Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (212)

Search Parameters:
Keywords = trans-stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 16495 KiB  
Article
Regenerating Landscape Through Slow Tourism: Insights from a Mediterranean Case Study
by Luca Barbarossa and Viviana Pappalardo
Sustainability 2025, 17(15), 7005; https://doi.org/10.3390/su17157005 (registering DOI) - 1 Aug 2025
Viewed by 97
Abstract
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as [...] Read more.
The implementation of the trans-European tourist cycle route network “EuroVelo” is fostering new strategic importance for non-motorized mobility and the associated practice of cycling tourism. Indeed, slow tourism offers a pathway for the development of inland areas. The infrastructure supporting it, such as long-distance cycling and walking paths, can act as a vital connection, stimulating regeneration in peripheral territories by enhancing environmental and landscape assets, as well as preserving heritage, local identity, and culture. The regeneration of peri-urban landscapes through soft mobility is recognized as the cornerstone for accessibility to material and immaterial resources (including ecosystem services) for multiple categories of users, including the most vulnerable, especially following the restoration of green-area systems and non-urbanized areas with degraded ecosystems. Considering the forthcoming implementation of the Magna Grecia cycling route, the southernmost segment of the “EuroVelo” network traversing three regions in southern Italy, this contribution briefly examines the necessity of defining new development policies to effectively integrate sustainable slow tourism with the enhancement of environmental and landscape values in the coastal areas along the route. Specifically, this case study focuses on a coastal stretch characterized by significant morphological and environmental features and notable landscapes interwoven with densely built environments. In this area, environmental and landscape values face considerable threats from scattered, irregular, low-density settlements, abandoned sites, and other inappropriate constructions along the coastline. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
Show Figures

Figure 1

22 pages, 10305 KiB  
Article
Selective Dual Inhibition of TNKS1 and CDK8 by TCS9725 Attenuates STAT1/β-Catenin/TGFβ1 Signaling in Renal Cancer
by Majed Saad Al Fayi and Mishari Alshyarba
Curr. Issues Mol. Biol. 2025, 47(6), 463; https://doi.org/10.3390/cimb47060463 - 17 Jun 2025
Viewed by 433
Abstract
Background: Tankyrase (TNKS1) regulates the WNT/β-catenin pathway, while CDK8 is a transcriptional regulator overexpressed in renal cell carcinoma (RCC). This study aims to identify novel dual inhibitors of tankyrase and Cyclin-dependent kinase 8 (CDK8), utilizing bioinformatics and in vitro methods and to assess [...] Read more.
Background: Tankyrase (TNKS1) regulates the WNT/β-catenin pathway, while CDK8 is a transcriptional regulator overexpressed in renal cell carcinoma (RCC). This study aims to identify novel dual inhibitors of tankyrase and Cyclin-dependent kinase 8 (CDK8), utilizing bioinformatics and in vitro methods and to assess their efficiency in renal cancer cells. Methods: To identify leads, the ChemBridge library was screening using high-throughput virtual screening (HTVS), which was followed by protein–ligand interaction analysis, Molecular Dynamics (MD) simulation, and Gibbs binding free energy estimation. A-498, Caki-1, and HK-2 cells were employed to validate in vitro efficacy. Results: TCS9725 was discovered by HTVS with binding affinities of −8.1 kcal/mol and −8.2 kcal/mol for TNKS1 and CDK8, respectively. TCS9725 had robust binding interactions with root mean square deviation values of 0.00 nm. The ΔG binding estimate was −27.45 for TNKS1 and −27.88 for CDK8, respectively. ADME predictions favored specific small-molecule inhibition profiles. TCS9725 reduced TNKS1 and CDK8 activities with IC50s of 243 nM and 403.6 nM, respectively. The compound efficiently inhibited the growth of A-498 and Caki-1 cells with GI50 values of 385.9 nM and 243.6 nM, respectively, with high selectivity compared to the non-cancerous kidney cells. TCS9725 decreased STAT1 and β-catenin positivity in A-498 and Caki-1 cells. The compound induced apoptosis and reduced TGFβ-stimulated trans-endothelial migration and p-smad2/3 signaling in both RCC cells. Conclusions: This work provides valuable insights into the therapeutic potential of TCS9725, a dual inhibitor of TNKS1 and CDK8. Further developments of this molecule could lead to new and effective treatments for this devastating disease. Full article
(This article belongs to the Special Issue Molecular Research of Urological Diseases)
Show Figures

