Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (650)

Search Parameters:
Keywords = transformer (T/F)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2750 KiB  
Article
Combining Object Detection, Super-Resolution GANs and Transformers to Facilitate Tick Identification Workflow from Crowdsourced Images on the eTick Platform
by Étienne Clabaut, Jérémie Bouffard and Jade Savage
Insects 2025, 16(8), 813; https://doi.org/10.3390/insects16080813 (registering DOI) - 6 Aug 2025
Abstract
Ongoing changes in the distribution and abundance of several tick species of medical relevance in Canada have prompted the development of the eTick platform—an image-based crowd-sourcing public surveillance tool for Canada enabling rapid tick species identification by trained personnel, and public health guidance [...] Read more.
Ongoing changes in the distribution and abundance of several tick species of medical relevance in Canada have prompted the development of the eTick platform—an image-based crowd-sourcing public surveillance tool for Canada enabling rapid tick species identification by trained personnel, and public health guidance based on tick species and province of residence of the submitter. Considering that more than 100,000 images from over 73,500 identified records representing 25 tick species have been submitted to eTick since the public launch in 2018, a partial automation of the image processing workflow could save substantial human resources, especially as submission numbers have been steadily increasing since 2021. In this study, we evaluate an end-to-end artificial intelligence (AI) pipeline to support tick identification from eTick user-submitted images, characterized by heterogeneous quality and uncontrolled acquisition conditions. Our framework integrates (i) tick localization using a fine-tuned YOLOv7 object detection model, (ii) resolution enhancement of cropped images via super-resolution Generative Adversarial Networks (RealESRGAN and SwinIR), and (iii) image classification using deep convolutional (ResNet-50) and transformer-based (ViT) architectures across three datasets (12, 6, and 3 classes) of decreasing granularities in terms of taxonomic resolution, tick life stage, and specimen viewing angle. ViT consistently outperformed ResNet-50, especially in complex classification settings. The configuration yielding the best performance—relying on object detection without incorporating super-resolution—achieved a macro-averaged F1-score exceeding 86% in the 3-class model (Dermacentor sp., other species, bad images), with minimal critical misclassifications (0.7% of “other species” misclassified as Dermacentor). Given that Dermacentor ticks represent more than 60% of tick volume submitted on the eTick platform, the integration of a low granularity model in the processing workflow could save significant time while maintaining very high standards of identification accuracy. Our findings highlight the potential of combining modern AI methods to facilitate efficient and accurate tick image processing in community science platforms, while emphasizing the need to adapt model complexity and class resolution to task-specific constraints. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

24 pages, 5644 KiB  
Article
Design and Optimization of Target Detection and 3D Localization Models for Intelligent Muskmelon Pollination Robots
by Huamin Zhao, Shengpeng Xu, Weiqi Yan, Defang Xu, Yongzhuo Zhang, Linjun Jiang, Yabo Zheng, Erkang Zeng and Rui Ren
Horticulturae 2025, 11(8), 905; https://doi.org/10.3390/horticulturae11080905 (registering DOI) - 4 Aug 2025
Viewed by 67
Abstract
With the expansion of muskmelon cultivation, manual pollination is increasingly inadequate for sustaining industry development. Therefore, the development of automatic pollination robots holds significant importance in improving pollination efficiency and reducing labor dependency. Accurate flower detection and localization is a key technology for [...] Read more.
With the expansion of muskmelon cultivation, manual pollination is increasingly inadequate for sustaining industry development. Therefore, the development of automatic pollination robots holds significant importance in improving pollination efficiency and reducing labor dependency. Accurate flower detection and localization is a key technology for enabling automated pollination robots. In this study, the YOLO-MDL model was developed as an enhancement of YOLOv7 to achieve real-time detection and localization of muskmelon flowers. This approach adds a Coordinate Attention (CA) module to focus on relevant channel information and a Contextual Transformer (CoT) module to leverage contextual relationships among input tokens, enhancing the model’s visual representation. The pollination robot converts the 2D coordinates into 3D coordinates using a depth camera and conducts experiments on real-time detection and localization of muskmelon flowers in a greenhouse. The YOLO-MDL model was deployed in ROS to control a robotic arm for automatic pollination, verifying the accuracy of flower detection and measurement localization errors. The results indicate that the YOLO-MDL model enhances AP and F1 scores by 3.3% and 1.8%, respectively, compared to the original model. It achieves AP and F1 scores of 91.2% and 85.1%, demonstrating a clear advantage in accuracy over other models. In the localization experiments, smaller errors were revealed in all three directions. The RMSE values were 0.36 mm for the X-axis, 1.26 mm for the Y-axis, and 3.87 mm for the Z-axis. The YOLO-MDL model proposed in this study demonstrates strong performance in detecting and localizing muskmelon flowers. Based on this model, the robot can execute more precise automatic pollination and provide technical support for the future deployment of automatic pollination robots in muskmelon cultivation. Full article
Show Figures

