Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,776)

Search Parameters:
Keywords = transcriptional factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3107 KB  
Article
YAP1 Enhances Mesenchymal-Type Gene Expression in Human Adrenergic-Type Neuroblastoma Cells
by Marius Ludwig, Kerstin Ahrens, Annika Winkler, Jasmin Wünschel, Peris Ruka, Marco Lodrini, Falk Hertwig, Sveva Castelli, Theresa M. Thole-Kliesch, Jan F. Hollander, Steffen Fuchs, Annette Künkele, Marvin Jens, Soulafa Mamlouk, Steven W. Warmann, Kathy Astrahantseff, Angelika Eggert, Johannes H. Schulte, Annabell Szymansky and Hedwig E. Deubzer
Cancers 2026, 18(3), 383; https://doi.org/10.3390/cancers18030383 - 26 Jan 2026
Abstract
Background/Objectives: Neuroblastoma cells are phenotypically plastic, transitioning between mesenchymal and adrenergic states. Core functional genes (e.g., YAP1) mark the mesenchymal state, which is linked to unfavorable prognosis. We and others previously demonstrated relapse-specific Hippo-YAP pathway activation in matched primary/relapsed neuroblastomas. Here [...] Read more.
Background/Objectives: Neuroblastoma cells are phenotypically plastic, transitioning between mesenchymal and adrenergic states. Core functional genes (e.g., YAP1) mark the mesenchymal state, which is linked to unfavorable prognosis. We and others previously demonstrated relapse-specific Hippo-YAP pathway activation in matched primary/relapsed neuroblastomas. Here we explored the role of YAP1 in neuroblastoma aggressiveness and response to therapy. Methods: RT-qPCR and immunoblotting assessed YAP1 expression in neuroblastoma cell lines. RNA-sequencing detected YAP1-dependent gene signatures in Tet-ON SK-N-AS and SH-EP neuroblastoma cell models expressing wildtype YAP1 or constitutively activated YAP1S127A. Data from cell models were compared with our published YAP1 expression data from neuroblastomas. Efficacy of commonly used chemotherapeutics was comparatively analyzed in the cell models. Results: YAP1 expression showed marked variability across a panel of neuroblastoma cell lines, assessed by mRNA analysis in 10 cell lines and protein analysis in a subset of 9 cell lines. RNA sequencing in constitutively activated YAP1S127A mutant and wildtype YAP1 models detected 2162 and 1837 significantly differentially expressed genes in the SK-N-AS and SH-EP backgrounds, respectively. Continuously activating YAP1 in SK-N-AS cells upregulated mesenchymal signature genes and mesenchymal-associated transcription factors. Gene expression influenced by YAP1 activity in the cell models significantly overlapped with YAP1-associated genes (e.g., CYR61 and SPRY4) in published tumor data. Functionally, YAP1S127A expression rendered neuroblastoma cells resistant to chemotherapy. Conclusions: Findings corroborate the idea of a mechanistic role for YAP1 in neuroblastoma adrenergic to mesenchymal reprogramming and therapy resistance. The YAP1-mediated plastic switch towards a mesenchymal expression state in neuroblastoma cells may provide the molecular basis for novel therapeutic avenues. Full article
(This article belongs to the Special Issue Targeted Therapy of Pediatric Cancer (2nd Edition))
21 pages, 15015 KB  
Article
Irf5 Knockdown in Bone Marrow-Derived Macrophages Favors M1-to-M2 Transition
by Elizaveta Petrova, Ekaterina Sherstyukova, Snezhanna Kandrashina, Vladimir Inozemtsev, Alexandra Tsitrina, Viktoriya Fedorova, Mikhail Shvedov, Artem Kuzovlev, Maxim Dokukin, Yuri Kotelevtsev, Arsen Mikaelyan and Viktoria Sergunova
Cells 2026, 15(3), 238; https://doi.org/10.3390/cells15030238 - 26 Jan 2026
Abstract
The transcription factor IRF5 maintains macrophages in the pro-inflammatory M1 state. We assessed the effects of siRNA-mediated knockdown of Irf5 on murine bone marrow-derived macrophages (BMDM) in M0, M1 and M2 states. Knockdown of Irf5 in M1 macrophages made them phenotypically similar to [...] Read more.
The transcription factor IRF5 maintains macrophages in the pro-inflammatory M1 state. We assessed the effects of siRNA-mediated knockdown of Irf5 on murine bone marrow-derived macrophages (BMDM) in M0, M1 and M2 states. Knockdown of Irf5 in M1 macrophages made them phenotypically similar to M2 macrophages, which was reflected in the decreased expression of the M1 marker iNOS, increased expression of the M2 marker CD206, increased mitochondrial content and respective morphological changes. Interestingly, the M2 phenotype was also affected by the reduction in Irf5. Using atomic force microscopy (AFM), we showed that Irf5 knockdown increases plasma membrane roughness, particularly in M2 macrophages. AFM-based stiffness measurements indicated that Irf5 knockdown altered macrophage elasticity, potentially influencing their functional behavior. Our data suggest a complex role of IRF5 in macrophage polarization, supporting its dual role as a transcriptional activator and repressor both in M1 and M2 states, and highlight the importance of IRF5 in the maintenance of metabolic and functional properties of macrophages. Full article
(This article belongs to the Special Issue Advances in Scanning Probe Microscopy in Cell Biology)
Show Figures

