Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (229)

Search Parameters:
Keywords = transmission beamforming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3401 KB  
Article
An Angle Estimation Approach for Coherent FDA Radar Based on Transmit-Receive Sum and Difference Beamforming
by Jun Zhang, Jingwei Xu and Guisheng Liao
Sensors 2026, 26(2), 487; https://doi.org/10.3390/s26020487 - 12 Jan 2026
Viewed by 246
Abstract
This paper proposes a high-precision angle estimation method based on transmit sum and difference beamforming for coherent frequency diverse array (FDA) radar. By employing a small frequency offset across the array aperture, the coherent FDA radar achieves a range-angle-coupled transmit beampattern that combines [...] Read more.
This paper proposes a high-precision angle estimation method based on transmit sum and difference beamforming for coherent frequency diverse array (FDA) radar. By employing a small frequency offset across the array aperture, the coherent FDA radar achieves a range-angle-coupled transmit beampattern that combines wide transmission coverage with narrow reception capability. The proposed method constructs an equivalent two-dimensional coupled sum-difference beam in the target output channel by simultaneously utilizing signal detection outputs from multiple transmitted beams. This approach maintains the inherent advantages of FDA systems while enabling accurate angle estimation without sacrificing coverage. Simulation results demonstrate that the proposed architecture achieves an angular resolution of 1/20 of the beamwidth at a signal-to-noise ratio (SNR) of 20 dB, significantly outperforming conventional techniques. The method exhibits robust performance in various scenarios, which makes it a good candidate for modern radar applications requiring both wide-area surveillance and high-precision angle measurement. Full article
Show Figures

Figure 1

23 pages, 28280 KB  
Article
Complementary Design of Two Types of Signals for Avionic Phased-MIMO Weather Radar
by Zhe Geng, Ling Wang, Fanwang Meng, Di Wu and Daiyin Zhu
Sensors 2026, 26(2), 423; https://doi.org/10.3390/s26020423 - 9 Jan 2026
Viewed by 274
Abstract
An avionic weather radar antenna should be able to operate in multiple modes to cope with the change in resolution and elevation coverage as an aircraft approaches a storm cell that could expand 10 km in elevation. To solve this problem, we propose [...] Read more.
An avionic weather radar antenna should be able to operate in multiple modes to cope with the change in resolution and elevation coverage as an aircraft approaches a storm cell that could expand 10 km in elevation. To solve this problem, we propose the addition of four auxiliary antenna (AuxAnt) arrays based on the phased-MIMO antenna structure to the existing avionic weather radar for future field data collection missions. Two types of signals are employed: the Type I signal transmitted by AuxAnt 1 and 2 is designed based on a non-overlapping subarray configuration, with Subarray 1 and 2 dedicated to the transmission of long and short pulses, respectively, so that the near-range blind zone is mitigated. Leveraging the waveform design and beamforming flexibility provided by the phased-MIMO antenna, pulse compressions based on frequency modulation and phase-coding are employed for wide and narrow main beams, respectively. To suppress the range sidelobes, adaptive pulse compression is used at the receiver end in substitute of the conventional matched filter. In contrast, the Type II signal transmitted by AuxAnt 3 and 4 is designed based on the contextual information so that the transmitted beampatterns have specific sidelobe levels at certain directions for interference suppression. The advantages of the proposed signaling strategy are verified with a series of ingeniously devised experiments based on real weather data. Full article
(This article belongs to the Special Issue Advances in Multichannel Radar Systems)
Show Figures