Graphical abstract

27 pages, 3222 KiB  
Review
Mechanisms on How Matricellular Microenvironments Sustain Idiopathic Pulmonary Fibrosis
by Nicole Jones, Babita Rahar, Ksenija Bernau, Jefree J. Schulte, Paul J. Campagnola and Allan R. Brasier
Int. J. Mol. Sci. 2025, 26(11), 5393; https://doi.org/10.3390/ijms26115393 - 4 Jun 2025
Cited by 1 | Viewed by 1102
Abstract
In a susceptible individual, persistent, low-level injury to the airway epithelium initiates an exaggerated wound repair response, ultimately leading to idiopathic pulmonary fibrosis (IPF). The mechanisms driving this fibroproliferative response are not fully understood. Here, we review recent spatially resolved transcriptomics and proteomics [...] Read more.
In a susceptible individual, persistent, low-level injury to the airway epithelium initiates an exaggerated wound repair response, ultimately leading to idiopathic pulmonary fibrosis (IPF). The mechanisms driving this fibroproliferative response are not fully understood. Here, we review recent spatially resolved transcriptomics and proteomics studies that provide insight into two distinct matricellular microenvironments important in this pathological fibroproliferation. First, in response to alveolar epithelial injury, alveolar differentiation intermediate (ADI) basal cells arising from Secretoglobin (Scgb1a1) progenitors re-populate the injured alveolus remodeling the extracellular matrix (ECM). ADI cells exhibit an interconnected cellular stress response involving the unfolded protein response (UPR), epithelial–mesenchymal transition (EMT) and senescence pathways. These pathways reprogram cellular metabolism to support fibrillogenic ECM remodeling. In turn, the remodeled ECM tonically stimulates EMT in the ADI population, perpetuating the transitional cell state. Second, fibroblastic foci (FF) are a distinct microenvironment composed of activated aberrant “basaloid” cells supporting transition of adjacent mesenchyme into hyaluronan synthase (HAShi)-expressing fibroblasts and myofibroblasts. Once formed, FF are the major matrix-producing factories that invade and disrupt the alveolar airspace, forming a mature scar. In both microenvironments, the composition and characteristics of the ECM drive persistence of atypical epithelium sustaining matrix production. New approaches to monitor cellular trans-differentiation and matrix characteristics using positron emission tomography (PET)–magnetic resonance imaging (MRI) and optical imaging are described, which hold the potential to monitor the effects of therapeutic interventions to modify the ECM. Greater understanding of the bidirectional interrelationships between matrix and cellular phenotypes will identify new therapeutics and diagnostics to affect the outcomes of this lethal disease. Full article
Show Figures

Figure 1

16 pages, 3005 KiB  
Article
Pro-Resolving Macrophage-Induced IL-35+ but Not TGF-β1+ Regulatory B Cell Activation Requires the PD-L1/PD-1 Pathway
by Guoqin Cao, Takumi Memida, Shengyuan Huang, Elaheh Dalir Abdolahinia, Sunniva Ruiz, Sahar Hassantash, Jayant Ari, Satoru Shindo, Jiang Lin, Toshihisa Kawai and Xiaozhe Han
Int. J. Mol. Sci. 2025, 26(11), 5332; https://doi.org/10.3390/ijms26115332 - 1 Jun 2025
Cited by 1 | Viewed by 562
Abstract
The interaction between immune regulatory cells, such as regulatory B cells (Breg) and pro-resolving macrophages (M2 macrophages), plays an important role in the restoration of immune homeostasis during inflammation. PD-L1 is one of the effector molecules that mediates the immune regulation function of [...] Read more.
The interaction between immune regulatory cells, such as regulatory B cells (Breg) and pro-resolving macrophages (M2 macrophages), plays an important role in the restoration of immune homeostasis during inflammation. PD-L1 is one of the effector molecules that mediates the immune regulation function of M2 macrophages. The activation of PD-L1/PD-1 signaling promotes the differentiation of Breg. Previous studies have shown that Breg promoted M2 macrophage polarization and enhanced their function, but little is known about the regulatory function of M2 macrophages on Breg differentiation. This study aims to determine the effect of M2 macrophages on Breg induction and the potential mechanism in vitro. Bone-marrow-derived macrophages were isolated from wild-type (WT) mice and polarized into M2 using IL-4/IL-13. To investigate the role of PD-L1/PD-1 in M2 macrophage-induced Breg differentiation, spleen B cells were isolated from WT or PD-1 knockout (KO) mice and co-cultured with either naïve (M0) or M2 macrophages for 48 h with or without trans-well inserts. The expression of IL-10, IL-35, and TGF-β1 in B cells was evaluated by flow cytometry and immunofluorescence staining. Recombinant PD-L1 was used to stimulate activated B cells, followed by the detection of IL-35 and TGF-β1. The results show that there was no significant difference in IL-10 expression among all groups. However, IL-35 and TGF-β1 expression in B cells was significantly increased in the M2+B, but not in M0+B, compared to B cells alone. Notably, such increases were diminished when M2 and B cells were separated by trans-well inserts. IL-35 expression was not significantly changed when B cells from PD-1 KO mice were co-cultured with M2 compared to the control. However, TGF-β1 expression was significantly increased when PD-1 KO B cells were co-cultured with M2 compared to the control. IL-35 expression in activated B cells was increased upon stimulation with PD-L1. However, TGF-β1 expression in activated B cells was increased regardless of the PD-L1 availability. This study demonstrates that pro-resolving macrophage-induced IL-35+ but not TGF-β1+ regulatory B cell activation requires the PD-L1/PD-1 pathway. Full article
Show Figures