Figure 1

14 pages, 841 KiB  
Article
Enhanced Deep Learning for Robust Stress Classification in Sows from Facial Images
by Syed U. Yunas, Ajmal Shahbaz, Emma M. Baxter, Mark F. Hansen, Melvyn L. Smith and Lyndon N. Smith
Agriculture 2025, 15(15), 1675; https://doi.org/10.3390/agriculture15151675 - 2 Aug 2025
Viewed by 147
Abstract
Stress in pigs poses significant challenges to animal welfare and productivity in modern pig farming, contributing to increased antimicrobial use and the rise of antimicrobial resistance (AMR). This study involves stress classification in pregnant sows by exploring five deep learning models: ConvNeXt, EfficientNet_V2, [...] Read more.
Stress in pigs poses significant challenges to animal welfare and productivity in modern pig farming, contributing to increased antimicrobial use and the rise of antimicrobial resistance (AMR). This study involves stress classification in pregnant sows by exploring five deep learning models: ConvNeXt, EfficientNet_V2, MobileNet_V3, RegNet, and Vision Transformer (ViT). These models are used for stress detection from facial images, leveraging an expanded dataset. A facial image dataset of sows was collected at Scotland’s Rural College (SRUC) and the images were categorized into primiparous Low-Stressed (LS) and High-Stress (HS) groups based on expert behavioural assessments and cortisol level analysis. The selected deep learning models were then trained on this enriched dataset and their performance was evaluated using cross-validation on unseen data. The Vision Transformer (ViT) model outperformed the others across the dataset of annotated facial images, achieving an average accuracy of 0.75, an F1 score of 0.78 for high-stress detection, and consistent batch-level performance (up to 0.88 F1 score). These findings highlight the efficacy of transformer-based models for automated stress detection in sows, supporting early intervention strategies to enhance welfare, optimize productivity, and mitigate AMR risks in livestock production. Full article
Show Figures

Figure 1

20 pages, 4569 KiB  
Article
Lightweight Vision Transformer for Frame-Level Ergonomic Posture Classification in Industrial Workflows
by Luca Cruciata, Salvatore Contino, Marianna Ciccarelli, Roberto Pirrone, Leonardo Mostarda, Alessandra Papetti and Marco Piangerelli
Sensors 2025, 25(15), 4750; https://doi.org/10.3390/s25154750 - 1 Aug 2025
Viewed by 233
Abstract
Work-related musculoskeletal disorders (WMSDs) are a leading concern in industrial ergonomics, often stemming from sustained non-neutral postures and repetitive tasks. This paper presents a vision-based framework for real-time, frame-level ergonomic risk classification using a lightweight Vision Transformer (ViT). The proposed system operates directly [...] Read more.
Work-related musculoskeletal disorders (WMSDs) are a leading concern in industrial ergonomics, often stemming from sustained non-neutral postures and repetitive tasks. This paper presents a vision-based framework for real-time, frame-level ergonomic risk classification using a lightweight Vision Transformer (ViT). The proposed system operates directly on raw RGB images without requiring skeleton reconstruction, joint angle estimation, or image segmentation. A single ViT model simultaneously classifies eight anatomical regions, enabling efficient multi-label posture assessment. Training is supervised using a multimodal dataset acquired from synchronized RGB video and full-body inertial motion capture, with ergonomic risk labels derived from RULA scores computed on joint kinematics. The system is validated on realistic, simulated industrial tasks that include common challenges such as occlusion and posture variability. Experimental results show that the ViT model achieves state-of-the-art performance, with F1-scores exceeding 0.99 and AUC values above 0.996 across all regions. Compared to previous CNN-based system, the proposed model improves classification accuracy and generalizability while reducing complexity and enabling real-time inference on edge devices. These findings demonstrate the model’s potential for unobtrusive, scalable ergonomic risk monitoring in real-world manufacturing environments. Full article
(This article belongs to the Special Issue Secure and Decentralised IoT Systems)
Show Figures