Figure 1

27 pages, 941 KB  
Article
Rate-Splitting-Based Resource Allocation in FANETs: Joint Optimization of Beam Direction, Node Pairing, Power and Time Slot
by Fukang Zhao, Chuang Song, Xu Li, Ying Liu and Yanan Liang
Sensors 2026, 26(1), 224; https://doi.org/10.3390/s26010224 - 29 Dec 2025
Viewed by 282
Abstract
Directional flying ad hoc networks (FANETs) equipped with phased array antennas are pivotal for applications demanding high-capacity, low-latency communications. While directional beamforming extends the communication range, it necessitates the intricate joint optimization of the beam direction, power, and time-slot scheduling under hardware constraints. [...] Read more.
Directional flying ad hoc networks (FANETs) equipped with phased array antennas are pivotal for applications demanding high-capacity, low-latency communications. While directional beamforming extends the communication range, it necessitates the intricate joint optimization of the beam direction, power, and time-slot scheduling under hardware constraints. Existing resource allocation schemes predominantly follow two paradigms: (i) conventional physical-layer multiple access (CPMA) approaches, which enforce strict orthogonality within each beam and thus limit spatial efficiency; and (ii) advanced physical-layer techniques like rate-splitting multiple access (RSMA), which have been applied to terrestrial and omnidirectional UAV networks but not systematically integrated with the beam-based scheduling constraints of directional FANETs. Consequently, jointly optimizing the beam direction, intra-beam rate-splitting-based node pairing, transmit power, and time-slot scheduling remains largely unexplored. To bridge this gap, this paper introduces an intra-beam rate-splitting-based resource allocation (IBRSRA) framework for directional FANETs. This paper formulates an optimization problem that jointly designs the beam direction, constrained rate-splitting (CRS)-based node pairing, power control, modulation and coding scheme (MCS) selection, and time-slot scheduling, aiming to minimize the total number of time slots required for data transmission. The resulting mixed-integer nonlinear programming (MINLP) problem is solved via a computationally efficient two-stage algorithm, combining greedy scheduling with successive convex approximation (SCA) for non-convex optimization. Simulation results demonstrate that the proposed IBRSRA algorithm substantially enhances spectral efficiency and reduces latency. Specifically, for a network with 16 nodes, IBRSRA reduces the required number of transmission time slots by more than 42% compared to the best-performing baseline scheme. This confirms the significant practical benefit of integrating CRS into the resource allocation design of directional FANETs. Full article
Show Figures

Figure 1

32 pages, 907 KB  
Article
Performance Analysis of Uplink Opportunistic Scheduling for Multi-UAV-Assisted Internet of Things
by Long Suo, Zhichu Zhang, Lei Yang and Yunfei Liu
Drones 2026, 10(1), 18; https://doi.org/10.3390/drones10010018 - 28 Dec 2025
Viewed by 341
Abstract
Due to the high mobility, flexibility, and low cost, unmanned aerial vehicles (UAVs) can provide an efficient way for provisioning data communication and computing offloading services for massive Internet of Things (IoT) devices, especially in remote areas with limited infrastructure. However, current transmission [...] Read more.
Due to the high mobility, flexibility, and low cost, unmanned aerial vehicles (UAVs) can provide an efficient way for provisioning data communication and computing offloading services for massive Internet of Things (IoT) devices, especially in remote areas with limited infrastructure. However, current transmission schemes for unmanned aerial vehicle-assisted Internet of Things (UAV-IoT) predominantly employ polling scheduling, thus not fully exploiting the potential multiuser diversity gains offered by a vast number of IoT nodes. Furthermore, conventional opportunistic scheduling (OS) or opportunistic beamforming techniques are predominantly designed for downlink transmission scenarios. When applied directly to uplink IoT data transmission, these methods can incur excessive uplink training overhead. To address these issues, this paper first proposes a low-overhead multi-UAV uplink OS framework based on channel reciprocity. To avoid explicit massive uplink channel estimation, two scheduling criteria are designed: minimum downlink interference (MDI) and the maximum downlink signal-to-interference-plus-noise ratio (MD-SINR). Second, for a dual-UAV deployment scenario over Rayleigh block fading channels, we derive closed-form expressions for both the average sum rate and the asymptotic sum rate based on the MDI criterion. A degrees-of-freedom (DoF) analysis demonstrates that when the number of sensors, K, scales as ρα, the system can achieve a total of 2α DoF, where α0,1 is the user-scaling factor and ρ is the transmitted signal-to-noise ratio (SNR). Third, for a three-UAV deployment scenario, the Gamma distribution is employed to approximate the uplink interference, thereby yielding a tractable expression for the average sum rate. Simulations confirm the accuracy of the performance analysis for both dual- and three-UAV deployments. The normalized error between theoretical and simulation results falls below 1% for K > 30. Furthermore, the impact of fading severity on the system’s sum rate and DoF performance is systematically evaluated via simulations under Nakagami-m fading channels. The results indicate that more severe fading (a smaller m) yields greater multiuser diversity gain. Both the theoretical and simulation results consistently show that within the medium-to-high SNR regime, the dual-UAV deployment outperforms both the single-UAV and three-UAV schemes in both Rayleigh and Nakagami-m channels. This study provides a theoretical foundation for the adaptive deployment and scheduling design of UAV-assisted IoT uplink systems under various fading environments. Full article
Show Figures