Figure 1

17 pages, 10225 KB  
Review
A Structure-Based Analysis of the Evolution of Transcription Factors of the FNR/CRP Family
by Juan C. Fontecilla-Camps
Biomolecules 2026, 16(2), 189; https://doi.org/10.3390/biom16020189 - 26 Jan 2026
Abstract
The X-ray structural analysis of the N-terminal domain cavity from eleven transcription regulators (TFs) of the Fumarate Nitrate Reduction regulator/cAMP Regulator Protein family shows several significant trends. The conservancy of effector-binding phosphate binding cassette features in three TFs suggests a closer connection among [...] Read more.
The X-ray structural analysis of the N-terminal domain cavity from eleven transcription regulators (TFs) of the Fumarate Nitrate Reduction regulator/cAMP Regulator Protein family shows several significant trends. The conservancy of effector-binding phosphate binding cassette features in three TFs suggests a closer connection among them than the one obtained through the comparison of overall amino acid sequences. Conversely, there are also three clearly different allosteric activation mechanisms, which most likely evolved independently. Interestingly, several TFs of this family adopt the DNA-binding conformation without binding any ligand; instead, the buried region corresponding to the “allosteric” cavity is partially filled with salt bridges (which is also the case for two allosteric apo TFs). One plausible conclusion from these observations is that the non-allosteric TFs evolved from an allosteric counterpart and used salt bridges to fill and stabilize the formally polar ligand-binding cavity. O2-sensing TFs share some residues in the relevant N-terminal domain cavity and might have had an already non-allosteric common ancestor. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

26 pages, 10034 KB  
Article
α-Lipoic Acid Alleviates Non-Alcoholic Fatty Liver Disease by Elevating Chaperone-Mediated Autophagy and Increasing β-Oxidation via AMPK-TFEB Axis
by Keting Dong, Miao Zhang, Jiaojiao Xu, Xue Bai and Jianhong Yang
Nutrients 2026, 18(3), 402; https://doi.org/10.3390/nu18030402 - 26 Jan 2026
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disorder associated with impaired lipid metabolism and oxidative stress. As a natural antioxidant and dithiol compound, α-lipoic acid (ALA) may play a beneficial role in modulating hepatic metabolism. This study investigates the [...] Read more.
Background: Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disorder associated with impaired lipid metabolism and oxidative stress. As a natural antioxidant and dithiol compound, α-lipoic acid (ALA) may play a beneficial role in modulating hepatic metabolism. This study investigates the potential mechanisms through which ALA may alleviate NAFLD. Methods: To construct an NAFLD model, NCTC 1469 cells were exposed to oleic acid and palmitic acid (OA/PA) and glucose for 24 h. RT-qPCR, Western blotting, and siRNA analyses were used to examine the effects and mechanisms of ALA. In vivo, C57BL/6J mice were fed a high-fat diet for 11 weeks and treated with ALA (200 mg/kg/day, intragastrical) for 4 weeks to evaluate its impact on NAFLD. Results: In NCTC 1469 cells exposed to OA/PA and glucose, ALA markedly reduced lipid accumulation by activating TFEB, which in turn promoted fatty acid β-oxidation and chaperone-mediated autophagy (CMA). Furthermore, ALA activated NRF2-dependent CMA and mitigated oxidative stress. Inhibition of AMPK or silencing of TFEB/NRF2 abolished these effects, indicating the key role of the AMPK–TFEB/NRF2 axis. In HFD-fed mice, ALA alleviated hepatic steatosis, serum lipid abnormalities, and liver injury, consistent with its activation of CMA and β-oxidation and reduction in oxidative stress via this pathway. Conclusions: ALA synchronously activates CMA, β-oxidation, and antioxidant responses via a unified AMPK pathway to reduce lipid accumulation and oxidative stress, providing a mechanistically integrated therapeutic strategy for NAFLD. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

