RIS-Assisted Joint Communication, Sensing, and Multi-Tier Computing Systems
Abstract
1. Introduction
1.1. Related Work
1.1.1. Research on ISAC
1.1.2. Research on MEC and MTC
1.2. Motivation and Contributions
- We propose an innovative RIS-assisted JCSMC framework. In this framework, MTC architecture and RIS technology are used to enhance the integration of multiple functions on the BS. A partial computation offloading mode is selected to coordinate BS and CS computing resources. We formulate a computation rate maximization problem for the joint optimization of the BS transmit beamformer, the RIS reflection coefficients, and the computing resource allocation, subject to constraints on communication–computation causality, sensing quality, the BS transmission power budget, and the unit modulus of the RIS reflection coefficient.
- To effectively solve the non-convex problem of maximizing the computation rate caused by the strong coupling between variables, we adopt a Block Coordinate Ascent (BCA) optimization algorithm. This transforms the problem into two manageable subproblems, which are solved iteratively by deriving new approximate functions. Additionally, we provide theoretical proof that the proposed algorithm can reach a local optimal solution.
- We compare the proposed scheme with three benchmark schemes: a single-tier computing architecture scheme, a scheme without RIS, and the Maximum Ratio Transmission (MRT) scheme. Simulation results demonstrate that the introduction of MTC and RIS significantly enhances the performance of the RIS-assisted JCSMC framework, thereby expanding the trade-off region between computation and sensing. Compared to traditional MRT schemes, the proposed scheme demonstrates a substantial performance boost.
2. System Model
2.1. Signal and Channel Model
2.2. Communication Model
2.3. Sensing Model
2.4. Computation Model
3. Problem Formulation and Solution
3.1. Problem Formulation
3.2. Proposed Solution
3.3. Beamformer Iteration
3.4. RIS Reflection Coefficients Iteration
3.5. Sum Computation Rate Iteration
| Algorithm 1. BCA-Based Iterative Algorithm |
| Input: Convergence criteria and , , . Output: 1: . 2: while not converged do 3: Given , solve (25) to obtain and update . 4: Given , solve (36) to obtain and update . 5: Given (, ), solve (37) to obtain (). 6: 7: end while 8: return . |
4. Extensions to Imperfect Self-Interference Cancellation Scenario
5. Results and Discussion
- No RIS-assisted scheme: This benchmark scheme is designed as a JCSMC framework without RIS assistance. By comparing with the proposed framework, the effect of introducing RIS can be demonstrated.
- BS-only/CS-only computing scheme (single-tier computation): This scheme considers a single-tier computation structure, where computation tasks from the UE are only processed on the BS or CS.
- Comm-only scheme: This benchmark scheme does not consider target sensing. Using the proposed framework for multi-tier computational optimization of BS and CS, consider only the UE communication function.
- Imperfect SIC scheme: This benchmark scheme considers the RIS-assisted JCSMC framework in imperfect SIC scenarios. To distinguish imperfect SIC scenarios, we label them with “proposed/SI”.
5.1. Convergence Performance of the Proposed Algorithm
5.2. Computation Rate Versus the UE Transmission Power
5.3. Computation Rate Versus the Total Power Budget of BS
5.4. Computation Rate Versus Minimum Sensing SINR Constraint
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhang, P.; Yang, H.; Feng, Z.; Cui, Y.; Dai, J.; Qin, X.; Li, J.; Zhang, Q. Toward Intelligent and Efficient 6G Networks: JCSC Enabled On-Purpose Machine Communications. IEEE Wirel. Commun. 2023, 30, 150–157. [Google Scholar] [CrossRef]
- Huynh, L.N.T.; Huh, E.-N. Envisioning Edge Computing in Future 6G Wireless Networks. In Proceedings of the 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), London, UK, 29–30 July 2021; pp. 307–311. [Google Scholar] [CrossRef]
- Fang, X.; Feng, W.; Chen, Y.; Ge, N.; Zhang, Y. Joint Communication and Sensing Toward 6G: Models and Potential of Using MIMO. IEEE Internet Things J. 2023, 10, 4093–4116. [Google Scholar] [CrossRef]