Figure 1

35 pages, 2730 KiB  
Review
Deep Learning and NLP-Based Trend Analysis in Actuators and Power Electronics
by Woojun Jung and Keuntae Cho
Actuators 2025, 14(8), 379; https://doi.org/10.3390/act14080379 - 1 Aug 2025
Viewed by 113
Abstract
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed [...] Read more.
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed abstracts obtained from the Web of Science database using BERTopic modeling, which integrates transformer-based sentence embeddings with UMAP for dimensionality reduction and HDBSCAN for clustering. The approach also employed class-based TF-IDF calculations, intertopic distance visualization, and hierarchical clustering to clarify topic structures. The analysis revealed a steady increase in research publications, with a marked surge post-2015. From 2005 to 2014, investigations were mainly focused on established areas including piezoelectric actuators, adaptive control, and hydraulic systems. In contrast, the 2015–2024 period saw broader diversification into new topics such as advanced materials, robotic mechanisms, resilient systems, and networked actuator control through communication protocols. The structural topic analysis indicated a shift from a unified to a more differentiated and specialized spectrum of research themes. This study offers a rigorous, data-driven outlook on the increasing complexity and diversity of actuator and power electronics research. The findings are pertinent for researchers, engineers, and policymakers aiming to advance state-of-the-art, sustainable industrial technologies. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

18 pages, 5013 KiB  
Article
Enhancing Document Forgery Detection with Edge-Focused Deep Learning
by Yong-Yeol Bae, Dae-Jea Cho and Ki-Hyun Jung
Symmetry 2025, 17(8), 1208; https://doi.org/10.3390/sym17081208 - 30 Jul 2025
Viewed by 218
Abstract
Detecting manipulated document images is essential for verifying the authenticity of official records and preventing document forgery. However, forgery artifacts are often subtle and localized in fine-grained regions, such as text boundaries or character outlines, where visual symmetry and structural regularity are typically [...] Read more.
Detecting manipulated document images is essential for verifying the authenticity of official records and preventing document forgery. However, forgery artifacts are often subtle and localized in fine-grained regions, such as text boundaries or character outlines, where visual symmetry and structural regularity are typically expected. These manipulations can disrupt the inherent symmetry of document layouts, making the detection of such inconsistencies crucial for forgery identification. Conventional CNN-based models face limitations in capturing such edge-level asymmetric features, as edge-related information tends to weaken through repeated convolution and pooling operations. To address this issue, this study proposes an edge-focused method composed of two components: the Edge Attention (EA) layer and the Edge Concatenation (EC) layer. The EA layer dynamically identifies channels that are highly responsive to edge features in the input feature map and applies learnable weights to emphasize them, enhancing the representation of boundary-related information, thereby emphasizing structurally significant boundaries. Subsequently, the EC layer extracts edge maps from the input image using the Sobel filter and concatenates them with the original feature maps along the channel dimension, allowing the model to explicitly incorporate edge information. To evaluate the effectiveness and compatibility of the proposed method, it was initially applied to a simple CNN architecture to isolate its impact. Subsequently, it was integrated into various widely used models, including DenseNet121, ResNet50, Vision Transformer (ViT), and a CAE-SVM-based document forgery detection model. Experiments were conducted on the DocTamper, Receipt, and MIDV-2020 datasets to assess classification accuracy and F1-score using both original and forged text images. Across all model architectures and datasets, the proposed EA–EC method consistently improved model performance, particularly by increasing sensitivity to asymmetric manipulations around text boundaries. These results demonstrate that the proposed edge-focused approach is not only effective but also highly adaptable, serving as a lightweight and modular extension that can be easily incorporated into existing deep learning-based document forgery detection frameworks. By reinforcing attention to structural inconsistencies often missed by standard convolutional networks, the proposed method provides a practical solution for enhancing the robustness and generalizability of forgery detection systems. Full article
Show Figures