29 pages, 8439 KB  
Article
Qingfei Tongluo Jiedu Formula Regulates M2 Macrophage Polarization via the Butyric Acid-GPR109A-MAPK Pathway for the Treatment of Mycoplasma pneumoniae Pneumonia
by Zhilin Liu, Qiuyue Fan, Ruohan Sun and Yonghong Jiang
Pharmaceuticals 2026, 19(2), 212; https://doi.org/10.3390/ph19020212 - 26 Jan 2026
Abstract
Background: Mycoplasma pneumoniae pneumonia (MPP) is a common community-acquired pneumonia in children. Increasing drug resistance highlights the need for more effective treatments with fewer side effects. The Qingfei Tongluo Jiedu formula (QTJD) has demonstrated clinical efficacy against MPP; however, its underlying mechanisms [...] Read more.
Background: Mycoplasma pneumoniae pneumonia (MPP) is a common community-acquired pneumonia in children. Increasing drug resistance highlights the need for more effective treatments with fewer side effects. The Qingfei Tongluo Jiedu formula (QTJD) has demonstrated clinical efficacy against MPP; however, its underlying mechanisms remain unclear. This study aimed to explore the mechanism of QTJD on MPP using network pharmacology and in vitro experiments. Methods: Network pharmacology was used to identify the active compounds and signaling pathways of QTJD in MPP. QTJD-containing serum was prepared, and primary mouse lung and bone marrow cells were isolated to examine the effects of QTJD on macrophage polarization through butyric acid. Cell viability assays, flow cytometry, and quantitative reverse transcription-polymerase chain reaction were performed. GPR109−/− cells were used to confirm the receptor mediating butyric acid’s action, and Western blotting was employed to assess the MAPK signaling pathway. Results: QTJD promoted macrophage polarization and alleviated the inflammatory response caused by Mycoplasma pneumoniae. High-performance liquid chromatography-electrospray ionization mass spectrometry combined with network pharmacology identified 20 active compounds. Protein-protein interaction analysis revealed 10 core target, including JUN and Tumor Necrosis Factor (TNF), while enrichment analysis highlighted pathways such as Mitogen-Activated Protein Kinase (MAPK) and Phosphoinositide 3-Kinase-Protein Kinase B. Experimental validation demonstrated that QTJD reduced M1 markers (CD86, CXCL10) by increasing butyrate levels (p < 0.01) and enhanced M2 markers (CD206, Arg-1, MRC-1), promoting M2 polarization. QTJD inhibited ERK1/2, p38, and JNK1/2 (p < 0.01). In GPR109A−/− mice macrophages, QTJD suppressed p38 and JNK1/2 (p < 0.01) but showed no effect on ERK1/2 (p > 0.05), confirming involvement of the butyrate-GPR109A-MAPK pathway. Conclusions: QTJD effectively alleviates MPP by regulating macrophage polarization through the butyrate-GPR109A-MAPK pathway. Future studies should explore how QTJD modulates pulmonary immunity through gut microbiota and butyrate production and elucidate its immunoregulatory mechanisms along the gut-lung axis using multi-omics approaches. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

