Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = trans-nerolidol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3635 KiB  
Article
Aromatic Volatile Substances in Different Types of Guangnan Dixu Tea Based on HS-SPME-GC-MS Odor Activity Value
by Ying Feng, Di Tian, Chaoliang Wang, Yong Huang, Yang Luo, Xiuqiong Zhang and Lei Li
Metabolites 2025, 15(4), 257; https://doi.org/10.3390/metabo15040257 - 9 Apr 2025
Viewed by 539
Abstract
Dixu tea is one of the characteristic tea germplasm resources of southeastern Yunnan, and is also a precious wild tea germplasm resource. Background: In order to further develop Dixu tea products and improve their flavor, this article studies the effects of different [...] Read more.
Dixu tea is one of the characteristic tea germplasm resources of southeastern Yunnan, and is also a precious wild tea germplasm resource. Background: In order to further develop Dixu tea products and improve their flavor, this article studies the effects of different processing methods on the aroma quality of Dixu tea. Methods: A comprehensive analysis of the aroma quality of Diwei tea was conducted using HS-SPME combined with GC-MS and multivariate statistical analysis. A principal component analysis (PCA) was applied to process the detected volatile substances and an orthogonal partial least squares-discriminant analysis (OPLS-DA) model was established. We evaluated the contribution of major compounds in the tea aroma by calculating the odor activity value (OAV). Results: The results showed that a total of 67 compounds were identified. A total of 27 major aromatic volatile compounds (OAV > 1) were screened, and 17 key differential volatile compounds were identified in different tea samples, including octanoic acid, d-citrol, laurene, hexanal, citral, β-cyclic citral, trans-2-hexenal, γ-nonanolide, β-ionone, geranylacetone, 1,1,6-trimethyl-1,2-dihydronaphthalene, geraniol, methyl salicylate, linalool, nerolidol, and 7,11-dimethyl-3-methylene-1,6,10-dodecatriene. Combined with the OAV analysis, it is shown that a floral fragrance is a common feature of Guangnan Dixu tea varieties. In addition, white tea also has a fragrant aroma, while black tea, green tea, and bamboo tube tea are all accompanied by a fruity aroma. Conclusions: In summary, processing techniques regulate the aroma characteristics of various types of tea by changing the types and contents of volatile aroma compounds. This provides a theoretical basis for exploring and utilizing tea production resources in the future. Full article
Show Figures

Figure 1

20 pages, 13101 KiB  
Article
Dalbergia odorifera Trans-Nerolidol Protects Against Myocardial Ischemia via Downregulating Cytochrome- and Caspases-Signaling Pathways in Isoproterenol-Induced Rats
by Canhong Wang, Yulan Wu, Bao Gong, Xiangsheng Zhao, Hui Meng, Junyu Mou, Xiaoling Cheng, Yinfeng Tan and Jianhe Wei
Int. J. Mol. Sci. 2025, 26(5), 2251; https://doi.org/10.3390/ijms26052251 - 3 Mar 2025
Cited by 2 | Viewed by 829
Abstract
Dalbergia odorifera is widely used to treat cardiovascular diseases. Our research group found that Dalbergia odorifera volatile oil has a good anti-myocardial ischemic effect, and its main pharmacodynamic components are trans-nerolol and its oxides. However, the exact mechanisms underlying this effect have not [...] Read more.
Dalbergia odorifera is widely used to treat cardiovascular diseases. Our research group found that Dalbergia odorifera volatile oil has a good anti-myocardial ischemic effect, and its main pharmacodynamic components are trans-nerolol and its oxides. However, the exact mechanisms underlying this effect have not yet been elucidated. This study aimed to explore the potential myocardial protective effects of trans-nerolol and its underlying molecular mechanisms. Molecular docking was used to predict and visualize the possible mechanism of the anti-apoptotic myocardial protection by trans-nerolol. The myocardial protective effect of trans-nerolol was evaluated by observing pathological injury, myocardial enzyme levels, oxidation, antioxidant levels, and the expression of related proteins. Molecular docking results showed that trans-nerolol binds closely to cytochrome C (Cytc) and apoptosis-related proteins, suggesting that it may play a role in interacting with these target proteins. The results showed that pre-treatment with dose-dependent trans-nerolol significantly mitigated the myocardial histological damage; decreased lactate dehydrogenase (LDH), creatinine kinase (CK), alanine transaminase (ALT), and aspartate transaminase (AST) levels; reduced nitric oxide (NO) production, hydrogen peroxide (H2O2), and lipid peroxide (LPO); and increased the total antioxidant content (T-AOC), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) activities compared with the model group. In addition, dose-dependent trans-nerolol significantly increased the Na+-K+-ATPase and Ca2+-Mg2+-ATPase levels. Moreover, trans-nerolol markedly reduced the endogenous and external apoptotic pathways; downregulated the protein expression of Cytc, apoptotic protease activating factor-1 (Apaf1), Fibroblast-associated (Fas), Cysteine-aspartate protease 3 (Caspase3), Cysteine-aspartate protease 8 (Caspase8), and Cysteine-aspartate protease 9 (Caspase9); and upregulated the expression of Heat shock protein 70 (Hsp70) and B-cell lymphoma-2 (Bcl-2). These data indicate that trans-nerolol exerts protective effects against myocardial ischemia (MI), and its mechanism is associated with the suppression of the Cytc- and caspase-signaling pathways. Trans-nerolol has a therapeutic effect on MI, and its mechanism of action is related to its anti-apoptotic effect. These results suggest that Dalbergia odorifera has a potential role to be developed as an MI-promoting therapeutic agent. Full article
Show Figures