Figure 1

14 pages, 725 KB  
Article
IRS-Assisted Dual-Mode Relay-Based Adaptive Transmission
by Dabao Wang, Yanhong Xu, Zhangbo Gao, Hanqing Ding, Shitong Zhu and Zhao Li
Sensors 2025, 25(24), 7492; https://doi.org/10.3390/s25247492 - 9 Dec 2025
Viewed by 389
Abstract
To address the challenges posed by increased power consumption in traditional active relays and the difficulties associated with countering channel fading for Intelligent Reflecting Surfaces (IRSs), we propose a dual-mode relay (DMR). This relay can dynamically switch between two operational modes: active relaying [...] Read more.
To address the challenges posed by increased power consumption in traditional active relays and the difficulties associated with countering channel fading for Intelligent Reflecting Surfaces (IRSs), we propose a dual-mode relay (DMR). This relay can dynamically switch between two operational modes: active relaying and passive IRS reflection. The DMR allows its units (DMRUs) to select their operational modes based on channel conditions. This capability enables the transmission of composite-mode signals, which consist of both active relaying components and IRS-reflected components. This dynamic switching enhances adaptation to the wireless environment. Furthermore, under the constraint of limited transmit power, we introduce a DMR-based Adaptive Transmission (DMRAT) method. This approach explores all possible DMR operational modes and employs the Alternating Optimization (AO) algorithm in each mode to jointly optimize the beamforming matrices of both the transmitter and the DMR, along with the reflection coefficient matrix of the IRS. Consequently, this maximizes the data transmission rate for the target communication pair. The optimal DMR mode can then be determined based on the optimized data rate for the target communication across various operational modes. Simulation results demonstrate that the proposed method significantly enhances the data transmission rate for the target communication pair. Full article
(This article belongs to the Special Issue Future Wireless Communication Networks: 3rd Edition)
Show Figures

Figure 1

22 pages, 4609 KB  
Article
Statistical CSI-Based Beamspace Transmission for Massive MIMO LEO Satellite Communications
by Qian Dong, Yafei Wang, Nan Hu, Yiming Zhu, Wenjin Wang and Li Chai
Entropy 2025, 27(12), 1214; https://doi.org/10.3390/e27121214 - 28 Nov 2025
Viewed by 519
Abstract
In multibeam low-Earth-orbit (LEO) satellite systems, precoding has emerged as a key technology for mitigating co-channel interference (CCI) and for improving spectral efficiency (SE). However, its practical implementation is challenged by the difficulty of acquiring reliable instantaneous channel state information (iCSI) and by [...] Read more.
In multibeam low-Earth-orbit (LEO) satellite systems, precoding has emerged as a key technology for mitigating co-channel interference (CCI) and for improving spectral efficiency (SE). However, its practical implementation is challenged by the difficulty of acquiring reliable instantaneous channel state information (iCSI) and by the high computational complexity induced by large-scale antenna arrays, making it incompatible with fixed codebook-based beamforming schemes commonly adopted in operational systems. In this analysis, we propose a beamspace transmission framework leveraging statistical CSI (sCSI) and achieves reduced computational complexity compared with antenna-domain precoding designs. Specifically, we first propose a low-complexity beam selection algorithm that selects a small subset of beams for each user terminal (UT) from a fixed beamforming codebook, using only the UTs’ two-dimensional (2D) angular information. To suppress CCI among beams, we then derive a beamspace weighted minimum mean square error (WMMSE) precoding scheme based on the equivalent beamspace channel matrix. The derivation employs an sCSI-based WMMSE (sWMMSE) formulation derived from an upper bound approximation of the ergodic sum rate, which provides a tighter estimate than the expected mean square error (MSE)-based lower bound approximation. Simulation results demonstrate that the proposed sCSI-based beamspace transmission scheme achieves a favorable trade-off between performance and computational complexity. Full article
(This article belongs to the Topic Advances in Sixth Generation and Beyond (6G&B))
Show Figures

