to be expected in settings where the actual composition of the material may deviate significantly from the nominal composition, such as rolled metal manufacturers. In this research, an X-ray-based system is proposed to determine the thickness of an aluminum sheet regardless of its alloy type. In the presented detection system, an X-ray tube with a voltage of 150 kV and two sodium iodide detectors, a transmission detector and a backscattering detector, were used. Between the X-ray tube and the transmission detector, an aluminum plate with different thicknesses, ranging from 2 to 45 mm, and with four alloys named 1050, 3050, 5052, and 6061 were simulated. The MCNP code was used as a very powerful platform in the implementation of radiation-based systems in this research to simulate the detection structure and the spectra recorded using the detectors. From the spectra recorded using two detectors, three features of the total count of both detectors and the maximum value of the transmission detector were extracted. These characteristics were applied to the inputs of an RBF neural network to obtain the relationship between the inputs and the thickness of the aluminum plate. The trained neural network was able to determine the thickness of the aluminum with an MRE of 2.11%. Although the presented methodology is used to determine the thickness of the aluminum plate independent of the type of alloy, it can be used to determine the thickness of other metals as well. Full article
(This article belongs to the Special Issue Application of Artificial Neural Network in Non-destructive Testing)
Show Figures

Figure 1

12 pages, 3876 KB  
Article
Development of a Real-Time Pixel Array-Type Detector for Ultrahigh Dose-Rate Beams
by Young Jae Jang, Tae Keun Yang, Jeong Hwan Kim, Hong Suk Jang, Jong Hwi Jeong, Kum Bae Kim, Geun-Beom Kim, Seong Hee Park and Sang Hyoun Choi
Sensors 2023, 23(10), 4596; https://doi.org/10.3390/s23104596 - 9 May 2023
Cited by 1 | Viewed by 2446
Abstract
Although research into ultrahigh dose-rate (UHDR) radiation therapy is ongoing, there is a significant lack of experimental measurements for two-dimensional (2D) dose-rate distributions. Additionally, conventional pixel-type detectors result in significant beam loss. In this study, we developed a pixel array-type detector with adjustable [...] Read more.
Although research into ultrahigh dose-rate (UHDR) radiation therapy is ongoing, there is a significant lack of experimental measurements for two-dimensional (2D) dose-rate distributions. Additionally, conventional pixel-type detectors result in significant beam loss. In this study, we developed a pixel array-type detector with adjustable gaps and a data acquisition system to evaluate its effectiveness in measuring UHDR proton beams in real time. We measured a UHDR beam at the Korea Institute of Radiological and Medical Sciences using an MC-50 cyclotron, which produced a 45-MeV energy beam with a current range of 10–70 nA, to confirm the UHDR beam conditions. To minimize beam loss during measurement, we adjusted the gap and high voltage on the detector and determined the collection efficiency of the developed detector through Monte Carlo simulation and experimental measurements of the 2D dose-rate distribution. We also verified the accuracy of the real-time position measurement using the developed detector with a 226.29-MeV PBS beam at the National Cancer Center of the Republic of Korea. Our results indicate that, for a current of 70 nA with an energy beam of 45 MeV generated using the MC-50 cyclotron, the dose rate exceeded 300 Gy/s at the center of the beam, indicating UHDR conditions. Simulation and experimental measurements show that fixing the gap at 2 mm and the high voltage at 1000 V resulted in a less than 1% loss of collection efficiency when measuring UHDR beams. Furthermore, we achieved real-time measurements of the beam position with an accuracy of within 2% at five reference points. In conclusion, our study developed a beam monitoring system that can measure UHDR proton beams and confirmed the accuracy of the beam position and profile through real-time data transmission. Full article
(This article belongs to the Special Issue Sensors and New Trends in Global Metrology)
Show Figures