Figure 1

18 pages, 5927 KiB  
Article
Analysis of Differences in Volatile Components of Rucheng Baimao (Camellia pubescens) Black Tea in Different Seasons
by Junye Zhu, Yuebin Zhou and Haitao Wen
Foods 2025, 14(5), 763; https://doi.org/10.3390/foods14050763 - 24 Feb 2025
Cited by 3 | Viewed by 683
Abstract
At present, there are few studies on seasonal differences in the aroma quality and volatile components of Rucheng Baimao (Camellia pubescens) black tea. In this study, sensory evaluation and volatile component analysis were carried out on one sample of Rucheng Baimao [...] Read more.
At present, there are few studies on seasonal differences in the aroma quality and volatile components of Rucheng Baimao (Camellia pubescens) black tea. In this study, sensory evaluation and volatile component analysis were carried out on one sample of Rucheng Baimao black tea corresponding to spring, summer, and autumn, respectively. The results of sensory evaluation showed that the black teas of all three seasons had floral aromas. However, the aroma quality of spring black tea was the best, followed by that of autumn black tea, and summer black tea was the worst. The analysis of volatile components showed that alcohols, esters, and alkanes were the main substance categories. In addition, the results of the aroma index were consistent with those of the sensory evaluation, indicating that spring black tea had the best aroma quality, followed by autumn black tea and then summer black tea. Eleven key differential volatile components were screened by combining PLS-DA analysis (VIP > 1, p < 0.05) and rOAV > 1. Among them, geraniol, methyl salicylate, nonanal, and (E)-citral accumulated the most in spring black tea, linalool, phenylacetaldehyde, benzaldehyde, phenethyl alcohol, benzyl alcohol, and β-ionone accumulated the most in summer black tea, and trans-nerolidol accumulated the most in autumn black tea. This study aims to provide a theoretical reference for the regulation of the aroma quality of Rucheng Baimao black tea. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