Figure 1

23 pages, 1937 KB  
Article
RIS-Assisted Joint Communication, Sensing, and Multi-Tier Computing Systems
by Yunzhe Wang and Minzheng Li
Future Internet 2025, 17(12), 533; https://doi.org/10.3390/fi17120533 - 23 Nov 2025
Viewed by 390
Abstract
This paper investigates the application of Reconfigurable Intelligent Surfaces (RIS) in Joint Communication, Sensing, and Multi-tier Computing (JCSMC). An RIS-assisted JCSMC framework is proposed, wherein a full-duplex multi-antenna Base Station (BS) is employed to sense targets and provide edge computation services to User [...] Read more.
This paper investigates the application of Reconfigurable Intelligent Surfaces (RIS) in Joint Communication, Sensing, and Multi-tier Computing (JCSMC). An RIS-assisted JCSMC framework is proposed, wherein a full-duplex multi-antenna Base Station (BS) is employed to sense targets and provide edge computation services to User Equipment (UE). To enhance computational efficiency, a Multi-Tier Computing (MTC) architecture is adopted, enabling joint processing of computing tasks through the deployment of both the BS and the Cloud Servers (CS). Meanwhile, this paper studies the potential advantages of RIS in the proposed framework. It can assist in enhancing the efficiency of resource sharing between sensing and computing functions and then maximize the ability of computing the offload. This study aims to maximize the computation rate by jointly optimizing the BS transmission beamformer, RIS reflection coefficients, and computational resource allocation. The ensuing non-convex optimization problems are addressed using an alternating optimization algorithm based on Block Coordinate Ascent (BCA) for partial offloading mode, which ensures convergence to a local optimum, then extending the proposed joint design algorithms to the scenario with imperfect Self-Interference Cancellation. The effectiveness of the proposed algorithm was confirmed by analyzing and contrasting the simulation results with the benchmark scheme. The simulation results show that, when the BS resources are limited, utilizing MTC architecture can significantly improve the computation rate. In addition, the proposed RIS-assisted JSCMC framework is superior to other benchmark schemes in dealing with resource utilization between different functions, achieving superior computing power while maintaining sensing quality. Full article
Show Figures

Figure 1

17 pages, 637 KB  
Article
Multicast Covert Communication in PA-Assisted ISAC Systems
by Bingtao He, Yuxiang Ding, Lu Lv, Long Yang, Yuchen Zhou and Jian Chen
Electronics 2025, 14(22), 4464; https://doi.org/10.3390/electronics14224464 - 16 Nov 2025
Viewed by 555
Abstract
A covert communication scheme is designed for pinching antenna (PA)-enabled integrated sensing and communication (ISAC) systems. The base station (BS) emits sensing signals to detect the potential eavesdropper while opportunistically performing covert multicast transmissions. To enhance covertness, the inherent power uncertainty of the [...] Read more.
A covert communication scheme is designed for pinching antenna (PA)-enabled integrated sensing and communication (ISAC) systems. The base station (BS) emits sensing signals to detect the potential eavesdropper while opportunistically performing covert multicast transmissions. To enhance covertness, the inherent power uncertainty of the sensing signals is exploited to confuse eavesdroppers, thereby creating protective coverage for the legitimate transmission. For the considered systems, we design an alternating optimization framework to iteratively optimize the baseband, beamforming, and PA positionson the two waveguides, in which successive convex approximation and particle swarm optimization methods are introduced. Simulated results confirm that the proposed scheme achieves the highest covert communication rates with different numbers of multicast users compared to benchmark methods. Furthermore, increasing the transmit power and the number of PAs can further improve the covertness performance. Full article
Show Figures

Figure 1

14 pages, 579 KB  
Article
Robust Beamforming Design for Energy Efficiency and Spectral Efficiency Tradeoff in Multi-STAR-RIS-Aided C-HRSMA
by Shiming Teng, Xinwei Lin and Yafeng Wang
Sensors 2025, 25(22), 6917; https://doi.org/10.3390/s25226917 - 12 Nov 2025
Viewed by 484
Abstract
This paper investigates a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted cognitive hierarchical rate-splitting multiple access (C-HRSMA) system to enhance the system performance under imperfect channel state information (ICSI). By exploiting the natural user grouping afforded by the STAR-RIS and its distinct [...] Read more.
This paper investigates a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)-assisted cognitive hierarchical rate-splitting multiple access (C-HRSMA) system to enhance the system performance under imperfect channel state information (ICSI). By exploiting the natural user grouping afforded by the STAR-RIS and its distinct channel manipulation capabilities for the transmission and reflection users, we effectively mitigate inter-group common stream interference within C-HRSMA, consequently facilitating the achievement of higher spectral efficiency. Subsequently, the design is formulated as a non-convex optimization problem that incorporates the phase-shift matrix of STAR-RIS, the beamforming vector of the base station, and the common rate allocation vector. To address this non-convex problem, an alternating optimization (AO) technique is employed to decouple the primary problem and solve the subproblems using S-procedure and successive convex approximation (SCA). The simulation results validate that the proposed algorithm exhibits superior SE and EE performance against benchmark algorithms. Full article
Show Figures