Figure 1

28 pages, 1697 KiB  
Review
IL-6 as a Mediator of Platelet Hyper-Responsiveness
by Connor Elliot Webb, Jordan Vautrinot and Ingeborg Hers
Cells 2025, 14(11), 766; https://doi.org/10.3390/cells14110766 - 22 May 2025
Viewed by 1375
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine with critical roles in immune regulation, inflammation, and haematopoiesis. While its functions in host defence and tissue repair are well established, accumulating evidence suggests that IL-6 also can directly and indirectly modulate megakaryocyte and platelet biology. This [...] Read more.
Interleukin-6 (IL-6) is a pleiotropic cytokine with critical roles in immune regulation, inflammation, and haematopoiesis. While its functions in host defence and tissue repair are well established, accumulating evidence suggests that IL-6 also can directly and indirectly modulate megakaryocyte and platelet biology. This review examines the mechanistic basis supporting IL-6-mediated platelet hyper-responsiveness, in addition to its effect on megakaryopoiesis and thrombopoiesis in thromboinflammatory disease states. We discuss how IL-6-mediated trans-signalling may sensitizes platelets to activation, and that this may be exclusive to glycoprotein VI (GPVI) stimulation due to Janus kinase (JAK)–signal transducer 2 crosstalk, in addition to other mechanisms that may contribute to priming platelets. We further highlight clinical evidence linking IL-6 to thrombotic complications in cardiovascular disease and infection (e.g., COVID-19 and sepsis). Given the emerging interest in IL-6-targeting therapies as anti-inflammatory and anti-thrombotic agents, a thorough understanding of how IL-6 can drive platelet responsiveness is crucial. Full article
(This article belongs to the Special Issue Molecular and Cellular Insights into Platelet Function)
Show Figures

Graphical abstract

14 pages, 6294 KiB  
Article
Vitamin D and Retinoic Acid Require Protein Kinase C Activity and Reactive Oxygen Species as Opposing Signals Regulating PEIG-1/GPRC5A Expression in Caco-2 and T84 Colon Carcinoma Cells
by Pablo A. Iglesias González, Consuelo Mori, Ángel G. Valdivieso and Tomás A. Santa Coloma
Biomolecules 2025, 15(5), 711; https://doi.org/10.3390/biom15050711 - 13 May 2025
Viewed by 777
Abstract
PEIG-1/GPRC5A (phorbol ester induced gene-1/G-protein Coupled Receptor Class C Group 5 Member A) was the first identified member of the orphan G protein-coupled receptor family GPRC5. Deregulation of its expression is associated with the development and progression of various types of tumours, particularly [...] Read more.
PEIG-1/GPRC5A (phorbol ester induced gene-1/G-protein Coupled Receptor Class C Group 5 Member A) was the first identified member of the orphan G protein-coupled receptor family GPRC5. Deregulation of its expression is associated with the development and progression of various types of tumours, particularly colon carcinoma. In this work, we study the effects of vitamin D (VD, cholecalciferol) and retinoic acid (RA) on GPRC5A mRNA expression in the colorectal cancer cell lines Caco-2 and T84. Both VD (10 µM) and all-trans retinoic acid (ATRA, atRA, RA) (10 µM) increased GPRC5A mRNA levels. Protein kinase C (PKC) inhibition with Gö6983 (10 µM) completely abolished the effects of VD and RA on GPRC5A expression. In parallel, VD and RA increased cytosolic and mitochondrial ROS levels (cROS and mtROS). However, the antioxidants NAC (10 mM) and MitoTEMPO (10 µM) raised GPRC5A gene expression levels in the presence of VD or RA, suggesting that elevated ROS may inhibit GPRC5A expression. In conclusion, both VD and RA stimulate GPRC5A expression. The mechanisms involve a common and essential PKC signalling pathway, as Gö6983 inhibited both VD- and RA-induced signalling. Full article
Show Figures