20 pages, 3907 KiB  
Article
Exploring Volatiles and Biological Effects of Commiphora africana and Boswellia papyrifera Incense
by Sara A. Eltigani, Chisato Ohta, Ryota Nakamiya, Mizuki Yokono, Tomohiro Bito, Kenji Takahashi, Yukinori Yabuta, Mohamed M. Eltayeb, Toshio Ohta and Atsushi Ishihara
Molecules 2025, 30(3), 499; https://doi.org/10.3390/molecules30030499 - 23 Jan 2025
Viewed by 1202
Abstract
The resin of Commiphora africana and the resin and bark of Boswellia papyrifera play versatile roles in traditional Sudanese culture, including use in inhalation therapy, liquid remedies, and as chewing gum. Thus, this study aimed to analyze the volatile compounds in these materials [...] Read more.
The resin of Commiphora africana and the resin and bark of Boswellia papyrifera play versatile roles in traditional Sudanese culture, including use in inhalation therapy, liquid remedies, and as chewing gum. Thus, this study aimed to analyze the volatile compounds in these materials using various extraction methods and assess their biological activities. Extraction methods included MonoTrap solid-phase microextraction, smoke solvent trapping, and acetone immersion. Gas chromatography−mass spectrometry analysis of MonoTrap extracts identified highly volatile compounds, while smoke extracts contained compounds with lower volatility. Solvent immersion captured a broader range of compounds. The resin of C. africana was rich in limonene, verbenone, and β-selinene, whereas B. papyrifera extracts contained octyl acetate, trans-nerolidol, and nerolidol isobutyrate as major compounds. Biological assays showed C. africana smoke extract inhibited tyrosinase activity, with p-cymene and S-limonene acting as competitive inhibitors. It also inhibited the growth of cancer cells, A549 and MIA Paca-2, while solvent extracts from both resins inhibited all tested cell lines. Further, the acetone extracts exhibited strong antibacterial activity against Streptococcus mutans. These results highlight the differences in chemical composition between the two species, the impact of extraction methods, and the therapeutic potential of C. africana and B. papyrifera as sources of bioactive compounds. Full article
Show Figures

Graphical abstract

23 pages, 385 KiB  
Article
Bioactive Properties of Pentacalia vaccinioides (Kunth) Cuatrec. (Asteraceae) Essential Oils: Evaluation of Antimicrobial and Antioxidant Activities
by Luis G. Sequeda-Castañeda, María A. Castellanos-Gómez and Carlos L. A. Céspedes-Acuña
Separations 2025, 12(1), 9; https://doi.org/10.3390/separations12010009 - 5 Jan 2025
Viewed by 1207
Abstract
Essential oils (EOs) have unique properties, such as antibacterial, antioxidant, and antiviral activities, which are beneficial in various industries, including cosmetics, food, and pharmaceuticals. In this study, the antioxidant and antimicrobial activities of Pentacalia vaccinioides EOs obtained from leaves and flowers (fresh and [...] Read more.
Essential oils (EOs) have unique properties, such as antibacterial, antioxidant, and antiviral activities, which are beneficial in various industries, including cosmetics, food, and pharmaceuticals. In this study, the antioxidant and antimicrobial activities of Pentacalia vaccinioides EOs obtained from leaves and flowers (fresh and dried plant material) were evaluated using hydrodistillation (HD), steam distillation (SD), simultaneous distillation–extraction (SDE), and solid-phase microextraction (SPME) techniques. Antimicrobial activity (minimum inhibitory concentration, MIC) and antioxidant capacity (half-maximal inhibitory concentration, IC50) were determined. The identification and quantification of the compounds present in the EOs were conducted by gas chromatography coupled to mass spectrometry (GC-MS). The main secondary metabolites identified in most samples obtained by different extraction techniques included phenol (~18%), 1S-α-pinene (~15%), β-phellandrene (~13%), β-pinene (~12%), 4-terpineol (~10%), γ-terpinene (~10%), trans-nerolidol (~8%), limonene (~8%), and β-thujene (~6%). EOs obtained by HD, SD, and SDE exhibited antioxidant activity, with IC50 values between 621.7 and 696.6 µg/mL. Additionally, the EOs demonstrated bactericidal activity against Bacillus subtilis and Staphylococcus aureus, with MIC values of 5.0 and 45 µg/mL, respectively. Escherichia coli and Pseudomonas aeruginosa did not show antimicrobial susceptibility to EOs. This study constitutes the first evaluation of Pentacalia vaccinioides EOs, demonstrating their bioactive potential and the relevance of the extraction method. The findings highlight this species as a promising source of natural compounds for therapeutic and preservative applications, depending on the type of plant material and extraction technique used. Future research should investigate how microclimatic conditions and plant development affect the chemical composition and elucidate the molecular mechanisms behind the observed bioactivities to better understand their cellular actions. Furthermore, the evaluation of the applications of EOs and hydrolates in the pharmaceutical and food industries, along with the exploration of the bioactive potential of extraction-derived hydrolates, offers a promising avenue to maximize plant utility. Full article
(This article belongs to the Special Issue Essential Oils: Extraction, Chemical Composition, and Bioactivities)
11 pages, 1284 KiB  
Article
In Vitro Evaluation of the Antifungal Properties of Bixa orellana L. Essential Oil from the Ecuadorian Amazon Against Candida albicans (ATCC 10231)
by María Belén Cruz Berrú, María Coraima Mora García, Sandra Luisa Soria Re, Jannys Lizeth Rivera Barreto, Luis Ramón Bravo Sánchez, Matteo Radice, Stefano Manfredini and Reinier Abreu-Naranjo
Life 2024, 14(12), 1628; https://doi.org/10.3390/life14121628 - 9 Dec 2024
Cited by 1 | Viewed by 1571
Abstract
Essential oils are investigated due to their biological activity, and the Amazon rainforest, with its rich biodiversity, is a promising source of therapeutic compounds. The aim of this study was to evaluate the essential oil from the leaves of Bixa orellana as an [...] Read more.
Essential oils are investigated due to their biological activity, and the Amazon rainforest, with its rich biodiversity, is a promising source of therapeutic compounds. The aim of this study was to evaluate the essential oil from the leaves of Bixa orellana as an antifungal agent, thus contributing to the search for alternatives that can address the growing resistance to conventional antifungals. B. orellana leaves were collected in the Ecuadorian Amazon and their essential oil was obtained by steam distillation. Their chemical composition was analysed by Gas Chromatography-Mass Spectrometry (GC-MS) and their antifungal activity against Candida albicans was evaluated using the Kirby–Bauer disc diffusion method (ATCC 10231), with nystatin as a positive control. GC-MS analysis revealed the presence of 60 compounds, the main ones being dihydroedulan (27.5%), β-caryophyllene (10.3%), nerolidol (7.21%), trans-β-bergamotene (5.73%), α-santalene (4.94%) and trans-α-bergamotene (4.26%). The essential oil showed moderate antifungal activity against C. albicans, producing an inhibition halo of 13 mm in diameter, which is 48% of the inhibition observed with nystatin (27 mm). The presence of sesquiterpenes, such as β-caryophyllene, known for its membrane-disrupting properties, probably contributes to the observed antifungal effects. The study highlights the potential of B. orellana essential oil as a natural antifungal agent; however, further research is required to evaluate its efficacy against a wider range of pathogenic fungi, its possible synergistic effects with conventional antifungals and its safety and efficacy in vivo. Full article
Show Figures