Figure 1

20 pages, 29995 KB  
Article
Digital Self-Interference Cancellation Strategies for In-Band Full-Duplex: Methods and Comparisons
by Amirmohammad Shahghasi, Gabriel Montoro and Pere L. Gilabert
Sensors 2025, 25(22), 6835; https://doi.org/10.3390/s25226835 - 8 Nov 2025
Viewed by 1344
Abstract
In-band full-duplex (IBFD) communication systems offer a promising means of improving spectral efficiency by enabling simultaneous transmission and reception on the same frequency channel. Despite this advantage, self-interference (SI) remains a major challenge to their practical deployment. Among the different SI cancellation (SIC) [...] Read more.
In-band full-duplex (IBFD) communication systems offer a promising means of improving spectral efficiency by enabling simultaneous transmission and reception on the same frequency channel. Despite this advantage, self-interference (SI) remains a major challenge to their practical deployment. Among the different SI cancellation (SIC) techniques, this paper focuses on digital SIC methodologies tailored for multiple-input multiple-output (MIMO) wireless transceivers operating under digital beamforming architectures. Two distinct digital SIC approaches are evaluated, employing a generalized memory polynomial (GMP) model augmented with Itô–Hermite polynomial basis functions and a phase-normalized neural network (PNN) to effectively model the nonlinearities and memory effects introduced by transmitter and receiver hardware impairments. The robustness of the SIC is further evaluated under both single off-line training and closed-loop real-time adaptation, employing estimation techniques such as least squares (LS), least mean squares (LMS), and fast Kalman (FK) for model coefficient estimation. The performance of the proposed digital SIC techniques is evaluated through detailed simulations that incorporate realistic power amplifier (PA) characteristics, channel conditions, and high-order modulation schemes. Metrics such as error vector magnitude (EVM) and total bit error rate (BER) are used to assess the quality of the received signal after SIC under different signal-to-interference ratio (SIR) and signal-to-noise ratio (SNR) conditions. The results show that, for time-variant scenarios, a low-complexity adaptive SIC can be realized using a GMP model with FK parameter estimation. However, in time-invariant scenarios, an open-loop SIC approach based on PNN offers superior performance and maintains robustness across various modulation schemes. Full article
Show Figures

Figure 1

23 pages, 14657 KB  
Article
An Annular CMUT Array and Acquisition Strategy for Continuous Monitoring
by María José Almario Escorcia, Amir Gholampour, Rob van Schaijk, Willem-Jan de Wijs, Andre Immink, Vincent Henneken, Richard Lopata and Hans-Martin Schwab
Sensors 2025, 25(21), 6637; https://doi.org/10.3390/s25216637 - 29 Oct 2025
Viewed by 923
Abstract
In many monitoring scenarios, repeated and operator-independent assessments are needed. Wearable ultrasound technology has the potential to continuously provide the vital information traditionally obtained from conventional ultrasound scanners, such as in fetal monitoring for high-risk pregnancies. This work is an engineering study motivated [...] Read more.
In many monitoring scenarios, repeated and operator-independent assessments are needed. Wearable ultrasound technology has the potential to continuously provide the vital information traditionally obtained from conventional ultrasound scanners, such as in fetal monitoring for high-risk pregnancies. This work is an engineering study motivated by that setting. A 144-element annular capacitive micromachined ultrasonic transducer (CMUT) is hereby proposed for 3-D ultrasound imaging. The array is characterized by its compact size and cost-effectiveness, with a geometry and low-voltage operation that make it a candidate for future wearable integration. To enhance the imaging performance, we propose the utilization of a Fermat’s spiral virtual source (VS) pattern for diverging wave transmission and conduct a performance comparison with other VS patterns and standard techniques, such as focused and plane waves. To facilitate this analysis, a simplified and versatile simulation framework, enhanced by GPU acceleration, has been developed. The validation of the simulation framework aligned closely with expected values (0.002 ≤ MAE ≤ 0.089). VSs following a Fermat’s spiral led to a balanced outcome across metrics, outperforming focused wave transmissions for this specific aperture. The proposed transducer presents imaging limitations that could be improved in future developments, but it establishes a foundational framework for the design and fabrication of cost-effective, compact 2-D transducers suitable for 3-D ultrasound imaging, with potential for future integration into wearable devices. Full article
(This article belongs to the Special Issue Wearable Physiological Sensors for Smart Healthcare)
Show Figures