Graphical abstract

23 pages, 7191 KiB  
Article
Interleukin-15Rα-Sushi-Fc Fusion Protein Co-Hitchhikes Interleukin-15 and Pheophorbide A for Cancer Photoimmunotherapy
by Zhe Li, Jiaojiao Xu, Hongzheng Lin, Sheng Yu, Jingwen Sun, Chen Zhang, Sihang Zhang, Tingting Li, Afeng Yang and Wei Lu
Pharmaceutics 2025, 17(5), 615; https://doi.org/10.3390/pharmaceutics17050615 - 5 May 2025
Viewed by 602
Abstract
Background: Interleukin-15 (IL-15) stimulates the proliferation of natural killer cells or T cells, which, in combination with photodynamic therapy (PDT), has emerged as an effective strategy for cancer photoimmunotherapy. Instead of direct cytokine receptor activation, IL-15 necessitates first binding to the IL-15 [...] Read more.
Background: Interleukin-15 (IL-15) stimulates the proliferation of natural killer cells or T cells, which, in combination with photodynamic therapy (PDT), has emerged as an effective strategy for cancer photoimmunotherapy. Instead of direct cytokine receptor activation, IL-15 necessitates first binding to the IL-15 receptor α chain subunit (IL-15Rα), followed by trans-presentation to the IL-15 receptor β/γ chain subunit on the effector cells for pharmacologic activation. Therefore, the delivery of IL-15 remains a major challenge owing to its short half-life, its lack of targeting activity, and the limited availability of IL-15Rα. Methods: A co-hitchhiking delivery approach using recombinant IL-15 (rIL-15) and a photosensitizer, pheophorbide A (PhA), is developed for enhanced combinatorial cancer immunotherapy with PDT. A recombinant IL-15Rα-sushi-Fc fusion protein (rILR-Fc) is designed to load rIL-15 through the IL-15Rα sushi domain, which mimics its trans-presentation. Moreover, the Fc moiety of rILR-Fc can load PhA based on its high binding affinity. Results: Through self-assembly, rILR-Fc/PhA/rIL-15 nanoparticles (NPs) are formulated to co-hitchhike PhA and rIL-15, which improves the tumor accumulation of PhA and rIL-15 through receptor-mediated transcytosis. Moreover, the nanoparticles prolong the blood half-life of rIL-15 but do not alter the elimination rate of PhA from the blood. The rILR-Fc/PhA/rIL-15 NPs effectively elicit potent systemic antitumor immunity and long-lasting immune memory against tumor rechallenge in model mice bearing orthotopic colon tumors. Conclusions: The enhanced antitumor therapeutic effect demonstrates that the co-hitchhiking delivery strategy, optimizing the pharmacokinetics of both the photosensitizer and IL-15, provides a promising strategy for combinatorial photodynamic and IL-15 immunotherapy. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