- Tan, D.K.P.; He, J.; Li, Y.; Bayesteh, A.; Chen, Y.; Zhu, P.; Tong, W. Integrated Sensing and Communication in 6G: Motivations, Use Cases, Requirements, Challenges and Future Directions. In Proceedings of the 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), Dresden, Germany, 23–24 February 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef]
- Yang, Y. Multi-tier computing networks for intelligent IoT. Nature Electron. 2019, 2, 4–5. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Liu, Q.; Swindlehurst, A.L. SNR/CRB-Constrained Joint Beamforming and Reflection Designs for RIS-ISAC Systems. IEEE Trans. Wirel. Commun. 2024, 23, 7456–7470. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, M.; Chen, M.; Yang, Z.; Wang, Y.; Cao, B.; Shikh-Bahaei, M. Energy Efficient Full-Duplex Communication Systems with Reconfigurable Intelligent Surface. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 4–7 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Yu, B.; Mao, Q.; Lei, K. Model Analysis of Transmission and Computing Resource Optimization for Internet of Vehicles Based on 5G and Edge Computing. In Proceedings of the 2024 IEEE 10th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), Guangzhou, China, 27–30 November 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Lyu, Z.; Zhu, G.; Xu, J. Joint Maneuver and Beamforming Design for UAV-Enabled Integrated Sensing and Communication. IEEE Trans. Wirel. Commun. 2023, 22, 2424–2440. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Z.; Zhao, H.; Zhou, F.; Alfarraj, O.; Yang, W.; Mumtaz, S.; Leung, V.C.M. Secure Energy Efficiency for ARIS Networks with Deep Learning: Active Beamforming and Position Optimization. IEEE Trans. Wirel. Commun. 2025, 24, 5282–5296. [Google Scholar] [CrossRef]
- Cong, D.; Guo, S.; Zhang, H.; Ye, J.; Alouini, M.-S. Beamforming Design for Integrated Sensing and Communication Systems with Finite Alphabet Input. IEEE Wirel. Commun. Lett. 2022, 11, 2190–2194. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, W.; Li, S.; Liu, X.; Li, H.; Ng, D.W.K.; Li, Y. Learning-Based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks. IEEE J. Sel. Areas Commun. 2022, 40, 2317–2334. [Google Scholar] [CrossRef]
- Liu, F.; Masouros, C.; Li, A.; Zhou, J.; Hanzo, L. Simultaneous target detection and multi-user communications enabled by joint beamforming. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 0089–0094. [Google Scholar] [CrossRef]
- Xu, C.; Clerckx, B.; Zhang, J. Multi-Antenna Joint Radar and Communications: Precoder Optimization and Weighted Sum-Rate vs Probing Power Tradeoff. IEEE Access 2020, 8, 173974–173982. [Google Scholar] [CrossRef]
- Liu, X.; Huang, T.; Shlezinger, N.; Liu, Y.; Zhou, J.; Eldar, Y.C. Joint Transmit Beamforming for Multiuser MIMO Communications and MIMO Radar. IEEE Trans. Signal Process. 2020, 68, 3929–3944. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Z.; Shikh-Bahaei, M. Integrated Sensing and Communication Transmit Beamforming Design for Double-Function Receivers. In Proceedings of the 2023 International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2–4 November 2023; pp. 348–353. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, Z.; Chu, Z.; Sun, G.; Hao, W.; Xiao, P.; Lee, I. Resource Allocation for IRS Assisted mmWave Integrated Sensing and Communication Systems. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 2333–2338. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Lin, Q.; Li, Y.; Wen, M.; Wu, Y.C.; Poor, H.V. Phase Shift design in RIS Empowered Networks: From Optimization to AI-based Models. Network 2022, 2, 398–418. [Google Scholar] [CrossRef]
- Jiang, Z.-M.; Rihan, M.; Zhang, P.; Huang, L.; Deng, Q.; Zhang, J.; Mohamed, E.M. Intelligent Reflecting Surface Aided Dual-Function Radar and Communication System. IEEE Syst. J. 2022, 16, 475–486. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, X.; Liu, C.; Peng, M.; Zhong, C. Location Sensing and Beamforming Design for IRS-Enabled Multi-User ISAC Systems. IEEE Trans. Signal Process. 2022, 70, 5178–5193. [Google Scholar] [CrossRef]