Figure 1

14 pages, 501 KB  
Article
Two-Dimensional Thompson Sampling for Joint Beam and Power Control for Uplink Maritime Communications
by Kyeong Jea Lee, Joo-Hyun Jo, Sungyoon Cho, Ki-Won Kwon and DongKu Kim
J. Mar. Sci. Eng. 2025, 13(11), 2034; https://doi.org/10.3390/jmse13112034 - 23 Oct 2025
Viewed by 478
Abstract
In a cellular maritime communication system, ocean buoys are essential to enable environmental monitoring, offshore platform management, and disaster response. Therefore, energy-efficient transmission from the buoys is a key requirement to prolong their operational time. A fixed uplink beamforming can be considered to [...] Read more.
In a cellular maritime communication system, ocean buoys are essential to enable environmental monitoring, offshore platform management, and disaster response. Therefore, energy-efficient transmission from the buoys is a key requirement to prolong their operational time. A fixed uplink beamforming can be considered to save energy by leveraging its beam gain while managing the target link reliability. However, the dynamic condition of ocean waves causes buoys’ random orientation, leading to frequent misalignment of their predefined beam direction aimed at the base station, which degrades both the link reliability and energy efficiency. To address this challenge, we propose a wave-adaptive beamforming framework to satisfy data-rate demands within limited power budgets. This strategy targets scenarios where sea state information is unavailable, such as in network-assisted systems. We propose a Two-Dimensional Thompson Sampling (2DTS) scheme that jointly selects beamwidth and transmit power to satisfy the target-rate constraint with minimal power consumption and thus achieve maximal energy efficiency. This adaptive learning approach effectively balances exploration and exploitation, enabling efficient operation in uncertain and changing sea conditions. In simulation, under a moderate sea state, 2DTS achieves an energy efficiency of 1.26 × 104 bps/Hz/J at round 600, which is 73.7% of the ideal (1.71 × 104), and yield gains of 96.9% and 447.8% over exploration-based TS and conventional TS, respectively. Under a harsh sea state, 2DTS attains 3.09 × 104 bps/Hz/J (85.6% of the ideal 3.61 × 104), outperforming the exploration-based and conventional TS by 83.9% and 113.1%, respectively. The simulation results demonstrate that the strategy enhances energy efficiency, confirming its practicality for maritime communication systems constrained by limited power budgets. Full article
(This article belongs to the Special Issue Sustainable and Efficient Maritime Operations)
Show Figures

Figure 1

15 pages, 584 KB  
Article
A Scheme for Covert Communication with a Reconfigurable Intelligent Surface in Cognitive Radio Networks
by Yan Xu, Jin Qian and Pengcheng Zhu
Sensors 2025, 25(20), 6490; https://doi.org/10.3390/s25206490 - 21 Oct 2025
Viewed by 945
Abstract
This paper proposes a scheme for enhancing covert communication in cognitive radio networks (CRNs) using a reconfigurable intelligent surface (RIS), which ensures that transmissions by secondary users (SUs) remains statistically undetectable by adversaries (e.g., wardens like Willie). However, there exist stringent challenges in [...] Read more.
This paper proposes a scheme for enhancing covert communication in cognitive radio networks (CRNs) using a reconfigurable intelligent surface (RIS), which ensures that transmissions by secondary users (SUs) remains statistically undetectable by adversaries (e.g., wardens like Willie). However, there exist stringent challenges in CRNs due to the dual constraints of avoiding detection and preventing harmful interference to primary users (PUs). Leveraging the RIS’s ability to dynamically reconfigure the wireless propagation environment, our scheme jointly optimizes the SU’s transmit power, communication block length, and RIS’s passive beamforming (phase shifts) to maximize the effective covert throughput (ECT) under rigorous covertness constraints quantified by detection error probability or relative entropy while strictly adhering to PU interference limits. Crucially, the RIS configuration is explicitly designed to simultaneously enhance signal quality at the legitimate SU receiver and degrade signal quality at the warden, thereby relaxing the inherent trade-off between covertness and throughput imposed by the fundamental square root law. Furthermore, we analyze the impact of unequal transmit prior probabilities (UTPPs), demonstrating their superiority over equal priors (ETPPs) in flexibly balancing throughput and covertness, and extend the framework to practical scenarios with Poisson packet arrivals typical of IoT networks. Extensive results confirm that RIS assistance significantly boosts ECT compared to non-RIS baselines and establishes the RIS as a key enabler for secure and spectrally efficient next-generation cognitive networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

