Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (150)

Search Parameters:
Keywords = transmission line compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1796 KB  
Article
Optical Triple-Band Multiplexing Enabling Beyond-600 Gb/s Single-Photodiode Reception for Intra-AIDC Interconnects
by Ziheng Zhang, Yixiao Zhu, Xiang Cai, Xiansong Fang, Chenbo Zhang, Yimin Hu, Lingjun Zhou, Chongyu Wang, Fan Zhang and Weisheng Hu
Photonics 2026, 13(1), 11; https://doi.org/10.3390/photonics13010011 - 24 Dec 2025
Viewed by 344
Abstract
Generative artificial intelligence (AI) models including GPT, Gemini, and DeepSeek are reshaping embodied agents, temporal prediction, and autonomous driving, demanding a ten-fold annual growth in training FLOPS that Moore’s law can no longer sustain. Consequently, scale-out GPU clusters require >400 Gb/s lane-rate optical [...] Read more.
Generative artificial intelligence (AI) models including GPT, Gemini, and DeepSeek are reshaping embodied agents, temporal prediction, and autonomous driving, demanding a ten-fold annual growth in training FLOPS that Moore’s law can no longer sustain. Consequently, scale-out GPU clusters require >400 Gb/s lane-rate optical interconnects within AI data-centers (AIDCs). Single-photodiode direct detection offers density, latency, and energy advantages, but DAC bandwidth remains limited to around 70 GHz. We present an optical triple-band multiplexing scheme that replaces high-frequency radio frequency (RF) mixers and local oscillators (LOs) with photonic components. A Mach–Zehnder modulator (MZM) generates 80-GBd PS-PAM-20 signal while an in-phase/quadrature (IQ) modulator driven by a wavelength-offset laser creates two independent 35-GBd PS-64-QAM bands. The proposed optical multiplexing method breaks conjugate symmetry and enhances dispersion tolerance of the direct detection system. After 200 m SSMF transmission and single 70-GHz photodiode (PD) detection, digital signal-signal beating interference (SSBI)/cross-beating compensation enables the recovery of net 543.9 Gb/s signal (line rate of 686.6 Gb/s) using only 45-GHz DACs. The optical multiplexing architecture provides a path to beyond-400 Gb/s lanes and demonstrates a scalable, energy-efficient solution for next-generation AI clusters. Full article
Show Figures

Figure 1

23 pages, 1641 KB  
Article
Hybrid Transmission Schemes for Enhancing Static Voltage Stability in Power Systems Under Variable Operating Conditions
by Jordan Valdez and Diego Carrión
Energies 2026, 19(1), 3; https://doi.org/10.3390/en19010003 - 19 Dec 2025
Viewed by 387
Abstract
Static voltage stability (SVS) is a critical aspect of the safe and efficient operation of electrical power systems (EPS), as it reflects the system’s ability to maintain adequate voltage levels in the face of progressive increases in demand under steady-state conditions. Traditionally, improving [...] Read more.
Static voltage stability (SVS) is a critical aspect of the safe and efficient operation of electrical power systems (EPS), as it reflects the system’s ability to maintain adequate voltage levels in the face of progressive increases in demand under steady-state conditions. Traditionally, improving SVS has been addressed by compensating reactive power using FACTS devices. However, this research introduces an alternative methodology based on the hybridization of transmission technologies, integrating HVAC and HVDC links in parallel, to increase the stability margin and optimize performance in the event of contingencies. The proposed methodology is based on the resolution of the optimal AC power flow (OPF-AC) and the analysis of P-V curves to evaluate the displacement of the critical collapse point. The validity of the approach was verified through simulations in the Generation-Infinite Busbar and IEEE 9-busbar models, using the DIgSILENT PowerFactory environment. The results obtained show significant improvements in the SVS margin: an increase of 4.6% in the infinite busbar generation system, 9.5% in the critical busbar of the IEEE 9-busbar system, and 7.6% in the critical busbar of the IEEE 30-busbar system. In addition, the hybrid scheme showed a 17.1% reduction in real power losses and a more efficient redistribution of energy flows, which translates into a decrease in line load capacity. It should be noted that, under an N-1 contingency scenario, the hybrid system showed a 13.3% improvement in maximum power transfer before collapse, confirming its effectiveness under critical conditions. These findings position HVAC/HVDC hybridization as a robust and scalable alternative for strengthening voltage stability in modern electrical systems subject to operational variability. Full article
(This article belongs to the Special Issue Challenges and Innovations in Stability and Control of Power Systems)
Show Figures