13 pages, 12294 KiB  
Review
Vagus Nerve Stimulation in Stroke Management: Brief Review of Evolution and Present Applications Paired with Rehabilitation
by Prasad S. Vannemreddy, Mark Cummings, Romana V. Bahrii and Konstantin V. Slavin
Brain Sci. 2025, 15(4), 346; https://doi.org/10.3390/brainsci15040346 - 27 Mar 2025
Viewed by 1233
Abstract
Cerebrovascular accident (CVA) or stroke is a devastating neurological condition with dismal prognosis associated with recurrent episodes that further damage the neuronal networks, thus disabling neuronal plasticity. Vagus nerve stimulation (VNS) has been used in clinical practice to treat epilepsy for several decades [...] Read more.
Cerebrovascular accident (CVA) or stroke is a devastating neurological condition with dismal prognosis associated with recurrent episodes that further damage the neuronal networks, thus disabling neuronal plasticity. Vagus nerve stimulation (VNS) has been used in clinical practice to treat epilepsy for several decades and is well accepted as a safe procedure devoid of serious adverse events. Bailey and Bremer demonstrated that VNS has the capabilities to stimulate neuronal pathways that enhance the recovery of damaged cerebral function. Further studies have strengthened these observations, while technology has improved the tolerability of implants, resulting in VNS applications for epilepsy. Several animal models on neural plasticity have improved our understanding of VNS and its ability to provide neuromodulation to improve recovery in stroke patients. The closed-loop stimulation of the vagus nerve with individualized stimulation parameters combined with physical therapy appears to be an attractive option today. VNS is also being tested as a noninvasive trans-cutaneous modality to further improve patient acceptance and tolerability. However, the implantation of VNS is yielding desirable outcomes and appears to be a more reliable treatment for stroke rehabilitation in clinical trials. Full article
(This article belongs to the Section Systems Neuroscience)
Show Figures

Figure 1

13 pages, 3383 KiB  
Article
Clinical Efficacy of Adiponectin-Stimulating Peptide on UV-Induced Skin Damage
by Yongwoo Kim, Seokjeong Yoon, Sungwoo Kim, Yeonjae Kim, Sekyoo Jeong and Hyun-jung Kim
Cosmetics 2025, 12(2), 54; https://doi.org/10.3390/cosmetics12020054 - 18 Mar 2025
Viewed by 910
Abstract
Several studies have suggested that adiponectin is an anti-aging molecule based on its potential involvement of adipose tissue in skin aging. In this study, we investigated the anti-photoaging efficacy of an adiponectin expression-stimulating peptide derivative, pentasodium tetracarboxymethyl hexanoyl dipeptide-12 (PTHD-12), in in vitro [...] Read more.
Several studies have suggested that adiponectin is an anti-aging molecule based on its potential involvement of adipose tissue in skin aging. In this study, we investigated the anti-photoaging efficacy of an adiponectin expression-stimulating peptide derivative, pentasodium tetracarboxymethyl hexanoyl dipeptide-12 (PTHD-12), in in vitro and ex vivo human skin explant models. A double-blind, randomized, comparator placebo-controlled study was performed to confirm clinical efficacy. After irradiation with 50 mJ/cm2 of UVB, a UV-induced decrease in adiponectin expression and an increase in inflammatory cytokines in cultured human dermal fibroblasts were prevented by the PTHD-12 treatment test peptide. Mitigation of cellular senescence and senescence-associated secretory phenotype (SASP) expressions induced by UVB (50 mJ/cm2) exposure were also mitigated by the post-treatment of PTHD-12, which was also observed in an ex vivo human skin explant model. The restoration of filaggrin, loricrin, and claudin-1 protein expression in a cultured human skin explant was observed. A clinical study further confirmed that the restoration of UVB-induced skin damage, represented by increased skin redness and trans-epidermal water loss, was accelerated by the use of test peptide PTHD-12-containing products. These results suggest that targeting adiponectin may be a plausible strategy for the development of anti-aging ingredients. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