- Yu, Z.; Ren, H.; Pan, C.; Zhou, G.; Wang, B.; Dong, M.; Wang, J. Active RIS-Aided ISAC Systems: Beamforming Design and Performance Analysis. IEEE Trans. Commun. 2024, 72, 1578–1595. [Google Scholar] [CrossRef]
- You, C.; Huang, K.; Chae, H.; Kim, B.-H. Energy-Efficient Resource Allocation for Mobile-Edge Computation Offloading. IEEE Trans. Wirel. Commun. 2017, 16, 1397–1411. [Google Scholar] [CrossRef]
- Le, H.Q.; Al-Shatri, H.; Klein, A. Efficient resource allocation in mobile-edge computation offloading: Completion time minimization. In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 2513–2517. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, X.; Ning, Z.; Ngai, E.C.-H.; Zhou, L.; Wei, J.; Cheng, J.; Hu, B.; Leung, V.C.M. Joint Resource Allocation for Latency-Sensitive Services Over Mobile Edge Computing Networks with Caching. IEEE Internet Things J. 2019, 6, 4283–4294. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Z.; Gong, Y.; Wu, Y.-C. RIS-Aided Cooperative Mobile Edge Computing: Computation Efficiency Maximization via Joint Uplink and Downlink Resource Allocation. IEEE Trans. Wirel. Commun. 2024, 23, 11535–11550. [Google Scholar] [CrossRef]
- Cai, Q.; Zhou, Y.; Liu, L.; Qi, Y.; Shi, J. Prioritized Assignment with Task Dependency in Collaborative Mobile Edge Computing. IEEE Trans. Mob. Comput. 2024, 23, 13505–13521. [Google Scholar] [CrossRef]
- Park, S.-H.; Jeong, S.; Na, J.; Simeone, O.; Shamai, S. Collaborative Cloud and Edge Mobile Computing in C-RAN Systems with Minimal End-to-End Latency. IEEE Trans. Signal Inf. Process. Over Netw. 2021, 7, 259–274. [Google Scholar] [CrossRef]
- Wang, K.; Jin, J.; Yang, Y.; Zhang, T.; Nallanathan, A.; Tellambura, C.; Jabbari, B. Task Offloading with Multi-Tier Computing Resources in Next Generation Wireless Networks. IEEE J. Sel. Areas Commun. 2023, 41, 306–319. [Google Scholar] [CrossRef]
- Wang, K.; Chen, W.; Li, J.; Yang, Y.; Hanzo, L. Joint Task Offloading and Caching for Massive MIMO-Aided Multi-Tier Computing Networks. IEEE Trans. Commun. 2022, 70, 1820–1833. [Google Scholar] [CrossRef]
- Bai, T.; Pan, C.; Deng, Y.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Latency Minimization for Intelligent Reflecting Surface Aided Mobile Edge Computing. IEEE J. Sel. Areas Commun. 2020, 38, 2666–2682. [Google Scholar] [CrossRef]
- Sun, C.; Ni, W.; Bu, Z.; Wang, X. Energy Minimization for Intelligent Reflecting Surface-Assisted Mobile Edge Computing. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; pp. 254–259. [Google Scholar] [CrossRef]
- Bai, T.; Pan, C.; Ren, H.; Deng, Y.; Elkashlan, M.; Nallanathan, A. Resource Allocation for Intelligent Reflecting Surface Aided Wireless Powered Mobile Edge Computing in OFDM Systems. IEEE Trans. Wirel. Commun. 2021, 20, 5389–5407. [Google Scholar] [CrossRef]
- Keykhosravi, K.; Seco-Granados, G.; Alexandropoulos, G.C.; Wymeersch, H. RIS-Enabled Self-Localization: Leveraging Controllable Reflections With Zero Access Points. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 2852–2857. [Google Scholar] [CrossRef]
- Hong, Z.; Chen, W.; Huang, H.; Guo, S.; Zheng, Z. Multi-Hop Cooperative Computation Offloading for Industrial IoT–Edge–Cloud Computing Environments. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 2759–2774. [Google Scholar] [CrossRef]
- Bekkerman, I.; Tabrikian, J. Target Detection and Localization Using MIMO Radars and Sonars. IEEE Trans. Signal Process. 2006, 54, 3873–3883. [Google Scholar] [CrossRef]
- Guerci, J.R. Cognitive radar: A knowledge-aided fully adaptive approach. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10–14 May 2010; pp. 1365–1370. [Google Scholar] [CrossRef]
- Wang, Z.; Mu, X.; Liu, Y.; Xu, X.; Zhang, P. Joint Communication, Sensing, and Multi-tier Computing: A NOMA-aided Framework. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 1193–1198. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Du, Y.; Chen, Y.; Yu, F.R. Generalized Transceiver Beamforming for DFRC With MIMO Radar and MU-MIMO Communication. IEEE J. Sel. Areas Commun. 2022, 40, 1795–1808. [Google Scholar] [CrossRef]