Figure 1

16 pages, 2327 KiB  
Article
Volatile Distribution in Flowers of Lathyrus odoratus L. by HS-SPME-GC Technique and Enantiomeric Separation Data
by James Calva, Mayerly Parra and Ángel Benítez
Plants 2024, 13(23), 3272; https://doi.org/10.3390/plants13233272 - 21 Nov 2024
Viewed by 1159
Abstract
Lathyrus odoratus L., commonly known as sweet pea, is a plant with a distinctive aroma that can develop in various habitats. An analysis of the aromatic profile of the species was conducted using the HS-SPME (solid-phase microextraction headspace) technique. This study aimed to [...] Read more.
Lathyrus odoratus L., commonly known as sweet pea, is a plant with a distinctive aroma that can develop in various habitats. An analysis of the aromatic profile of the species was conducted using the HS-SPME (solid-phase microextraction headspace) technique. This study aimed to explore the composition of and variation in the floral scent emissions of L. odorathus. The floral scents from fresh flowers were collected over different months and analyzed using gas chromatography coupled with mass spectrometry on apolar and polar stationary phase columns. In the apolar column, the majority compounds included linalool (19.27–5.79%), α-trans-bergamotene (29.4–14.21%), and phenyl ethyl alcohol (30.01–1.56%), while on the polar column, the predominant compounds included myrcene (13.25%), (E,E)-α-farnesene (26.33–8.16%), α-trans-bergamotene (42.09–24.82%), and others. This investigation was complemented by enantioselective analysis using a chiral phase based in cyclodextrins, which revealed the presence of (1R)-(+)-α-pinene, (S)-(−)-limonene, (R)-(+)-germacrene D, and (R)-(E)-nerolidol as enantiomerically pure components and linalool as a racemic mixture. Notably, the principal component analysis (PCA) and heatmap revealed variations among the chemical compounds collected at different harvest times. This demonstrates that temporal factors indeed impact chemical compound production. Furthermore, research on the aromatic properties of flowers provides a theoretical basis for studying and improving the components of their scent. Full article
Show Figures