Figure 1

19 pages, 1415 KB  
Article
LFRE-YOLO: Lightweight Edge Computing Algorithm for Detecting External-Damage Objects on Transmission Lines
by Min Liu, Benhui Wu and Ming Chen
Information 2025, 16(12), 1035; https://doi.org/10.3390/info16121035 - 27 Nov 2025
Viewed by 479
Abstract
Transmission lines in complex outdoor environments often suffer external damage in construction areas, severely affecting the stability of power systems. Traditional manual detection methods have problems of low efficiency and poor real-time performance. In deep learning-based detection methods, standard convolution has a large [...] Read more.
Transmission lines in complex outdoor environments often suffer external damage in construction areas, severely affecting the stability of power systems. Traditional manual detection methods have problems of low efficiency and poor real-time performance. In deep learning-based detection methods, standard convolution has a large parameter count and computational complexity, making it difficult to deploy on edge devices; while lightweight depthwise separable convolution offers low computational cost, it suffers from insufficient feature extraction capability. This limitation stems from its independent processing of each channel’s information, making it unable to simultaneously meet the practical requirements for both lightweight design and high detection accuracy in transmission line monitoring applications. To address the above problems, this study proposes LFRE-YOLO, a lightweight external damage detection algorithm for transmission lines based on YOLOv10n. This study proposes LFRE-YOLO, a lightweight external damage detection algorithm based on YOLOv10n. First, we design a lightweight feature reuse and enhancement convolution (LFREConv) that overcomes the limitations of traditional depthwise separable convolution through cascaded dual depthwise convolution structure and residual connection mechanisms, significantly expanding the effective receptive field with minimal parameter increment and compensating for information loss caused by independent channel processing in depthwise convolution through feature reuse strategies. Second, based on LFREConv, we propose an efficient lightweight feature extraction module (LFREBlock) that achieves cross-channel information interaction enhancement and channel importance modeling. Additionally, we propose a lightweight feature reuse and enhancement detection head (LFRE-Head) that applies LFREConv to the regression branch, achieving comprehensive lightweight design of the detection head while maintaining spatial localization accuracy. Finally, we employ layer-adaptive magnitude-based pruning (LAMP) to prune the trained model, further optimizing the network structure through layer-wise adaptive pruning. Experimental results demonstrate significant improvements over YOLOv10n baseline: mAP50 increased from 92.0% to 94.1%, mAP50-95 improved from 66.2% to 70.2%, while reducing parameters from 2.27 M to 0.99 M, computational complexity from 6.5 G to 3.1 G, and achieving 86.9 FPS inference speed, making it suitable for resource-constrained edge computing environments. Full article
(This article belongs to the Special Issue AI-Based Image Processing and Computer Vision)
Show Figures