- Marks, B.R.; Wright, G.P. A general inner approximation algorithm for nonconvex mathematical programs. Oper. Res. 1978, 26, 681–683. [Google Scholar] [CrossRef]
- Nasir, A.A.; Tuan, H.D.; Duong, T.Q.; Poor, H.V.; Hanzo, L. Hybrid Beamforming for Multi-User Millimeter-Wave Networks. IEEE Trans. Veh. Technol. 2020, 69, 2943–2956. [Google Scholar] [CrossRef]
- Le, Q.N.; Nguyen, V.-D.; Dobre, O.A.; Shin, H. RIS-Assisted Full-Duplex Integrated Sensing and Communication. IEEE Wirel. Commun. Lett. 2023, 12, 1677–1681. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Nguyen, V.-D.; Dobre, O.A.; Nguyen, D.N.; Dutkiewicz, E.; Shin, O.-S. Joint Power Control and User Association for NOMA-Based Full-Duplex Systems. IEEE Trans. Commun. 2019, 67, 8037–8055. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Liu, Q.; Swindlehurst, A.L. Joint Symbol-Level Precoding and Reflecting Designs for IRS-Enhanced MU-MISO Systems. IEEE Trans. Wirel. Commun. 2021, 20, 798–811. [Google Scholar] [CrossRef]
- Boumal, N.; Mishra, B.; Absil, P.-A.; Sepulchre, R. Manopt, a MATLAB toolbox for optimization on manifolds. J. Mach. Learn. Res. 2014, 15, 1455–1459. [Google Scholar]
- Nesterov, Y.; Nemirovskii, A. Interior-Point Polynomial Algorithms in Convex Programming; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Luo, Z.-Q.; Yu, W. An introduction to convex optimization for communications and signal processing. IEEE J. Sel. Areas Commun. 2006, 24, 1426–1438. [Google Scholar] [CrossRef]
- He, Z.; Xu, W.; Shen, H.; Ng, D.W.K.; Eldar, Y.C.; You, X. Full-Duplex Communication for ISAC: Joint Beamforming and Power Optimization. IEEE J. Sel. Areas Commun. 2023, 41, 2920–2936. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Liu, Y.; Wu, Q.; Liu, Q. Joint Transmit Waveform and Passive Beamforming Design for RIS-Aided DFRC Systems. IEEE J. Sel. Top. Signal Process. 2022, 16, 995–1010. [Google Scholar] [CrossRef]
- Wang, F.; Xu, J.; Ding, Z. Multi-Antenna NOMA for Computation Offloading in Multiuser Mobile Edge Computing Systems. IEEE Trans. Commun. 2019, 67, 2450–2463. [Google Scholar] [CrossRef]
- Lo, T.K.Y. Maximum ratio transmission. IEEE Trans. Commun. 1999, 47, 1458–1461. [Google Scholar] [CrossRef]
- Kadan, F.E.; Haliloğlu, Ö. A Performance Bound for Maximal Ratio Transmission in Distributed MIMO. IEEE Wirel. Commun. Lett. 2023, 12, 585–589. [Google Scholar] [CrossRef]
- Beck, A.; Ben-Tal, A.; Tetruashvili, L. A sequential parametric convex approximation method with applications to nonconvex truss topology design problems. J. Glob. Optim. 2010, 47, 29–51. [Google Scholar] [CrossRef]





| Acronym | Definition |
|---|---|
| JCSMC | Joint Communication, Sensing, and Multi-tier Computing |
| RIS | Reconfigurable Intelligent Surfaces |
| BS | Base Station |
| UE | User Equipment |
| CS | Cloud Servers |
| BCA | Block Coordinate Ascent |
| 6G | Sixth Generation |
| ISAC | Integrated Sensing and Communication |
| SI | Self-Interference |
| MEC | Mobile Edge Computing |
| MTC | Multi-tier Computing |
| FD | Full-Duplex |
| AWGN | Additive White Gaussian Noise |
| IA | Inner Approximation |
| MRT | Maximum Ratio Transmission |
| ULA | Uniform Linear Array |
| SINR | Signal to Interference plus Noise Ratio |
| MIMO | Multiple-Input Multiple-Output |
| RCG | Riemannian Conjugate Gradient |
| SIC | Self-Interference Cancellation |
| SDR | semidefinite relaxation |
| RCS | radar cross-section |
| KKT | Karush–Kuhn–Tucker |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, M. RIS-Assisted Joint Communication, Sensing, and Multi-Tier Computing Systems. Future Internet 2025, 17, 533. https://doi.org/10.3390/fi17120533
Wang Y, Li M. RIS-Assisted Joint Communication, Sensing, and Multi-Tier Computing Systems. Future Internet. 2025; 17(12):533. https://doi.org/10.3390/fi17120533
Chicago/Turabian StyleWang, Yunzhe, and Minzheng Li. 2025. "RIS-Assisted Joint Communication, Sensing, and Multi-Tier Computing Systems" Future Internet 17, no. 12: 533. https://doi.org/10.3390/fi17120533
APA StyleWang, Y., & Li, M. (2025). RIS-Assisted Joint Communication, Sensing, and Multi-Tier Computing Systems. Future Internet, 17(12), 533. https://doi.org/10.3390/fi17120533