21 pages, 2412 KiB  
Review
Role of γ-Aminobutyric Acid (GABA) as an Inhibitory Neurotransmitter in Diabetes Management: Mechanisms and Therapeutic Implications
by Hassan Barakat and Thamer Aljutaily
Biomolecules 2025, 15(3), 399; https://doi.org/10.3390/biom15030399 - 11 Mar 2025
Cited by 7 | Viewed by 2478
Abstract
GABA (γ-Aminobutyric Acid), a well-established inhibitory neurotransmitter in the central nervous system, has garnered considerable interest for its potential role in diabetes management, particularly due to its presence in pancreatic islets. This review aims to explore the therapeutic role of GABA in diabetes [...] Read more.
GABA (γ-Aminobutyric Acid), a well-established inhibitory neurotransmitter in the central nervous system, has garnered considerable interest for its potential role in diabetes management, particularly due to its presence in pancreatic islets. This review aims to explore the therapeutic role of GABA in diabetes management and its potential mechanisms for antidiabetic effects. Relevant studies were searched across databases such as PubMed and ScienceDirect, applying strict eligibility criteria focused on GABA administration methods and diabetic models. The collective results showed that the administration of GABA in diabetic models resulted in remarkable enhancements in glucose and insulin homeostasis, favorable modifications in lipid profiles, and amelioration of dysfunctions across neural, hepatic, renal, and cardiac systems. The findings from the literature demonstrated that GABAergic signaling within pancreatic tissues can significantly contribute to the stimulation of β cell proliferation through the facilitation of a sustained trans-differentiation process, wherein glucagon-secreting α cells are converted into insulin-secreting β-like cells. In addition, activated GABAergic signaling can trigger the initiation of the PI3K/AKT signaling pathway within pancreatic tissues, leading to improved insulin signaling and maintained glucose homeostasis. GABAergic signaling can further function within hepatic tissues, promoting inhibitory effects on the expression of genes related to gluconeogenesis and lipogenesis. Moreover, GABA may enhance gut microbiota diversity by attenuating gut inflammation, attributable to its anti-inflammatory and immunomodulatory properties. Furthermore, the neuroprotective effects of GABA play a significant role in ameliorating neural disorders associated with diabetes by facilitating a substantial reduction in neuronal apoptosis. In conclusion, GABA emerges as a promising candidate for an antidiabetic agent; however, further research is highly encouraged to develop a rigorously designed framework that comprehensively identifies and optimizes the appropriate dosages and intervention methods for effectively managing and combating diabetes. Full article
(This article belongs to the Special Issue Therapeutic Potential of Natural Products in Metabolic Diseases)
Show Figures

Figure 1

19 pages, 3367 KiB  
Article
Differentiation of Isomeric TAT1-CARNOSINE Peptides by Energy-Resolved Mass Spectrometry and Principal Component Analysis
by Alicia Maroto, Olivier Briand, Alessia Distefano, Filiz Arioz, Olivier Monasson, Elisa Peroni, Giuseppe Grasso, Christine Enjalbal and Antony Memboeuf
Molecules 2025, 30(4), 853; https://doi.org/10.3390/molecules30040853 - 12 Feb 2025
Viewed by 998
Abstract
L-carnosine (Car) is an endogenous dipeptide with significant potential in drug discovery for neurodegenerative diseases, while TAT1, a small arginine-rich peptide derived from the HIV-1 trans-activator protein (TAT), is known to stimulate proteasome activity. In this study, three isomeric peptides were synthesised by [...] Read more.
L-carnosine (Car) is an endogenous dipeptide with significant potential in drug discovery for neurodegenerative diseases, while TAT1, a small arginine-rich peptide derived from the HIV-1 trans-activator protein (TAT), is known to stimulate proteasome activity. In this study, three isomeric peptides were synthesised by incorporating the Car moiety at the N-terminus, C-terminus, or central position of the TAT1 sequence. To differentiate these isomers, high-resolution and energy-resolved CID MS/MS experiments were conducted. The resulting MS/MS spectra showed a high degree of similarity among the peptides, predominantly characterised by fragment ion peaks arising from arginine-specific neutral losses. Energetic analysis was similarly inconclusive in resolving the isomers. However, Principal Component Analysis (PCA) enabled clear differentiation of the three peptides by considering the entire MS/MS spectra rather than focusing solely on precursor ion intensities or major fragment peaks. PCA loadings revealed distinct fragment ions for each peptide, albeit with lower intensities, providing insights into consecutive fragmentation patterns. Some of these specific peaks could also be attributed to scrambling during fragmentation. These results demonstrate the potential of PCA as a simple chemometric tool for semi-automated peak identification in complex MS/MS spectra. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 3rd Edition)
Show Figures