Figure 1

23 pages, 20415 KiB  
Article
FireNet-KD: Swin Transformer-Based Wildfire Detection with Multi-Source Knowledge Distillation
by Naveed Ahmad, Mariam Akbar, Eman H. Alkhammash and Mona M. Jamjoom
Fire 2025, 8(8), 295; https://doi.org/10.3390/fire8080295 - 26 Jul 2025
Viewed by 470
Abstract
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional [...] Read more.
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional techniques for fire detection often experience false alarms and delayed responses in various environmental situations. Therefore, developing robust, intelligent, and real-time detection systems has emerged as a central challenge in remote sensing and computer vision research communities. Despite recent achievements in deep learning, current forest fire detection models still face issues with generalizability, lightweight deployment, and accuracy trade-offs. In order to overcome these limitations, we introduce a novel technique (FireNet-KD) that makes use of knowledge distillation, a method that maps the learning of hard models (teachers) to a light and efficient model (student). We specifically utilize two opposing teacher networks: a Vision Transformer (ViT), which is popular for its global attention and contextual learning ability, and a Convolutional Neural Network (CNN), which is esteemed for its spatial locality and inductive biases. These teacher models instruct the learning of a Swin Transformer-based student model that provides hierarchical feature extraction and computational efficiency through shifted window self-attention, and is thus particularly well suited for scalable forest fire detection. By combining the strengths of ViT and CNN with distillation into the Swin Transformer, the FireNet-KD model outperforms state-of-the-art methods with significant improvements. Experimental results show that the FireNet-KD model obtains a precision of 95.16%, recall of 99.61%, F1-score of 97.34%, and mAP@50 of 97.31%, outperforming the existing models. These results prove the effectiveness of FireNet-KD in improving both detection accuracy and model efficiency for forest fire detection. Full article
Show Figures

Figure 1

19 pages, 5198 KiB  
Article
Research on a Fault Diagnosis Method for Rolling Bearings Based on the Fusion of PSR-CRP and DenseNet
by Beining Cui, Zhaobin Tan, Yuhang Gao, Xinyu Wang and Lv Xiao
Processes 2025, 13(8), 2372; https://doi.org/10.3390/pr13082372 - 25 Jul 2025
Viewed by 390
Abstract
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms [...] Read more.
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms one-dimensional bearing vibration data into a three-dimensional space. Euclidean distances between phase points are calculated and mapped into a Color Recurrence Plot (CRP) to represent the bearings’ operational state. This approach effectively reduces feature extraction ambiguity compared to RP, GAF, and MTF methods. Fault features are extracted and classified using DenseNet’s densely connected topology. Compared with CNN and ViT models, DenseNet improves diagnostic accuracy by reusing limited features across multiple dimensions. The training set accuracy was 99.82% and 99.90%, while the test set accuracy is 97.03% and 95.08% for the CWRU and JNU datasets under five-fold cross-validation; F1 scores were 0.9739 and 0.9537, respectively. This method achieves highly accurate diagnosis under conditions of non-smooth signals and inconspicuous fault characteristics and is applicable to fault diagnosis scenarios for precision components in aerospace, military systems, robotics, and related fields. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

18 pages, 1687 KiB  
Article
Beyond Classical AI: Detecting Fake News with Hybrid Quantum Neural Networks
by Volkan Altıntaş
Appl. Sci. 2025, 15(15), 8300; https://doi.org/10.3390/app15158300 - 25 Jul 2025
Viewed by 224
Abstract
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully [...] Read more.
The advent of quantum computing has introduced new opportunities for enhancing classical machine learning architectures. In this study, we propose a novel hybrid model, the HQDNN (Hybrid Quantum–Deep Neural Network), designed for the automatic detection of fake news. The model integrates classical fully connected neural layers with a parameterized quantum circuit, enabling the processing of textual data within both classical and quantum computational domains. To assess its effectiveness, we conducted experiments on the widely used LIAR dataset utilizing Term Frequency–Inverse Document Frequency (TF-IDF) features, as well as transformer-based DistilBERT embeddings. The experimental results demonstrate that the HQDNN achieves a superior recall performance—92.58% with TF-IDF and 94.40% with DistilBERT—surpassing traditional machine learning models such as Logistic Regression, Linear SVM, and Multilayer Perceptron. Additionally, we compare the HQDNN with SetFit, a recent CPU-efficient few-shot transformer model, and show that while SetFit achieves higher precision, the HQDNN significantly outperforms it in recall. Furthermore, an ablation experiment confirms the critical contribution of the quantum component, revealing a substantial drop in performance when the quantum layer is removed. These findings highlight the potential of hybrid quantum–classical models as effective and compact alternatives for high-sensitivity classification tasks, particularly in domains such as fake news detection. Full article
Show Figures