16 pages, 3905 KB  
Article
4 × 4 Active Antenna Array with Digital Phase Shifting for WiFi 6E Applications
by Wen-Piao Lin and Chang-Yang Lin
Electronics 2025, 14(19), 3772; https://doi.org/10.3390/electronics14193772 - 24 Sep 2025
Viewed by 1436
Abstract
This paper presents the design and experimental evaluation of a compact microstrip patch antenna and a 4 × 4 phased antenna array system tailored for Wi-Fi 6E applications, U-NII-5 band. A single inset-fed microstrip patch antenna was first optimized through full-wave simulations, achieving [...] Read more.
This paper presents the design and experimental evaluation of a compact microstrip patch antenna and a 4 × 4 phased antenna array system tailored for Wi-Fi 6E applications, U-NII-5 band. A single inset-fed microstrip patch antenna was first optimized through full-wave simulations, achieving a resonant frequency of 5.96 GHz with a measured return loss of −17.5 dB and stable broadside radiation. Building on this element, a corporate-fed 4 × 4 array was implemented on an FR4 substrate, incorporating stepped-impedance transmission lines and λ/4 transformers to ensure equal power division and impedance matching across all ports. A 4-bit digital phase shifter, controlled by an ATmega328p microcontroller, was integrated to enable electronic beam steering. Simulated results demonstrated accurate beam control within ±28°, with directional gains above 13 dBi and minimal degradation compared to the broadside case. Over-the-air measurements validated these findings, showing main lobe steering at 0°, ±15°, +33° and −30° with peak gains between 7.8 and 11.5 dBi. The proposed design demonstrates a cost-effective and practical solution for Wi-Fi 6E phased array antennas, offering enhanced beamforming, improved spatial coverage, and reliable performance in next-generation wireless networks. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

26 pages, 737 KB  
Article
Partitioned RIS-Assisted Vehicular Secure Communication Based on Meta-Learning and Reinforcement Learning
by Hui Li, Fengshuan Wang, Jin Qian, Pengcheng Zhu and Aiping Zhou
Sensors 2025, 25(18), 5874; https://doi.org/10.3390/s25185874 - 19 Sep 2025
Cited by 1 | Viewed by 856
Abstract
This study tackles the issue of ensuring secure communications in vehicular ad hoc networks (VANETs) under dynamic eavesdropping threats, where eavesdroppers adaptively reposition to intercept transmissions. We introduce a scheme utilizing a partitioned reconfigurable intelligent surface (RIS) to assist in the joint transmission [...] Read more.
This study tackles the issue of ensuring secure communications in vehicular ad hoc networks (VANETs) under dynamic eavesdropping threats, where eavesdroppers adaptively reposition to intercept transmissions. We introduce a scheme utilizing a partitioned reconfigurable intelligent surface (RIS) to assist in the joint transmission of confidential signals and artificial noise (AN) from a source station. The RIS is divided into segments: one enhances legitimate signal reflection toward the intended vehicular receiver, while the other directs AN toward eavesdroppers to degrade their reception. To maximize secrecy performance in rapidly changing environments, we introduce a joint optimization framework integrating meta-learning for RIS partitioning and reinforcement learning (RL) for reflection matrix optimization. The meta-learning component rapidly determines the optimal RIS partitioning ratio when encountering new eavesdropping scenarios, leveraging prior experience to adapt with minimal data. Subsequently, RL is employed to dynamically optimize both beamforming vectors as well as RIS reflection coefficients, thereby further improving the security performance. Extensive simulations demonstrate that the suggested approach attain a 28% higher secrecy rate relative to conventional RIS-assisted techniques, along with more rapid convergence compared to traditional deep learning approaches. This framework successfully balances signal enhancement with jamming interference, guaranteeing robust and energy-efficient security in highly dynamic vehicular settings. Full article
Show Figures

Figure 1

Back to TopTop