Figure 1

29 pages, 10006 KiB  
Article
The Impacts of Frozen Material-Other-Than-Grapes (MOG) on Aroma Compounds of Cabernet Franc and Cabernet Sauvignon
by Yibin Lan, Xiaoyu Xu, Jiaming Wang, Emily Aubie, Marnie Crombleholme and Andrew Reynolds
Beverages 2024, 10(3), 68; https://doi.org/10.3390/beverages10030068 - 2 Aug 2024
Viewed by 1633
Abstract
An undesirable sensory attribute (“floral taint”) has recently been detected in red wines from some winegrowing jurisdictions in North America (e.g., Ontario, British Columbia, Washington), caused by the introduction of frost-killed leaves and petioles [materials-other-than-grapes (MOG)] during mechanical harvest and winemaking. It was [...] Read more.
An undesirable sensory attribute (“floral taint”) has recently been detected in red wines from some winegrowing jurisdictions in North America (e.g., Ontario, British Columbia, Washington), caused by the introduction of frost-killed leaves and petioles [materials-other-than-grapes (MOG)] during mechanical harvest and winemaking. It was hypothesized that terpenes, norisoprenoids, and higher alcohols would be the main responsible compounds. The objectives were to investigate the causative volatile compounds for floral taint and explore threshold concentrations for this problem. Commercial wines displaying varying intensities of floral taint were subjected to GC-MS and sensory analysis. Several odor-active compounds were higher in floral-tainted wines, including terpenes (geraniol, citronellol, cis- and trans-rose oxide), norisoprenoids (β-damascenone, β-ionone), five ethyl esters, and three alcohols. Thereafter, fermentations of Cabernet Franc (CF) and Cabernet Sauvignon (CS) (2016, 2017) were conducted. MOG treatments were (w/w): 0, 0.5%, 1%, 2%, and 5% petioles, and 0, 0.25%, 0.5%, 1%, and 2% leaf blades. Terpenes (linalool, geraniol, nerol, nerolidol, citronellol, citral, cis- and trans-rose oxides, eugenol, myrcene), norisoprenoids (α- and β-ionone), and others (e.g., hexanol, octanol, methyl and ethyl salicylate) increased linearly/quadratically with increasing MOG levels in both cultivars. Principal components analysis separated MOG treatments from the controls, with 5% petioles and 2% leaves as extremes. Increasing MOG levels in CF wines increased floral aroma intensity, primarily associated with terpenes, higher alcohols, and salicylates. Increased leaf levels in CF were associated with higher vegetal and earthy attributes. Increased petioles in CS were not correlated with floral aromas, but increased leaves increased floral, vegetal, and herbaceous attributes. Overall, petioles contributed more to floral taint than leaves through increased terpenes and salicylates (floral notes), while leaves predominantly contributed norisoprenoids and C6 alcohols (green notes). Full article
(This article belongs to the Special Issue Wine and Spirits)
Show Figures