Figure 1

15 pages, 3345 KB  
Article
A New Environmentally Friendly Mortar from Cement, Waste Marble and Nano Iron Slag as Radiation Shielding
by Ahmed M. El-Khatib, Mahmoud I. Abbas, Mohamed Abd Elzaher, M. Anas, Mohamed S. Abd El Moniem, Mahmoud Montasar, Ebeid Ellithy and Mahmoud T. Alabsy
Materials 2023, 16(7), 2541; https://doi.org/10.3390/ma16072541 - 23 Mar 2023
Cited by 9 | Viewed by 2743
Abstract
Improving mortar shielding properties to preserve environmental and human safety in radiation facilities is essential. Conventional cement mortars, composed of cement, water, and lime aggregate, are crucial for radiation shielding. Using recycled aggregates to produce new mortar and concrete compositions has attracted the [...] Read more.
Improving mortar shielding properties to preserve environmental and human safety in radiation facilities is essential. Conventional cement mortars, composed of cement, water, and lime aggregate, are crucial for radiation shielding. Using recycled aggregates to produce new mortar and concrete compositions has attracted the attention of several researchers. In the current study, waste marble and iron slag as aggregates are used to create novel cement mortar compositions to study the aggregate’s impact on the radiation attenuation capability of the mortar. Three mortar groups, including a control mortar (CM-Ctrl), were prepared based on cement and waste marble. The other two groups (CM-MIS, CM-NIS), contained 25% iron slag at different particle sizes as a replacement for a waste marble. The study aims to compare iron slag in their micro and nano sizes to discuss the effect of particle size on the mortar radiation capability. For this purpose, the NaI scintillation detector and radioactive point sources (241Am, 133Ba, 137Cs, 60Co, and 152Eu) were utilized to measure several shielding parameters, such as the linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP), for the produced mortars at different photon energies. Furthermore, the transmission electron microscope (TEM) is used to measure the particle size of the aggregates. In addition, a scanning electron microscope (SEM) is utilized to acquire the cross-section morphologies of the prepared mortars. According to our findings, mortars prepared with nano-iron slag and waste marble offered superior shielding capabilities than mortars containing natural sand or fine crushed stone. The nano iron slag mortar can be utilized in place of typical sand mortar for applications as rendering or plastering materials for building medical diagnostic and CT scanner rooms, due to its improved shielding abilities. Full article
Show Figures

Figure 1

14 pages, 3940 KB  
Article
Theoretical Analysis of the Time Transient of the THz Self-Mixing Rectification Voltage in a Semiconductor Barrier
by Fabrizio Palma
Electronics 2023, 12(6), 1264; https://doi.org/10.3390/electronics12061264 - 7 Mar 2023
Cited by 2 | Viewed by 1770
Abstract
THz detection in a silicon structure can be an effective instrument not only for image detection, and material and gas sensing, but also for communications. Next-generation 6G communications assume the possibility of achieving a large-band transmission, using free space propagation with THz carriers. [...] Read more.
THz detection in a silicon structure can be an effective instrument not only for image detection, and material and gas sensing, but also for communications. Next-generation 6G communications assume the possibility of achieving a large-band transmission, using free space propagation with THz carriers. This possibility relies on the availability of an effective, low-cost detector technology. THz detection by self-mixing can provide an effective amplitude demodulation of the incoming carrier, with antennas directly fabricated on the chip. In this case, the speed of the detectors represents a crucial point in the definition of the bandwidth whereby several GHz are indeed required by the communication systems. The self-mixing process is intrinsically very fast, since it depends on the non-linear interaction of the radiation with the majority carriers inside the semiconductor structure. In this paper, we evaluate analytically the time dependence of the onset of the rectified voltage. A potential propagation along the detector channel follows the self-mixing rectification, accompanied by the charging of the parasitic capacitances of the structure. A numerical simulator can easily evaluate the delay due to this propagation along the structure, but the transient of the true origin of the signal, i.e., the establishment of the self-mixing voltage, at the current time, can be only inferred by analytical approach. In this work, we use the model developed for the THz rectification in the depletion region of an MOS capacitance to develop a transient model of the formation of the characteristic self-mixing charge dipole, and of the generation of the rectified potential. Subsequently, we show by TCAD simulations the propagation of the effect on the semiconductor structure, which surrounds the rectifying barrier, and evaluate the overall time response of a detector. Full article
(This article belongs to the Special Issue Advances in Nanophotonic Sensors, Devices and Functional Applications)
Show Figures