37 pages, 18066 KB  
Article
Characterization of the Crustacean Methyl Farnesoate Transcriptional Signaling Genes
by Vanessa L. Bentley, Jorge L. Pérez-Moreno, David S. Durica and Donald L. Mykles
Int. J. Mol. Sci. 2026, 27(3), 1215; https://doi.org/10.3390/ijms27031215 - 26 Jan 2026
Abstract
Methyl farnesoate (MF) is a sesquiterpenoid hormone that controls a variety of physiological processes in crustaceans, including morphogenesis, development, reproduction, and molting. MF action is mediated by a transcriptional signaling cascade consisting of Methoprene-tolerant (Met), Steroid receptor coactivator (Src), [...] Read more.
Methyl farnesoate (MF) is a sesquiterpenoid hormone that controls a variety of physiological processes in crustaceans, including morphogenesis, development, reproduction, and molting. MF action is mediated by a transcriptional signaling cascade consisting of Methoprene-tolerant (Met), Steroid receptor coactivator (Src), Krüppel homolog 1 (Kr-h1), and Ecdysone response gene 93 (E93) transcription factors (TFs), and transcriptional co-regulators CREB-binding protein (CBP) and C-terminal-binding protein (CtBP). Phylogenetic and sequence analyses revealed that these genes were highly conserved across pancrustacean species. Met and Src were characterized as basic helix-loop-helix, Period (Per)-Aryl Hydrocarbon Nuclear Translocator (ARNT)-Single-minded (Sim) protein (bHLH-PAS) TFs; Kr-h1 was characterized as a C2H2 zinc finger TF with seven zinc finger motifs; E93 was characterized as a helix-turn-helix, pipsqueak (HTH_Psq) TF. CBP was identified by several zinc finger-binding regions with Transcription Adaptor Zinc Finger 1 and 2, Really Interesting New Gene, Plant homeodomain, and Z-type zinc finger domains; the Kinase-inducible Domain Interacting-transcription factor docking site; the Bromodomain-acetylated lysine recognition and binding site; the histone acetyltransferase domain; and a C-terminal CREB-binding region containing a nuclear receptor co-activator-binding domain. CtBP had a dehydrogenase domain with arginine-glutamate-histidine catalytic triad. 81 Met contigs, 45 Src contigs, 136 Kr-h1 contigs, 66 E93 contigs, 60 CBP contigs, and 172 CtBP contigs were identified across pancrustacean taxa, including decapod crustaceans. Bioinformatic identification and annotation of these TFs and co-regulators in brachyuran Y-organ (YO) transcriptomes suggests that MF signaling influences YO ecdysteroidogenesis; functional tests in the YO are needed to establish causality. Full article
Show Figures

Figure 1

25 pages, 13400 KB  
Article
Genome-Wide Identification and Analysis of the MADS-Box Gene Family in Tectona grandis (Teak), a Member of the Lamiaceae Family
by Tareq Alhindi, Khaldoun J. Al-Hadid and Ayed M. Al-Abdallat
Genes 2026, 17(2), 124; https://doi.org/10.3390/genes17020124 - 25 Jan 2026
Abstract
Background: In plants, members of the MADS-box gene family encode transcription factors that regulate a wide range of developmental processes, including cell differentiation, organ identity, floral induction, and responses to environmental stimuli. Moreover, MADS-box genes play central roles in the well-known ABCDE model [...] Read more.
Background: In plants, members of the MADS-box gene family encode transcription factors that regulate a wide range of developmental processes, including cell differentiation, organ identity, floral induction, and responses to environmental stimuli. Moreover, MADS-box genes play central roles in the well-known ABCDE model of floral development. Teak (Tectona grandis), a woody species belonging to the Lamiaceae family, is recognized for its medicinal and agricultural significance. The recent availability of a chromosome-level genome assembly for T. grandis has enabled the genome-wide identification of 87 MADS-box genes, which are distributed across 18 pseudo-chromosomes. Methods: The amino acid sequences of these genes were compared with orthologous proteins from Arabidopsis thaliana, Sesamum indicum, and Amborella trichopoda to infer the phylogenetic relationships. The structures of key floral quartets in the MADS-box proteins were predicted, and the stability of these predicted tetramers were analyzed via molecular dynamics simulations. Results: The phylogenetic analysis classified the genes into 33 Type I and 54 Type II MADS-box members, forming four major clades (MIKCC, MIKC*, Mα, and Mγ), while the Mβ-type clade was absent. A conserved motif analysis revealed that the Type II genes exhibited greater motif diversity than the Type I, suggesting that T. grandis Type II MADS-box genes possess more complex structures and potentially broader functions. The transcriptomic data from different tissues showed that the MIKC-type genes were particularly active during flower development. Although stable over the simulation time, the T. grandis AP3 ortholog had shorter I and K domains and had an odd mode of protein–protein interaction. Conclusion: Overall, the presented genome-wide analysis provides a comprehensive base for understanding the evolutionary diversification of the MADS-box gene family in T. grandis and identifies candidate genes for future structural and functional characterization. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