Figure 1

34 pages, 2751 KiB  
Article
Characterisation of the Volatile Compounds and Key Odourants in Japanese Mandarins by Gas Chromatography–Mass Spectrometry and Gas Chromatography–Olfactometry
by Lingyi Li, Rui Min Vivian Goh, Yunle Huang, Kim-Huey Ee, Aileen Pua, Daphne Tan, Shanbo Zhang, Lionel Jublot, Shao Quan Liu and Bin Yu
Separations 2024, 11(8), 237; https://doi.org/10.3390/separations11080237 - 1 Aug 2024
Viewed by 2118
Abstract
Japanese mandarins are becoming increasingly popular due to their pleasant aroma. The volatiles in four varieties of Japanese mandarins (Iyokan, Ponkan, Shiranui, and Unshiu mikan) were extracted by headspace solid-phase microextraction (HS-SPME) and solvent extraction, then analysed by gas chromatography–mass spectrometry (GC-MS). Principal [...] Read more.
Japanese mandarins are becoming increasingly popular due to their pleasant aroma. The volatiles in four varieties of Japanese mandarins (Iyokan, Ponkan, Shiranui, and Unshiu mikan) were extracted by headspace solid-phase microextraction (HS-SPME) and solvent extraction, then analysed by gas chromatography–mass spectrometry (GC-MS). Principal component analysis (PCA) of the GC-MS data demonstrated distinct segregation of all four Japanese mandarin varieties. Esters, such as neryl acetate, distinguished Iyokan. Methylthymol uniquely characterised Ponkan, valencene was exclusive to Shiranui, and acids like hexanoic acid and heptanoic acid differentiated Unshiu mikan from the other three varieties. Aroma extract dilution analysis (AEDA) revealed 131 key odourants across four Japanese mandarins, including myrcene (peppery, terpenic), perillyl alcohol (green, spicy, floral), trans-nerolidol (sweet, floral), and trans-farnesol (woody, floral, green). Finally, sensory evaluation was conducted on the four Japanese mandarin peel extracts to describe the distinct aroma profile of each variety of Japanese mandarin: Iyokan had higher floral and juicy notes, Ponkan showed higher sulphury notes, Shiranui was perceived to have more albedo notes, and Unshiu mikan exhibited higher peely, green, and woody notes. Full article
Show Figures

Figure 1

15 pages, 2967 KiB  
Article
Phytochemical Composition and Biological Activity of the Essential Oil from Ericameria nauseosa Collected in Southwestern Montana, United States
by Igor A. Schepetkin, Gulmira Özek, Temel Özek, Liliya N. Kirpotina, Andrei I. Khlebnikov, Kevser Ayçiçek, Matthew Lavin and Mark T. Quinn
Plants 2024, 13(15), 2063; https://doi.org/10.3390/plants13152063 - 26 Jul 2024
Viewed by 1176
Abstract
Ericameria nauseosa (Pall. ex Pursh) G.L. Nesom & G.I. Baird) is used in traditional medicine to treat various diseases; however, little is known about the immunomodulatory activity of essential oil from this plant. Thus, we isolated essential oil from the aerial parts of [...] Read more.
Ericameria nauseosa (Pall. ex Pursh) G.L. Nesom & G.I. Baird) is used in traditional medicine to treat various diseases; however, little is known about the immunomodulatory activity of essential oil from this plant. Thus, we isolated essential oil from the aerial parts of E. nauseosa and evaluated their chemical composition and biological activity. Compositional analysis of E. nauseosa essential oil revealed that the main (>2%) components were γ-decalactone (13.3%), cryptone (9.4%), terpinen-4-ol (9.3%), (E)-methyl cinnamate (6.0%), T-cadinol (4.7%), spathulenol (3.6%), 8Z-2,3-dihydromatricaria ester (3.1%), β-phellandrene (3.0%), p-cymen-8-ol (2.2%), 3-ethoxy-2-cycloocten-1-one (2.2%), and trans-p-menth-2-en-1-ol (2.1%). Distinctive features were the lactones (up to 15%) and polyacetylenes (up to 3.1%), including (2Z,8Z)-matricaria ester and 8Z-2,3-dihydromatricaria ester. A comparison with other reported E. nauseosa essential oil samples showed that our samples were distinct from those collected in other areas of the country; however, they did have the most similarity to one sample collected in North Central Utah. Pharmacological studies showed that E. nauseosa essential oil activated human neutrophil Ca2+ influx, which desensitized these cells to subsequent agonist-induced functional responses. Based on our previously reported data that nerolidol, β-pinene, spathulenol, sabinene, and γ-terpinene were active in human neutrophils, these compounds are the most likely constituents contributing to this immunomodulatory activity. However, the relatively high amount of polyacetylenes may also contribute, as these compounds have been characterized as potent immunomodulators. Full article
(This article belongs to the Special Issue Advances in Essential Oils from Medicinal Plants)
Show Figures