Figure 1

21 pages, 1936 KiB  
Article
FFT-RDNet: A Time–Frequency-Domain-Based Intrusion Detection Model for IoT Security
by Bingjie Xiang, Renguang Zheng, Kunsan Zhang, Chaopeng Li and Jiachun Zheng
Sensors 2025, 25(15), 4584; https://doi.org/10.3390/s25154584 - 24 Jul 2025
Viewed by 306
Abstract
Resource-constrained Internet of Things (IoT) devices demand efficient and robust intrusion detection systems (IDSs) to counter evolving cyber threats. The traditional IDS models, however, struggle with high computational complexity and inadequate feature extraction, limiting their accuracy and generalizability in IoT environments. To address [...] Read more.
Resource-constrained Internet of Things (IoT) devices demand efficient and robust intrusion detection systems (IDSs) to counter evolving cyber threats. The traditional IDS models, however, struggle with high computational complexity and inadequate feature extraction, limiting their accuracy and generalizability in IoT environments. To address this, we propose FFT-RDNet, a lightweight IDS framework leveraging depthwise separable convolution and frequency-domain feature fusion. An ADASYN-Tomek Links hybrid strategy first addresses class imbalances. The core innovation of FFT-RDNet lies in its novel two-dimensional spatial feature modeling approach, realized through a dedicated dual-path feature embedding module. One branch extracts discriminative statistical features in the time domain, while the other branch transforms the data into the frequency domain via Fast Fourier Transform (FFT) to capture the essential energy distribution characteristics. These time–frequency domain features are fused to construct a two-dimensional feature space, which is then processed by a streamlined residual network using depthwise separable convolution. This network effectively captures complex periodic attack patterns with minimal computational overhead. Comprehensive evaluation on the NSL-KDD and CIC-IDS2018 datasets shows that FFT-RDNet outperforms state-of-the-art neural network IDSs across accuracy, precision, recall, and F1 score (improvements: 0.22–1%). Crucially, it achieves superior accuracy with a significantly reduced computational complexity, demonstrating high efficiency for resource-constrained IoT security deployments. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

26 pages, 6051 KiB  
Article
A Novel Sound Coding Strategy for Cochlear Implants Based on Spectral Feature and Temporal Event Extraction
by Behnam Molaee-Ardekani, Rafael Attili Chiea, Yue Zhang, Julian Felding, Aswin Adris Wijetillake, Peter T. Johannesen, Enrique A. Lopez-Poveda and Manuel Segovia-Martínez
Technologies 2025, 13(8), 318; https://doi.org/10.3390/technologies13080318 - 23 Jul 2025
Viewed by 373
Abstract
This paper presents a novel cochlear implant (CI) sound coding strategy called Spectral Feature Extraction (SFE). The SFE is a novel Fast Fourier Transform (FFT)-based Continuous Interleaved Sampling (CIS) strategy that provides less-smeared spectral cues to CI patients compared to Crystalis, a predecessor [...] Read more.
This paper presents a novel cochlear implant (CI) sound coding strategy called Spectral Feature Extraction (SFE). The SFE is a novel Fast Fourier Transform (FFT)-based Continuous Interleaved Sampling (CIS) strategy that provides less-smeared spectral cues to CI patients compared to Crystalis, a predecessor strategy used in Oticon Medical devices. The study also explores how the SFE can be enhanced into a Temporal Fine Structure (TFS)-based strategy named Spectral Event Extraction (SEE), combining spectral sharpness with temporal cues. Background/Objectives: Many CI recipients understand speech in quiet settings but struggle with music and complex environments, increasing cognitive effort. De-smearing the power spectrum and extracting spectral peak features can reduce this load. The SFE targets feature extraction from spectral peaks, while the SEE enhances TFS-based coding by tracking these features across frames. Methods: The SFE strategy extracts spectral peaks and models them with synthetic pure tone spectra characterized by instantaneous frequency, phase, energy, and peak resemblance. This deblurs input peaks by estimating their center frequency. In SEE, synthetic peaks are tracked across frames to yield reliable temporal cues (e.g., zero-crossings) aligned with stimulation pulses. Strategy characteristics are analyzed using electrodograms. Results: A flexible Frequency Allocation Map (FAM) can be applied to both SFE and SEE strategies without being limited by FFT bandwidth constraints. Electrodograms of Crystalis and SFE strategies showed that SFE reduces spectral blurring and provides detailed temporal information of harmonics in speech and music. Conclusions: SFE and SEE are expected to enhance speech understanding, lower listening effort, and improve temporal feature coding. These strategies could benefit CI users, especially in challenging acoustic environments. Full article
(This article belongs to the Special Issue The Challenges and Prospects in Cochlear Implantation)
Show Figures