19 pages, 1344 KB  
Review
miRNA-Mediated Regulation of γ-Globin to β-Globin Switching: Therapeutic Potential in β-Hemoglobinopathies
by Daniah Alotaibi, Falak Aldagdog, Sajidah Alramadhan, Basmah Almuhaidib, Nada Asiri, Leena Almodhi, Manar Alshabaan, Razan Alborhan, Chittibabu Vatte, Shamim Shaikh Mohiuddin, Amein K. Alali and Alawi Habara
Int. J. Mol. Sci. 2026, 27(3), 1203; https://doi.org/10.3390/ijms27031203 - 25 Jan 2026
Abstract
Erythropoiesis is a tightly regulated developmental process that requires the switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA). In β-hemoglobinpathies such as SCD and β-thalassemia, disease severity is influenced by the fetal-to-adult hemoglobin switch because persistence or induction of HbF will ameliorate [...] Read more.
Erythropoiesis is a tightly regulated developmental process that requires the switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA). In β-hemoglobinpathies such as SCD and β-thalassemia, disease severity is influenced by the fetal-to-adult hemoglobin switch because persistence or induction of HbF will ameliorate the clinical manifestations. miRNAs play an essential role in regulating this switch by modulating the expression levels of key transcription factors, such as BCL11A, KLF1, and MYB, which repress γ-globin expression. Multiple miRNAs have been identified as potential modulators of the hemoglobin switch, including miR-144, miR-486, miR-26b, and miR-15a. The molecular interactions between miRNA and γ-to β-globin switch have the potential for new therapeutic interventions that aim to reactivate HbF expression to ameliorate β-hemoglobinopathies such as SCD and β-thalassemia. In this review, the latest advancements in miRNA-mediated regulation of Hb switching and nanoparticle-based strategies for miRNA delivery are explored. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 2724 KB  
Article
Chelidonine Induces Concurrent Elevation of pSer-STAT3 and Bcl-2 Levels in a Mitotic Subpopulation of Human T-Leukemia/Lymphoma Cells
by Saraa Baddour, János Szöllősi, László Mátyus, György Vámosi, István Csomós and Andrea Bodnár
Int. J. Mol. Sci. 2026, 27(3), 1200; https://doi.org/10.3390/ijms27031200 - 25 Jan 2026
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates a broad spectrum of genes with oncogenic potential, thereby serving as a critical driver of tumorigenesis. Canonical STAT3 function is mediated through tyrosine phosphorylation, which enables dimerization and transcriptional [...] Read more.
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates a broad spectrum of genes with oncogenic potential, thereby serving as a critical driver of tumorigenesis. Canonical STAT3 function is mediated through tyrosine phosphorylation, which enables dimerization and transcriptional activation, whereas serine phosphorylation of STAT3 has a postulated role in fine-tuning canonical functions and contributes to non-canonical roles as well. One of the transcriptional targets of STAT3 is the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, itself subject to phosphorylation-dependent regulation. In this study, we investigated the effect of chelidonine, an alkaloid component of Chelidonium majus L., on STAT3/Bcl-2 signaling in human T leukemia/lymphoma cells, reported to have numerous effects in common with microtubule-targeting agents (MTAs). Flow cytometry and confocal microscopy revealed that chelidonine transiently increased both serine-phosphorylated STAT3 (pSer-STAT3) and Bcl-2 levels in a distinct subpopulation of cells, with near-complete overlap between the affected cells. This effect appeared at least partially independent of interleukin-2 (IL-2) and was associated with the M-phase of the cell cycle, as indicated by enhanced phosphorylation of Bcl-2 at serine 70 and nuclear morphology characteristic of mitosis. Our study provides the first single-cell evidence that STAT3 and Bcl-2 undergo concurrent serine phosphorylation as a response to chelidonine treatment, with the effect tightly linked to the M-phase. Full article
(This article belongs to the Special Issue Antitumor Activity of Natural Products)
Show Figures