Graphical abstract

10 pages, 1409 KB  
Article
Pre-Emphasis for 1.2 Tb/s DP-64QAM Transmission Simulated in OptiSystem
by Abdullah S. Karar, Ahmad Atieh and Xin Chen
Photonics 2025, 12(12), 1152; https://doi.org/10.3390/photonics12121152 - 24 Nov 2025
Cited by 1 | Viewed by 446
Abstract
We investigate analog and digital pre-emphasis for ultra-high-bit-rate coherent dual-polarization 64-QAM (DP-64QAM) transmission using OptiSystem. Two representative single-wavelength configurations are studied: 64 Gbaud (600 Gb/s payload, 768 Gb/s line rate) and 100 Gbaud (1000 Gb/s payload, 1.2 Tb/s line rate). The transmitter employs [...] Read more.
We investigate analog and digital pre-emphasis for ultra-high-bit-rate coherent dual-polarization 64-QAM (DP-64QAM) transmission using OptiSystem. Two representative single-wavelength configurations are studied: 64 Gbaud (600 Gb/s payload, 768 Gb/s line rate) and 100 Gbaud (1000 Gb/s payload, 1.2 Tb/s line rate). The transmitter employs raised-cosine pulse shaping (roll-off 0.1) and a 9-bit DAC, while the receiver uses a 9-bit ADC; bandwidth-limiting Bessel/Gaussian filters emulate practical transmitter (Tx) and receiver (Rx) front-end constraints. Analog pre-emphasis (APE) is realized by uploading a measured analog filter response immediately after the DAC to compensate high-frequency roll-off. Digital pre-emphasis (DPE) is implemented before the DAC as a finite-impulse-response (FIR) pre-distortion stage, with taps obtained from the measured frequency response via spectrum mirroring, inverse FFT, Hamming-window smoothing, and normalization. We compare four cases: (i) ideal reference without bandwidth limits; (ii) bandwidth-limited without pre-emphasis; (iii) APE; and (iv) DPE. Bit-error-rate–versus–optical signal-to-noise ratio (OSNR) results show that both APE and DPE substantially mitigate bandwidth-induced penalties and approach the theoretical bound, reducing the OSNR gap to 5.8 dB at 64 Gbaud and 6.6 dB at 100 Gbaud, with operation near the forward error correction (FEC) threshold (BER=102). While DPE offers full programmability, it increases peak-to-average power ratio (PAPR) and may require additional gain headroom. Overall, APE provides an effective rapid-prototyping step prior to DPE deployment, confirming the feasibility of 768 Gb/s and 1.2 Tb/s DP-64QAM links with commercially realistic components, including a 150 GSa/s DAC operating at 1.5 samples/symbol for 100 Gbaud. Full article
Show Figures

Figure 1

16 pages, 1312 KB  
Article
A Power Decoupling Strategy for Virtual Synchronous Generator Based on Active Disturbance Rejection Control Strategy
by Yu Ji, Hai Zhang, Ming Wu, Lijuan Hu, Ran Chen, Lijing Sun and Yini Xu
Symmetry 2025, 17(12), 2016; https://doi.org/10.3390/sym17122016 - 21 Nov 2025
Viewed by 491
Abstract
The renewable power grid is a complex system with multiple symmetries, in which active power and reactive power play different but symmetrical roles. In weak power grid condition, the virtual synchronous generators (VSGs) are prone to large power angles and high impedance ratios [...] Read more.
The renewable power grid is a complex system with multiple symmetries, in which active power and reactive power play different but symmetrical roles. In weak power grid condition, the virtual synchronous generators (VSGs) are prone to large power angles and high impedance ratios in the transmission lines, leading to severe coupling between active and reactive power. This coupling causes mutual interference between the active and reactive power outputs of the VSG, increasing the dynamic oscillations and prolonging the regulation time. To solve this problem, a power decoupling strategy for VSGs based on active disturbance rejection control (ADRC) is proposed in this paper. The ADRC control decouples the VSG, a dual-input, dual-output coupled system, into two single-input, single-output systems by observing and compensating for disturbances. This approach eliminates the coupling between the VSG’s power loops without considering virtual impedance. Compared with the conventional virtual impedance power decoupling method for VSGs, the proposed ADRC strategy can deal with multi-variable systems with different orders without complex and detailed high-order models, effectively decoupling the active power and reactive power of the VSG and improving the stability of the power grid. Full article
(This article belongs to the Special Issue Symmetry in Digitalisation of Distribution Power System)
Show Figures