Figure 1

34 pages, 6958 KiB  
Article
Non-Intrusive Low-Cost IoT-Based Hardware System for Sustainable Predictive Maintenance of Industrial Pump Systems
by Sérgio Duarte Brito, Gonçalo José Azinheira, Jorge Filipe Semião, Nelson Manuel Sousa and Salvador Pérez Litrán
Electronics 2025, 14(14), 2913; https://doi.org/10.3390/electronics14142913 - 21 Jul 2025
Viewed by 281
Abstract
Industrial maintenance has shifted from reactive repairs and calendar-based servicing toward data-driven predictive strategies. This paper presents a non-intrusive, low-cost IoT hardware platform for sustainable predictive maintenance of rotating machinery. The system integrates an ESP32-S3 sensor node that captures vibration (100 kHz) and [...] Read more.
Industrial maintenance has shifted from reactive repairs and calendar-based servicing toward data-driven predictive strategies. This paper presents a non-intrusive, low-cost IoT hardware platform for sustainable predictive maintenance of rotating machinery. The system integrates an ESP32-S3 sensor node that captures vibration (100 kHz) and temperature data, performs local logging, and communicates wirelessly. An automated spectral band segmentation framework is introduced, comparing equal-energy, linear-width, nonlinear, clustering, and peak–valley partitioning methods, followed by a weighted feature scheme that emphasizes high-value bands. Three unsupervised one-class classifiers—transformer autoencoders, GANomaly, and Isolation Forest—are evaluated on these weighted spectral features. Experiments conducted on a custom pump test bench with controlled anomaly severities demonstrate strong anomaly classification performance across multiple configurations, supported by detailed threshold-characterization metrics. Among 150 model–segmentation configurations, 25 achieved perfect classification (100% precision, recall, and F1 score) with ROC-AUC = 1.0, 43 configurations achieved ≥90% accuracy, and the lowest-performing setup maintained 81.8% accuracy. The proposed end-to-end solution reduces the downtime, lowers maintenance costs, and extends the asset life, offering a scalable, predictive maintenance approach for diverse industrial settings. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

6 pages, 2004 KiB  
Proceeding Paper
Exploring Global Research Trends in Internet of Things and Total Quality Management for Industry 4.0 and Smart Manufacturing
by Chih-Wen Hsiao and Hong-Wun Chen
Eng. Proc. 2025, 98(1), 39; https://doi.org/10.3390/engproc2025098039 - 21 Jul 2025
Viewed by 214
Abstract
Amid the accelerated digital transformation and with the growing demand for smart manufacturing, the applications of the Internet of Things (IoT) and total quality management (TQM) have attracted increasing attention. Using R for bibliometric analysis, we explored research trends in IoT and TQM [...] Read more.
Amid the accelerated digital transformation and with the growing demand for smart manufacturing, the applications of the Internet of Things (IoT) and total quality management (TQM) have attracted increasing attention. Using R for bibliometric analysis, we explored research trends in IoT and TQM in terms of digital transformation and smart manufacturing. Data were gathered from the Web of Science from 1998 to 2025, with a total of 787 publications from 265 sources involving 2326 authors. A total of 31% of the authors collaborated internationally, indicating global interest in this topic. The publications had 33.65 citations on average, totaling 33,599 citations. Wang L.H. and Tao F. were identified as important authors. Keywords of “Industry 4.0”, “cyber-physical systems”, and “big data” underscore the technological significance of IoT and TQM. Major journals such as the Journal of Manufacturing Systems and IEEE Access had notable academic influence. Co-citation analysis results revealed that IoT and TQM played a significant role in driving digital transformation and enhancing production efficiency, offering references for enterprises in strategic planning for smart manufacturing. Full article
Show Figures