Figure 1

23 pages, 1672 KB  
Review
Field-Evolved Resistance to Bt Cry Toxins in Lepidopteran Pests: Insights into Multilayered Regulatory Mechanisms and Next-Generation Management Strategies
by Junfei Xie, Wenfeng He, Min Qiu, Jiaxin Lin, Haoran Shu, Jintao Wang and Leilei Liu
Toxins 2026, 18(2), 60; https://doi.org/10.3390/toxins18020060 - 25 Jan 2026
Abstract
Bt Cry toxins remain the cornerstone of transgenic crop protection against Lepidopteran pests, yet field-evolved resistance, particularly in invasive species such as Spodoptera frugiperda and Helicoverpa armigera, can threaten their long-term efficacy. This review presents a comprehensive and unified mechanistic framework that [...] Read more.
Bt Cry toxins remain the cornerstone of transgenic crop protection against Lepidopteran pests, yet field-evolved resistance, particularly in invasive species such as Spodoptera frugiperda and Helicoverpa armigera, can threaten their long-term efficacy. This review presents a comprehensive and unified mechanistic framework that synthesizes current understanding of Bt Cry toxin modes of action and the complex, multilayered regulatory mechanisms of field-evolved resistance. Beyond the classical pore-formation model, emerging evidence highlights signal transduction cascades, immune evasion via suppression of Toll/IMD pathways, and tripartite toxin–host–microbiota interactions that can dynamically modulate protoxin activation and receptor accessibility. Resistance arises from target-site alterations (e.g., ABCC2/ABCC3, Cadherin mutations), altered midgut protease profiles, enhanced immune regeneration, and microbiota-mediated detoxification, orchestrated by transcription factor networks (GATA, FoxA, FTZ-F1), constitutive MAPK hyperactivation (especially MAP4K4-driven cascades), along with preliminary emerging findings on non-coding RNA involvement. Countermeasures now integrate synergistic Cry/Vip pyramiding, CRISPR/Cas9-validated receptor knockouts revealing functional redundancy, Domain III chimerization (e.g., Cry1A.105), phage-assisted continuous evolution (PACE), and the emerging application of AlphaFold3 for structure-guided rational redesign of resistance-breaking variants. Future sustainability hinges on system-level integration of single-cell transcriptomics, midgut-specific CRISPR screens, microbiome engineering, and AI-accelerated protein design to preempt resistance trajectories and secure Bt biotechnology within integrated resistance and pest management frameworks. Full article
Show Figures