Figure 1

11 pages, 2390 KB  
Article
Integrated Quasi-Optical Terahertz Liquid Sensor Leveraging Mode-Parity-Dependent Interaction with a Capillary-Confined Analyte
by Andreas K. Klein, Julian Webber, Guillermo Carpintero, Masayuki Fujita and Daniel Headland
Sensors 2025, 25(22), 7026; https://doi.org/10.3390/s25227026 - 17 Nov 2025
Viewed by 483
Abstract
The integration of terahertz (THz) sensing technology into compact, on-chip platforms is essential to the advancement of high-precision chemical and biomedical analysis, promising to bring analytics closer to the point of care and to enable in situ analysis of industrial processes. This study [...] Read more.
The integration of terahertz (THz) sensing technology into compact, on-chip platforms is essential to the advancement of high-precision chemical and biomedical analysis, promising to bring analytics closer to the point of care and to enable in situ analysis of industrial processes. This study presents an integrated quasi-optical THz liquid sensor that features a longitudinal cavity in a silicon slab waveguide, in which a capillary-confined analyte interacts with guided slab modes on resonance. The sensor design leverages mode-parity-dependent field distributions: even-parity resonances exhibit strong analyte-field interaction, whilst odd-parity modes remain largely unaffected by the presence of the analyte, enabling intrinsic self-calibration. The device is fabricated using deep reactive ion etching of high-resistivity silicon and monolithically integrates all required components. Experimental measurements with water and isopropanol demonstrate alternating resonance peaks with distinct sensitivity to refractive index and absorption, validated by linear shifts in frequency and transmission loss. The self-calibrating feature allows for real-time compensation of system fluctuations towards automated continuous monitoring applications. These findings establish the sensor’s capability for simultaneous, precise material characterization and calibration, highlighting its potential for in-line process monitoring and other high-bandwidth sensing applications. Full article
(This article belongs to the Special Issue Terahertz Sensors)
Show Figures

Figure 1

21 pages, 4360 KB  
Article
Research on the CSODC Strategy Based on Impedance Model Prediction and SSO Stability Assessment of DFIGs
by Xiao Wang, Yina Ren, Linlin Wu, Xiaoyang Deng, Xu Zhang and Qun Wang
Appl. Sci. 2025, 15(20), 11218; https://doi.org/10.3390/app152011218 - 20 Oct 2025
Cited by 1 | Viewed by 411
Abstract
As wind power penetration continues to increase, the sub-synchronous control interaction (SSCI) problem caused by the interaction between doubly fed induction generators (DFIGs) and series-compensated transmission lines has become increasingly prominent, posing a serious threat to power system stability. To address this problem, [...] Read more.
As wind power penetration continues to increase, the sub-synchronous control interaction (SSCI) problem caused by the interaction between doubly fed induction generators (DFIGs) and series-compensated transmission lines has become increasingly prominent, posing a serious threat to power system stability. To address this problem, this research proposes a centralized sub-synchronous oscillation damping controller (CSODC) for wind farms. First, a DFIG impedance model was constructed based on multi-operating-point impedance scanning and a Taylor series expansion, achieving impedance prediction with an error of less than 2% under various power conditions. Subsequently, a CSODC comprising a sub-synchronous damping calculator (SSDC) and a power electronic converter is designed. By optimizing feedback signals, phase shift angles, gain parameters, and filter parameters, dynamic adjustment of controllable impedance in the sub-synchronous frequency band is achieved. Frequency-domain impedance analysis demonstrates that the CSODC significantly enhances the system’s equivalent resistance, reversing it from negative to positive at the resonance frequency point. Time-domain simulations validated the CSODC’s effectiveness in scenarios involving series capacitor switching and wind speed disturbances, demonstrating rapid sub-synchronous current decay. The results confirm that the proposed strategy effectively suppresses sub-synchronous oscillations across multiple scenarios, offering an economical and efficient solution to stability challenges in high-penetration renewable energy grids. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 3740 KB  
Article
Fault Ride-Through Optimization Scheme for Hybrid AC/DC Transmission Systems on the Same Tower
by Xu Chu, Qi Liu, Letian Fu, Shaoshuai Yu and Weidong Wang
Sensors 2025, 25(19), 6216; https://doi.org/10.3390/s25196216 - 7 Oct 2025
Viewed by 533
Abstract
Sensors in power systems utilize the detection results of fault signals to guide subsequent fault handling procedures. However, the traditional phase-shift restart strategy exhibits limitations such as power interruptions, reactive power redundancy, and intersystem fault clearance failures when addressing faults in the hybrid [...] Read more.
Sensors in power systems utilize the detection results of fault signals to guide subsequent fault handling procedures. However, the traditional phase-shift restart strategy exhibits limitations such as power interruptions, reactive power redundancy, and intersystem fault clearance failures when addressing faults in the hybrid AC/DC transmission system. To address these shortcomings, a power compensation-based fault ride-through (FRT) scheme and a protection-control cooperation FRT scheme are proposed, taking into account the operational characteristics of the symmetric monopole LCC-HVDC (SM-LCC-HVDC). The power compensation-based FRT scheme actively compensates for power, mitigating the impact of reactive power redundancy on the AC-side bus during faults. The protection-control cooperation FRT scheme is activated after sufficient AC components are detected on the DC side. It leverages the adjustability of the DC system to proactively activate protection for AC transmission lines. An electromagnetic transient simulation model of the hybrid AC/DC same-tower transmission system was developed in PSCAD/EMTDC. Simulation results validate the effectiveness and superiority of the proposed methods. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 3239 KB  
Article
Analysis and Suppression Strategies of Sub-Synchronous Oscillations in DFIG Wind Farm Integrated with Synchronous Pumped Storage System
by Yuzhe Chen, Feng Wu, Linjun Shi, Yang Li, Zizhao Wang and Yanbo Ding
Sustainability 2025, 17(10), 4588; https://doi.org/10.3390/su17104588 - 16 May 2025
Cited by 2 | Viewed by 948
Abstract
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to [...] Read more.
The sub-synchronous oscillation (SSO) characteristics and suppression strategies of a hybrid system comprising doubly fed induction generator (DFIG)-based wind turbines and synchronous pumped storage units connected to the power grid via series-compensated transmission lines are analyzed. A modular modeling approach is used to construct a detailed system model, including the wind turbine shaft system, DFIG, converter control system, synchronous machine, excitation system, power system stabilizer (PSS), and series-compensated transmission lines. Eigenvalue calculation-based small-signal stability analysis is conducted to identify the dominant oscillation modes. Suppression measures are also developed using relative participation analysis, and simulations are carried out to validate the accuracy of the model and analysis method. The analysis results indicate that the SSO phenomenon is primarily influenced by the electrical state variables of the DFIG system, while the impact of the state variables of the synchronous machine is relatively minor. When the level of series compensation in the system increases, SSO is significantly exacerbated. To address this issue, a sub-synchronous damping controller (SSDC) is incorporated on the rotor side of the DFIG. The results demonstrate that this method effectively mitigates the SSO and significantly enhances the system’s robustness against disturbances. Furthermore, a simplified modeling approach is proposed based on relative participation analysis. This method neglects the dynamic characteristics of the synchronous machine while considering its impact on the steady-state impedance and initial conditions of the model. These findings provide theoretical guidance and practical insights for addressing and mitigating SSO issues in hybrid renewable energy systems composed of DFIGs and synchronous machines. Full article
Show Figures