Figure 1

27 pages, 3641 KiB  
Article
TriagE-NLU: A Natural Language Understanding System for Clinical Triage and Intervention in Multilingual Emergency Dialogues
by Béatrix-May Balaban, Ioan Sacală and Alina-Claudia Petrescu-Niţă
Future Internet 2025, 17(7), 314; https://doi.org/10.3390/fi17070314 - 18 Jul 2025
Viewed by 178
Abstract
Telemedicine in emergency contexts presents unique challenges, particularly in multilingual and low-resource settings where accurate, clinical understanding and triage decision support are critical. This paper introduces TriagE-NLU, a novel multilingual natural language understanding system designed to perform both semantic parsing and clinical intervention [...] Read more.
Telemedicine in emergency contexts presents unique challenges, particularly in multilingual and low-resource settings where accurate, clinical understanding and triage decision support are critical. This paper introduces TriagE-NLU, a novel multilingual natural language understanding system designed to perform both semantic parsing and clinical intervention classification from emergency dialogues. The system is built on a federated learning architecture to ensure data privacy and adaptability across regions and is trained using TriageX, a synthetic, clinically grounded dataset covering five languages (English, Spanish, Romanian, Arabic, and Mandarin). TriagE-NLU integrates fine-tuned multilingual transformers with a hybrid rules-and-policy decision engine, enabling it to parse structured medical information (symptoms, risk factors, temporal markers) and recommend appropriate interventions based on recognized patterns. Evaluation against strong multilingual baselines, including mT5, mBART, and XLM-RoBERTa, demonstrates superior performance by TriagE-NLU, achieving F1 scores of 0.91 for semantic parsing and 0.89 for intervention classification, along with 0.92 accuracy and a BLEU score of 0.87. These results validate the system’s robustness in multilingual emergency telehealth and its ability to generalize across diverse input scenarios. This paper establishes a new direction for privacy-preserving, AI-assisted triage systems. Full article
(This article belongs to the Section Big Data and Augmented Intelligence)
Show Figures

Figure 1

27 pages, 1817 KiB  
Article
A Large Language Model-Based Approach for Multilingual Hate Speech Detection on Social Media
by Muhammad Usman, Muhammad Ahmad, Grigori Sidorov, Irina Gelbukh and Rolando Quintero Tellez
Computers 2025, 14(7), 279; https://doi.org/10.3390/computers14070279 - 15 Jul 2025
Viewed by 761
Abstract
The proliferation of hate speech on social media platforms poses significant threats to digital safety, social cohesion, and freedom of expression. Detecting such content—especially across diverse languages—remains a challenging task due to linguistic complexity, cultural context, and resource limitations. To address these challenges, [...] Read more.
The proliferation of hate speech on social media platforms poses significant threats to digital safety, social cohesion, and freedom of expression. Detecting such content—especially across diverse languages—remains a challenging task due to linguistic complexity, cultural context, and resource limitations. To address these challenges, this study introduces a comprehensive approach for multilingual hate speech detection. To facilitate robust hate speech detection across diverse languages, this study makes several key contributions. First, we created a novel trilingual hate speech dataset consisting of 10,193 manually annotated tweets in English, Spanish, and Urdu. Second, we applied two innovative techniques—joint multilingual and translation-based approaches—for cross-lingual hate speech detection that have not been previously explored for these languages. Third, we developed detailed hate speech annotation guidelines tailored specifically to all three languages to ensure consistent and high-quality labeling. Finally, we conducted 41 experiments employing machine learning models with TF–IDF features, deep learning models utilizing FastText and GloVe embeddings, and transformer-based models leveraging advanced contextual embeddings to comprehensively evaluate our approach. Additionally, we employed a large language model with advanced contextual embeddings to identify the best solution for the hate speech detection task. The experimental results showed that our GPT-3.5-turbo model significantly outperforms strong baselines, achieving up to an 8% improvement over XLM-R in Urdu hate speech detection and an average gain of 4% across all three languages. This research not only contributes a high-quality multilingual dataset but also offers a scalable and inclusive framework for hate speech detection in underrepresented languages. Full article
(This article belongs to the Special Issue Recent Advances in Social Networks and Social Media)
Show Figures

Figure 1

Back to TopTop