Figure 1

15 pages, 4907 KB  
Article
Gamma Attenuation Features of White Cement Mortars Reinforced by Micro/Nano Bi2O3 Particles
by Mona M. Gouda, Ahmed M. El-Khatib, Mahmoud I. Abbas, Shoaa Mofleh Al-Balawi and Mahmoud T. Alabsy
Materials 2023, 16(4), 1580; https://doi.org/10.3390/ma16041580 - 14 Feb 2023
Cited by 21 | Viewed by 3003
Abstract
This study aims to explore the radiation protection properties of white mortars based on white cement as a binder and Bi2O3 micro and nanoparticles in proportions of 15 and 30% by weight as replacement sand. The average particle size of [...] Read more.
This study aims to explore the radiation protection properties of white mortars based on white cement as a binder and Bi2O3 micro and nanoparticles in proportions of 15 and 30% by weight as replacement sand. The average particle size of micro- and nano-Bi2O3 was measured using a transmission electron microscope (TEM). The cross-sectional morphology and distribution of Bi2O3 within the samples can be obtained by scanning electron microscopy (SEM), showing that nanoscale Bi2O3 particles have a more homogeneous distribution within the samples than microscale Bi2O3 particles. The shielding parameters of the proposed mortars were measured using the HPGe detector at various γ-ray energies emitted by standard radioactive point sources 241Am, 133Ba, 60Co, 137Cs, and 152Eu. The experimental values of the prepared mortars’ mass attenuation coefficients (MAC) match well with those determined theoretically from the XCOM database. Other shielding parameters, including half value layer (HVL), tenth value layer (TVL), mean free path (MFP), effective electron density (Neff), effective atomic number (Zeff), equivalent atomic number (Zeq), and exposure buildup factor (EBF), were also determined at different photon energies to provide more shielding information about the penetration of gamma radiation into the selected mortars. The obtained results indicated that the sample containing 30% by weight of nano Bi2O3 has the largest attenuation coefficient value. Furthermore, the results show that the sample with a high concentration of Bi2O3 has the highest equivalent atomic numbers and the lowest HVL, TVL, MFP, and EBF values. Finally, it can be concluded that Bi2O3 nanoparticles have higher efficiency and protection compared to microparticles, especially at lower gamma-ray energies. Full article
Show Figures

Figure 1

14 pages, 5068 KB  
Article
A Methodology for Analysis and Prediction of Volume Fraction of Two-Phase Flow Using Particle Swarm Optimization and Group Method of Data Handling Neural Network
by Abdullah M. Iliyasu, Dakhkilgova Kamila Bagaudinovna, Ahmed S. Salama, Gholam Hossein Roshani and Kaoru Hirota
Mathematics 2023, 11(4), 916; https://doi.org/10.3390/math11040916 - 11 Feb 2023
Cited by 14 | Viewed by 2186
Abstract
Determining the volume percentages of flows passing through the oil transmission lines is one of the most essential problems in the oil, gas, and petrochemical industries. This article proposes a detecting system made of a Pyrex-glass pipe between an X-ray tube and a [...] Read more.
Determining the volume percentages of flows passing through the oil transmission lines is one of the most essential problems in the oil, gas, and petrochemical industries. This article proposes a detecting system made of a Pyrex-glass pipe between an X-ray tube and a NaI detector to record the photons. This geometry was modeled using the MCNP version X algorithm. Three liquid-gas two-phase flow regimes named annular, homogeneous, and stratified were simulated in percentages ranging from 5 to 95%. Five time characteristics, three frequency characteristics, and five wavelet characteristics were extracted from the signals obtained from the simulation. X-ray radiation-based two-phase flowmeters’ accuracy has been improved by PSO to choose the best case among thirteen characteristics. The proposed feature selection method introduced seven features as the best combination. The void fraction inside the pipe could be predicted using the GMDH neural network, with the given characteristics as inputs to the network. The novel aspect of the current study is the application of a PSO-based feature selection method to calculate volume percentages, which yields outcomes such as the following: (1) presenting seven suitable time, frequency, and wavelet characteristics for calculating volume percentages; (2) the presented method accurately predicted the volume fraction of the two-phase flow components with RMSE and MSE of less than 0.30 and 0.09, respectively; (3) dramatically reducing the amount of calculations applied to the detection system. This research shows that the simultaneous use of time, frequency, and wavelet characteristics, as well as the use of the PSO method as a feature selection system, can significantly help to improve the accuracy of the detection system. Full article
(This article belongs to the Section E1: Mathematics and Computer Science)
Show Figures

Figure 1

Back to TopTop