Figure 1

16 pages, 3056 KB  
Article
Noise Effects on Detection and Localization of Faults for Unified Power Flow Controller-Compensated Transmission Lines Using Traveling Waves
by Javier Rodríguez-Herrejón, Enrique Reyes-Archundia, Jose A. Gutiérrez-Gnecchi, Marcos Gutiérrez-López and Juan C. Olivares-Rojas
Electricity 2025, 6(2), 25; https://doi.org/10.3390/electricity6020025 - 2 May 2025
Cited by 1 | Viewed by 1400
Abstract
This paper presents a comprehensive analysis of the effects of noise on the detection and localization of faults in transmission lines compensated with a unified power flow controller using traveling wave-based methods. This study focuses on the impact of harmonic and transient noises, [...] Read more.
This paper presents a comprehensive analysis of the effects of noise on the detection and localization of faults in transmission lines compensated with a unified power flow controller using traveling wave-based methods. This study focuses on the impact of harmonic and transient noises, which are inherent to power generation, transmission, and UPFC operation. A novel algorithm is proposed combining the Discrete Wavelet Transform and Clarke Transform to detect and localize faults under various noise conditions. The algorithm is tested on a simulated transmission line model in MATLAB/Simulink (Version R2022b) with noise levels of 20 dB, 30 dB, and 40 dB and transient frequencies of 1 kHz, 5 kHz, and 10 kHz. The results demonstrate that the algorithm achieves an average fault localization error of 0.523% under harmonic noise and 0.777% under transient noise, with fault detection rates of 96.3% and 90.75%, respectively. This study highlights the robustness of the traveling wave method in noisy environments and provides insights into the challenges posed by UPFC-compensated lines. Full article
Show Figures