Figure 1

21 pages, 16932 KB  
Review
Alternative Splicing Responses to Plant–Biotic Interactions and Abiotic Stresses in Plants
by Yuxia Yao, Bo Wang, Yuna Pan, Yushi Lu, Wenjin Yu and Changxia Li
Agronomy 2026, 16(3), 298; https://doi.org/10.3390/agronomy16030298 - 24 Jan 2026
Viewed by 34
Abstract
Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism in eukaryotes. Plants can cope with complex environmental changes through AS. In this paper, we found that AS plays an important role in plant responses to biotic and abiotic stresses. First, we note that [...] Read more.
Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism in eukaryotes. Plants can cope with complex environmental changes through AS. In this paper, we found that AS plays an important role in plant responses to biotic and abiotic stresses. First, we note that under biotic stress (e.g., disease, insects), AS regulates the expression of immune-related genes and produces splice variants with different functions to regulate plant disease resistance. Second, under abiotic stress (e.g., drought, cold, heat, salt), plants generate functional splice variants via different AS events and change the original function of the gene. At the same time, we also found that splicing factors and regulatory elements, such as serine/arginine-rich proteins associated with AS, are also involved in the regulation of the expression of related resistance genes to improve plant stress resistance. Therefore, this review summarizes the recent progress on the main types of AS events, the functions of related splicing factors, and the action routes and regulatory mechanisms of splice variants. We hope to provide a reference for further understanding of the stress response mechanism of plant AS and provide a theoretical basis for the breeding of resistant varieties. Full article
20 pages, 1792 KB  
Article
Genome-Wide Analysis of the Heat Shock Transcription Factor Gene Family in Flammulina filiformis and Its Response to CO2-Mediated Fruit Body Development
by Xinlian Duan, Xing Han, Ruixiang Zhao, Ying Gan, Jie Chen, Renyun Miao, Junbin Lin, Rencai Feng, Zongjun Tong, Bingcheng Gan and Junjie Yan
Horticulturae 2026, 12(2), 132; https://doi.org/10.3390/horticulturae12020132 - 24 Jan 2026
Viewed by 34
Abstract
Flammulina filiformis is the key industrial edible fungus that requires elevated CO2 to promote the growth of long stipe and small pileus fruiting bodies. Heat shock transcription factors (HSFs) play vital roles in stress response and development regulation; yet the HSF gene [...] Read more.
Flammulina filiformis is the key industrial edible fungus that requires elevated CO2 to promote the growth of long stipe and small pileus fruiting bodies. Heat shock transcription factors (HSFs) play vital roles in stress response and development regulation; yet the HSF gene family and its expression dynamics during fruiting body development in F. filiformis remain uncharacterized. This study aims to identify and characterize the HSF gene family in F. filiformis and to investigate their expression patterns during fruiting body development and in response to CO2 treatments. In this study, 7 FfHSFs were identified, and their structures, sequence features, and phylogenetics were further analyzed. Expression patterns under CO2 regulation were examined via qRT-PCR. The FfHSFs exhibited CDS lengths of 618–2298 bp, encoding 301–765 hydrophilic amino acids, with molecular weights ranging from 23.4 to 83.8 kDa and theoretical pI values between 4.75 and 9.15. All were predicted to be nuclear-localized. Cis-element analysis revealed motifs associated with growth regulation and stress responses such as low temperature, drought, and hypoxia. Phylogenetically, fungal HSFs were grouped into five clusters, with FfHSFs distributed across four. In this study, we examined the expression levels at four time points (0 h, 2 h, 12 h, and 36 h), under three different carbon dioxide concentrations (0.1%, 5%, and 20%) and in two types of tissues (pileus and stipe) for each six biological replicates. CO2 treatments showed that 5% CO2 significantly suppressed pileus expansion but not stipe elongation, while 20% CO2 inhibited both. Under 20% CO2 treatment, the pileus diameter decreased by approximately 40%, and simultaneously, the expression level of FfHSF1 decreased by about 70%. qRT-PCR indicated that FfHSF1 decreased with pileus expansion, whereas FfHSF4 increased. All FfHSFs were highly expressed in the stipe elongation zone. Elevated CO2 down-regulated FfHSF1 in pileus and FfHSF6 in stipes. Based on these findings, it could be proposed that FfHSF1 and FfHSF6 might be candidate regulators in CO2-mediated morphogenesis, providing insights into hormonal and environmental control of fruiting body development in F. filiformis. Full article
(This article belongs to the Special Issue Edible Mushrooms: Genetics, Genomics, and Breeding)
23 pages, 6517 KB  
Article
Molecular Characterization of Muscle-Invasive Bladder Cancer: Key MicroRNAs, Transcription Factors, and Differentially Expressed Genes
by Venhar Gurbuz Can
Genes 2026, 17(2), 122; https://doi.org/10.3390/genes17020122 - 24 Jan 2026
Viewed by 53
Abstract
Background: The present study set out to identify key miRNAs, TFs and signaling pathways associated with bladder cancer, with a view to elucidating the networks of miRNA-TF-gene interactions that may serve as potential molecular biomarkers for disease diagnosis. Methods: An integrative analysis was [...] Read more.
Background: The present study set out to identify key miRNAs, TFs and signaling pathways associated with bladder cancer, with a view to elucidating the networks of miRNA-TF-gene interactions that may serve as potential molecular biomarkers for disease diagnosis. Methods: An integrative analysis was conducted using the publicly available microarray dataset GSE130598. Expression profanalyzede analyzed from 42 muscle-invasive bladder cancer (MIBC) tissues and 42 matched adjacent normal bladder tissues. After data preprocessing and normalization, differentially expressed genes (DEGs) were identified. To identify the associated biological processes and signaling pathways, functional enrichment analyses were conducted using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein–protein interaction (PPI) network analysis was then employed to identify hub genes and key molecular interaction modules associated with bladder cancer. Results: MYC, TP53, SP1, E2F1, E2F3, NFKB1, and TWIST1 were identified as central transcriptional regulators, indicating their roles in controlling genes involved in cell cycle regulation, DNA damage response, and tumor progression. Several miRNA families, including miR-200, miR-17, miR-29, miR-141, and miR-548, have been identified as key post-transcriptional regulators, suggesting their involvement in oncogenic signaling and cellular differentiation. PPI network analysis revealed MAPK3, AKT1, CHEK1, CDK1, AURKA, and AURKB as hub genes associated with cell proliferation, mitotic control, and intracellular signaling. Conclusions: Fundamental molecular processes underlying bladder cancer pathogenesis include cell cycle control, signal transduction, and genomic stability. These findings provide insight into the molecular regulatory landscape of MIBC and highlight potential targets for diagnostic and prognostic applications. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 3080 KB  
Article
Manipulation of Alternative Splicing of IKZF1 Elicits Distinct Gene Regulatory Responses in T Cells
by Lucia Pastor, Jeremy R. B. Newman, Colin M. Callahan, Rebecca R. Pickin, Mark A. Atkinson, Suna Onengut-Gumuscu and Patrick Concannon
Cells 2026, 15(3), 221; https://doi.org/10.3390/cells15030221 - 24 Jan 2026
Viewed by 122
Abstract
Genome-wide studies have identified significant allelic associations between genetic variants in or near the IKZF1 gene and multiple autoimmune disorders. IKZF1, encoding the transcription factor IKAROS, produces at least 10 distinct transcripts. To explore the impact of alternative splicing of IKZF1 on [...] Read more.
Genome-wide studies have identified significant allelic associations between genetic variants in or near the IKZF1 gene and multiple autoimmune disorders. IKZF1, encoding the transcription factor IKAROS, produces at least 10 distinct transcripts. To explore the impact of alternative splicing of IKZF1 on the function of mature T cells and the risk of autoimmunity, we generated a panel of human T-cell clones with truncating mutations in IKZF1 exons 4, 6, or both. Differences in gene expression, chromatin accessibility, and protein abundance among clones were assessed by RNA-seq, ATAC-seq, and immunoblotting. Clones with single targeting events clustered separately from double-targeted clones on multiple parameters, but overall, clone responses were highly heterogeneous. Perturbation of IKZF1 splicing resulted in significant differences in expression and chromatin accessibility of other autoimmunity-associated genes and elicited compensatory expression changes in other IKAROS family members. Our results suggest that even modest alterations of IKZF1 splicing can have significant effects on gene expression and function in mature T cells, potentially contributing to autoimmunity in susceptible individuals. Full article
Show Figures