Figure 1

15 pages, 1708 KiB  
Article
Oviposition Deterrents from Extracts of Eryngium foetidum Against Potato Tuber Moth Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae)
by Yanfen Ma, Xinzhou Yang, Mei Wu, Yunjiao Guo, Wenxia Dong, Rui Tang and Chun Xiao
Insects 2025, 16(2), 158; https://doi.org/10.3390/insects16020158 - 4 Feb 2025
Viewed by 855
Abstract
The potato tuber moth Phthorimaea operculella is a serious boring pest of potato. An integrated ecological approach to sustainable pest management is necessary for the control of this species. This study investigated the effects of minced leaves and plant extracts of Eryngium foetidum [...] Read more.
The potato tuber moth Phthorimaea operculella is a serious boring pest of potato. An integrated ecological approach to sustainable pest management is necessary for the control of this species. This study investigated the effects of minced leaves and plant extracts of Eryngium foetidum on the oviposition behavior of PTM females. The behavioral regulatory components of PTM females in response to the extracts were determined using chemical analyses and electrophysiological tests. Individual electroantennographic detection (EAD)-active compounds and mixtures were evaluated using oviposition choice bioassays. The results indicate that minced leaves had a deterrent effect on oviposition. The extracts at low dosages had an attraction effect, while high dosages had a repellent effect on the oviposition of PTM adult females. The dominant compounds of the extracts were trans-2-dodecenal and trans-2-tridecenal and showed EAD activity. trans-2-dodecenal, trans-2-tridecenal and their mixtures showed significant oviposition-repellent effects toward the PTM. The oviposition stimulation indices (OSIs) of trans-2-dodecenal and trans-2-tridecenal were −100% and −94.03% at 10 mg/mL, respectively. The OSIs of mixtures at natural ratios of 10 mg/mL and 5 mg/mL were −95.11% and −90.96%, respectively. The results can be used for the further development of ecological control strategies for this pest species. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Figure 1

16 pages, 734 KiB  
Protocol
The Effect of Repetitive Transcranial Magnetic Stimulation Treatment on Plasma BDNF Concentration and Executive Functions in Parkinson’s Disease: A Theoretical Translational Medicine Approach
by Gianna Carla Riccitelli, Riccardo Gironi, Giorgia Melli and Alain Kaelin-Lang
Int. J. Mol. Sci. 2025, 26(3), 1205; https://doi.org/10.3390/ijms26031205 - 30 Jan 2025
Cited by 1 | Viewed by 1460
Abstract
Parkinson’s disease (PD) neuropathology is marked by the selective loss of dopaminergic neurons in the substantia nigra pars compacta, accompanied by the widespread involvement of central and peripheral structures. Brain-derived neurotrophic factor (BDNF), a neurotrophin crucial for the survival of dopaminergic neurons, plays [...] Read more.
Parkinson’s disease (PD) neuropathology is marked by the selective loss of dopaminergic neurons in the substantia nigra pars compacta, accompanied by the widespread involvement of central and peripheral structures. Brain-derived neurotrophic factor (BDNF), a neurotrophin crucial for the survival of dopaminergic neurons, plays a pivotal role in neuronal and glial development, neuroprotection, and the modulation of synaptic plasticity. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive technique, enhances neurotransmitter release, trans-synaptic efficacy, signaling pathways, gene transcription, neuroplasticity, and neurotrophism. Evidence supports that high-frequency rTMS increases BDNF expression and improves task-specific cognitive deficits in PD patients. This article outlines a detailed protocol to investigate whether rTMS targeting the dorsolateral prefrontal cortex bilaterally induces changes in plasma BDNF levels, the plasma-derived exosomal BDNF concentration, and executive functions in individuals with PD. Identifying non-invasive interventions that effectively modulate the neurobiological mechanisms underlying cognitive and behavioral functions is critical for addressing cognitive impairments and mitigating disease progression in the PD population. This study aims to advance translational research by identifying biomarkers and developing therapeutic strategies for future applications in neurodegenerative diseases. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: “Neuroinflammation”)
Show Figures