Figure 1

26 pages, 8468 KB  
Article
DC-Link Capacitance Estimation for Energy Storage with Active Power Filter Based on 2-Level or 3-Level Inverter Topologies
by Maksim Dybko, Sergey Brovanov and Aleksey Udovichenko
Electricity 2025, 6(1), 13; https://doi.org/10.3390/electricity6010013 - 7 Mar 2025
Cited by 1 | Viewed by 1884
Abstract
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) [...] Read more.
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) connected to the grid using a PWM filter and/or transformer. This similarity allows for the design of an ESS with the ability to operate as a shunt APF. One of the key milestones in ESS or APF development is the DC-link design. The proper choice of the capacitance of the DC-link capacitors and their equivalent resistance ensures the proper operation of the whole power electronic system. In this article, it is proposed to estimate the required minimum DC-link capacitance using a spectral analysis of the DC-link current for different operating modes, battery charge mode and harmonic compensation mode, for a nonlinear load. It was found that the AC component of the DC-link current is shared between the DC-link capacitors and the rest of the DC stage, including the battery. This relation is described analytically. The main advantage of the proposed approach is its universality, as it only requires calculating the harmonic spectrum using the switching functions. This approach is demonstrated for DC-link capacitor estimation in two-level and three-level NPC inverter topologies. Moreover, an analysis of the AC current component distribution between the DC-link capacitors and the other elements of the DC-link stage was carried out. This part of the analysis is especially important for battery energy storage systems. The obtained results were verified using a simulation model. Full article
Show Figures

Figure 1

4 pages, 3759 KB  
Brief Report
Flexible Passive IV Connector Safeguard Against Contact and Airborne Contamination to Prevent Central-Line Associated Bloodstream Infections
by Juan N. Walterspiel
Hospitals 2025, 2(1), 5; https://doi.org/10.3390/hospitals2010005 - 24 Feb 2025
Viewed by 1290
Abstract
IV line connectors often become contaminated between infusions, which leads to line infections. A flexible shield was developed to prevent this by means of passive protection. It was tested in a simulated bedside environment and protected from touch contamination as well as airborne [...] Read more.
IV line connectors often become contaminated between infusions, which leads to line infections. A flexible shield was developed to prevent this by means of passive protection. It was tested in a simulated bedside environment and protected from touch contamination as well as airborne transmission of skin bacteria to the connector hub. This flexible shield can compensate for the unavoidable human factor infection control lapses that occur during IV line handling by healthcare workers. Full article
Show Figures

Figure 1

20 pages, 6950 KB  
Article
Offshore Network Development to Foster the Energy Transition
by Enrico Maria Carlini, Corrado Gadaleta, Michela Migliori, Francesca Longobardi, Gianfranco Luongo, Stefano Lauria, Marco Maccioni and Jacopo Dell’Olmo
Energies 2025, 18(2), 386; https://doi.org/10.3390/en18020386 - 17 Jan 2025
Cited by 2 | Viewed by 1216
Abstract
A growing interest in offshore wind energy in the Mediterranean Sea has been recently observed thanks to the potential for scale-up and recent advances in floating technologies and dynamic cables: in the Italian panorama, the offshore wind connection requests to the National Transmission [...] Read more.
A growing interest in offshore wind energy in the Mediterranean Sea has been recently observed thanks to the potential for scale-up and recent advances in floating technologies and dynamic cables: in the Italian panorama, the offshore wind connection requests to the National Transmission Grid (NTG) reached almost 84 GW at the end of September 2024. Starting from a realistic estimate of the offshore wind power plants (OWPPs) to be realized off the southern coasts in a very long-term scenario, this paper presents a novel optimization procedure for meshed AC offshore network configuration, aiming at minimizing the offshore wind generation curtailment based on the DC optimal power flow approximation, assessing the security condition of the whole onshore and offshore networks. The reactive power compensation aspects are also considered in the optimization procedure: the optimal compensation sizing for export cables and collecting stations is evaluated via the AC optimal power flow (OPF) approach, considering a combined voltage profile and minimum short circuit power constraint for the onshore extra-high voltage (EHV) nodes. The simulation results demonstrate that the obtained meshed network configuration and attendant re-active compensation allow most of the offshore wind generation to be evacuated even in the worst-case scenario, i.e., the N1 network, full offshore wind generation output, and summer line rating, testifying to the relevance of the proposed methodology for real applications. Full article
(This article belongs to the Special Issue Emerging Topics in Renewable Energy Research in Smart Grids)
Show Figures