Figure 1

20 pages, 9864 KB  
Article
Glutamine Synthetase 1 Functions in Spermatogenesis in the Silkworm, Bombyx mori
by Zelin Fan, Lulu Zhang, Surui Zhang, Jiayin Zhang, Cuiqi Fang, Xiuping Lu and Xingfu Zha
Insects 2026, 17(2), 135; https://doi.org/10.3390/insects17020135 - 24 Jan 2026
Viewed by 45
Abstract
Glutamine synthetase, a critical enzyme catalyzing the conversion of glutamate and ammonia into glutamine, has been shown to influence sperm development in mammals. Here, we carried out functional analysis of Bombyx mori homolog of glutamine synthetase 1 (BmGS1) and screened its [...] Read more.
Glutamine synthetase, a critical enzyme catalyzing the conversion of glutamate and ammonia into glutamine, has been shown to influence sperm development in mammals. Here, we carried out functional analysis of Bombyx mori homolog of glutamine synthetase 1 (BmGS1) and screened its small-molecule inhibitor. RT-PCR and qPCR showed that BmGS1 was specifically expressed in the testis of the silkworm, with the highest expression in the moth stage. Subcellular localization revealed that the BmGS1 protein was localized in mitochondria and cytoplasm. Identification of upstream regulatory factors revealed that the expression of BmGS1 is positively regulated by the sex-related transcription factor Bmdsx. Virtual screening, molecular docking and MD simulations showed that the small molecule Ethylhexyl triazone (ET), as well as the known GS inhibitor L-Methionine -DL-sulfoximine (MSX), could be stably bound to BmGS1. Subsequently, site-specific mutation and fluorescence binding assays revealed that the putative key sites of ET binding to the protein were E79 and R265, and the putative key sites of MSX binding to the protein were E81, R245, and R286. Both in vitro and in vivo experiments demonstrated that inhibitor treatment significantly attenuated BmGS1 enzymatic activity. Inhibitor-injected silkworms showed reduced fertilization rates compared to control groups. Our findings raise BmGS1 as a potential target for silkworm sterility. Full article
(This article belongs to the Special Issue Recent Studies on Resource Insects)
Show Figures

Figure 1

Back to TopTop