Figure 1

24 pages, 7713 KiB  
Article
Integrating Physiology, Transcriptome, and Metabolomics Reveals the Potential Mechanism of Nitric Oxide Concentration-Dependent Regulation of Embryo Germination in Sorbus pohuashanensis
by Caihong Zhao, Yue Zhang and Ling Yang
Plants 2025, 14(3), 344; https://doi.org/10.3390/plants14030344 - 23 Jan 2025
Viewed by 923
Abstract
Nitric oxide (NO) breaks a seed’s dormancy and stimulates germination by signaling. However, the key physiological metabolic pathways and molecular regulatory mechanisms are still unclear. Therefore, this study used physiological, transcriptomic, and metabolomics methods to analyze the key genes and metabolites involved in [...] Read more.
Nitric oxide (NO) breaks a seed’s dormancy and stimulates germination by signaling. However, the key physiological metabolic pathways and molecular regulatory mechanisms are still unclear. Therefore, this study used physiological, transcriptomic, and metabolomics methods to analyze the key genes and metabolites involved in the NO regulation of plant embryo germination and their potential regulatory mechanisms. The physiological analysis results indicate that the appropriate concentration of NO increased the content of NO and hydrogen peroxide (H2O2) in cells, stimulated the synthesis of ethylene and jasmonic acid (JA), induced a decrease in abscisic acid (ABA) content, antagonistic to the gibberellin (GA3) effect, and promoted embryo germination and subsequent seedling growth. However, the high concentrations of NO caused excessive accumulation of H2O2, destroyed the reactive oxygen species (ROS) balance, and inhibited embryo germination and seedling growth. The combined analysis of transcriptomics and metabolomics showed that the genes related to phenylpropanoid (phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, ferulate-5-hydroxylase, coniferyl-alcohol glucosyltransferase), and flavonoid synthesis (10 genes such as CHS) were significantly up-regulated during embryo germination. The high concentration of exogenous NO inhibited embryo germination by up-regulating the expression of 4-coumaric acid coenzyme A ligase (4CL) and negatively regulating the expression of flavonoid synthesis genes. This suggests that NO concentration-dependently regulates phenylpropanoid and flavonoid biosynthesis, thereby affecting ROS metabolism and hormone levels, and ultimately regulates the dormancy and germination of Sorbus pohuashanensis embryos. Full article
(This article belongs to the Special Issue Sexual and Asexual Reproduction in Forest Plants)
Show Figures

Figure 1

19 pages, 3859 KiB  
Article
Anti-Inflammatory and Anti-Migratory Effects of Morin on Non-Small-Cell Lung Cancer Metastasis via Inhibition of NLRP3/MAPK Signaling Pathway
by Punnida Arjsri, Kamonwan Srisawad, Sonthaya Umsumarng, Pilaiporn Thippraphan, Songyot Anuchapreeda and Pornngarm Dejkriengkraikul
Biomolecules 2025, 15(1), 103; https://doi.org/10.3390/biom15010103 - 10 Jan 2025
Cited by 1 | Viewed by 1750
Abstract
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14–17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing [...] Read more.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14–17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis. This study evaluated the anti-inflammatory and anti-metastatic properties of morin, a bioactive compound derived from a Thai medicinal herb, focusing on its effects on NLRP3 inflammasome-mediated pathways in an in vitro NSCLC model. The A549 and H1299 cell lines were stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) to activate the NLRP3 pathway. The inhibition effects exhibited by morin in reducing pro-inflammatory secretion in LPS- and ATP-stimulated NSCLC cells were assessed by ELISA, while wound healing and trans-well invasion assays evaluated its impact on cell migration and invasion. RT-qPCR measurement quantified the expression of inflammatory genes, and zymography and Western blotting were used to examine changes in invasive protein levels, epithelial-to-mesenchymal transition (EMT) markers, and underlying molecular mechanisms. Our findings demonstrated the significant ability of morin to decrease the production of IL-1β, IL-18, and IL-6 in a dose-dependent manner (p < 0.05), as well as suppress NSCLC cell migration and invasion. Morin downregulated invasive proteins (MMP-2, MMP-9, u-PAR, u-PA, MT1-MMP) and EMT markers (fibronectin, N-cadherin, vimentin) (p < 0.01) while also reducing the mRNA levels of NLRP3, IL-1β, IL-18, and IL-6. Mechanistic investigations revealed that morin suppressed NLRP3 inflammasome activity and inactivated MAPK pathways. Specifically, it decreased the expression of NLRP3 and ASC proteins and reduced caspase-1 activity, while reducing the phosphorylation of ERK, JNK, and p38 proteins. Collectively, these findings suggest that morin’s inactivation of the NLRP3 inflammasome pathway could offer a novel therapeutic strategy for counteracting pro-tumorigenic inflammation and metastatic progression in NSCLC. Full article
(This article belongs to the Special Issue Inflammation—The Surprising Bridge between Diseases)
Show Figures

Figure 1

Back to TopTop