Figure 1

19 pages, 9601 KB  
Article
A Practical Approach for Fault Location in Transmission Lines with Series Compensation Using Artificial Neural Networks: Results with Field Data
by Simone Aparecida Rocha, Thiago Gomes de Mattos and Eduardo Gonzaga da Silveira
Energies 2025, 18(1), 145; https://doi.org/10.3390/en18010145 - 2 Jan 2025
Cited by 1 | Viewed by 1209
Abstract
This paper presents a new method for fault location in transmission lines with series compensation, using data from voltage and current measurements at both terminals, applied to artificial neural networks. To determine the fault location, we present the proposal of using current phasors, [...] Read more.
This paper presents a new method for fault location in transmission lines with series compensation, using data from voltage and current measurements at both terminals, applied to artificial neural networks. To determine the fault location, we present the proposal of using current phasors, obtained from the oscillography recorded during the short circuit, as the input to the neural network for training. However, the method does not rely on the internal voltage values of the sources or their respective equivalent Thevenin impedances to generate training files for the neural network in a transient simulator. The source data are not known exactly at the time of the short circuit in the transmission line, leading to greater errors when neural networks are applied to real electrical systems of utility companies, which reduces the dependency on electrical network parameters. To present the new method, a conventional fault location algorithm based on neural networks is initially described, highlighting how the dependency on source parameters can hinder the application of the artificial neural network in real cases encountered in utility electrical systems. Subsequently, the new algorithm is described and applied to simulated and real fault cases. Low errors are obtained in both situations, demonstrating its effectiveness and practical applicability. It is noted that the neural networks used for real cases are trained using simulated faults but without any data from the terminal sources. Although we expect the findings of this paper to have relevance in transmission lines with series compensation, the new method can also be applied to conventional transmission lines, i.e., without series compensation, as evidenced by the results presented. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

25 pages, 1471 KB  
Article
Optimal Placement and Sizing of Modular Series Static Synchronous Compensators (M-SSSCs) for Enhanced Transmission Line Loadability, Loss Reduction, and Stability Improvement
by Cristian Urrea-Aguirre, Sergio D. Saldarriaga-Zuluaga, Santiago Bustamante-Mesa, Jesús M. López-Lezama and Nicolás Muñoz-Galeano
Processes 2025, 13(1), 34; https://doi.org/10.3390/pr13010034 - 27 Dec 2024
Cited by 6 | Viewed by 2022
Abstract
This paper addresses the optimal placement and sizing of Modular Static Synchronous Series Compensators (M-SSSCs) to enhance power system performance. The proposed methodology optimizes four key objectives: reducing transmission line loadability, minimizing power losses, mitigating voltage deviations, and enhancing voltage stability using the [...] Read more.
This paper addresses the optimal placement and sizing of Modular Static Synchronous Series Compensators (M-SSSCs) to enhance power system performance. The proposed methodology optimizes four key objectives: reducing transmission line loadability, minimizing power losses, mitigating voltage deviations, and enhancing voltage stability using the L-index. The methodology is validated on two systems: the IEEE 14-bus test network and a sub-area of the Colombian power grid, characterized by aging infrastructure and operational challenges. The optimization process employs three metaheuristic algorithms—Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Teaching–Learning-Based Optimization (TLBO)—to identify optimal configurations. System performance is analyzed under both normal operating conditions and contingency scenarios (N − 1). The results demonstrate that M-SSSC deployment significantly reduces congestion, enhances voltage stability, and improves overall system efficiency. Furthermore, this work highlights the practical application of M-SSSC in modernizing real-world grids, aligning with sustainable energy transition goals. This study identifies the optimal M-SSSC configurations and placement alternatives for the analyzed systems. Specifically, for the Colombian sub-area, the most suitable solutions involve installing M-SSSC devices in capacitive mode on the Termocol–Guajira and Santa Marta–Guajira 220 kV transmission lines. Full article
Show Figures

Figure 1

Back to TopTop