Figure 1

18 pages, 1089 KiB  
Article
Effect of Leaf Grade on Taste and Aroma of Shaken Hunan Black Tea
by Kuofei Wang, Yangbo Xiao, Nianci Xie, Hao Xu, Saijun Li, Changwei Liu, Jianan Huang, Shuguang Zhang, Zhonghua Liu and Xia Yin
Foods 2024, 13(1), 42; https://doi.org/10.3390/foods13010042 - 21 Dec 2023
Cited by 7 | Viewed by 2179
Abstract
Shaken Hunan black tea is an innovative Hunan black tea processed by adding shaking to the traditional Hunan black tea. The quality of shaken black tea is influenced by leaf grades of different maturity. In this study, the taste and aroma quality of [...] Read more.
Shaken Hunan black tea is an innovative Hunan black tea processed by adding shaking to the traditional Hunan black tea. The quality of shaken black tea is influenced by leaf grades of different maturity. In this study, the taste and aroma quality of shaken Hunan black tea processed with different grades were analyzed by sensory evaluation (SP, HPLC, and HS-SPME/GC-MS). The results showed that shaken Hunan black tea processed with one bud and two leaves has the best quality, which has a sweet, mellow, and slightly floral taste, as well as a floral, honey, and sweet aroma. Moreover, caffeine and EGCG were identified as the most important bitter and astringent substances in shaken Hunan black. Combined with the analysis of GC-MS and OAV analysis, geraniol, jasmone, β-myrcene, citral, and trans-β-ocimene might be the most important components that affect the sweet aroma, while methyl jasmonate, indole, and nerolidol were the key components that affect the floral aroma of shaken Hunan black tea. This study lays a foundation for this study of the taste and aroma characteristics of shaken Hunan black tea and guides enterprises to improve shaken black tea processing technology. Full article
Show Figures

Graphical abstract

14 pages, 1585 KiB  
Article
Effect of Maturation with American Oak Chips on the Volatile and Sensory Profile of a Cabernet Sauvignon Rosé Wine and Its Comparison with Commercial Wines
by Miguel Ángel Hernández-Carapia, José Ramón Verde-Calvo, Héctor Bernardo Escalona-Buendía and Araceli Peña-Álvarez
Beverages 2023, 9(3), 72; https://doi.org/10.3390/beverages9030072 - 29 Aug 2023
Cited by 6 | Viewed by 2535
Abstract
Rosé wines are commonly consumed as young wines mainly due to their freshness and fruity character. Nevertheless, in recent years a new market looking for alternatives to traditional wines has emerged. Considering this, the study of the volatile and sensory profiles of a [...] Read more.
Rosé wines are commonly consumed as young wines mainly due to their freshness and fruity character. Nevertheless, in recent years a new market looking for alternatives to traditional wines has emerged. Considering this, the study of the volatile and sensory profiles of a varietal rosé wine aged with oak chips was carried out. Two Cabernet Sauvignon rosé wines were made: one was maturated with oak chips and the other without. Both wines were physicochemically characterized. Then, their volatile and sensory profiles were analyzed, also including two commercial wines. The results showed that the produced wines complied with Mexican regulations. Also, they showed greater relative areas in compounds such as ethyl (E)-2-hexenoate, ethyl heptanoate, ethyl nonanoate, ethyl 3-nonenoate, β-citronellol, (±)-trans-nerolidol, and β-damascenone. In their sensory profile, they were mostly related to attributes such as berries, prune, bell pepper, and herbaceous notes. Among the compounds related to barrel maturation, only cis-oak-lactone was identified in the rosé wine matured with chips. However, it was associated with vanilla, woody, smoky, and spicy attributes. According to the results, the maturation of rosé wines with oak chips could be a good alternative to provide them with unusual notes and thus offer new alternatives to traditional and new wine consumers. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Graphical abstract

20 pages, 6763 KiB  
Article
Comparative Analysis and Identification of Terpene Synthase Genes in Convallaria keiskei Leaf, Flower and Root Using RNA-Sequencing Profiling
by Sivagami-Jean Claude, Gurusamy Raman and Seon-Joo Park
Plants 2023, 12(15), 2797; https://doi.org/10.3390/plants12152797 - 28 Jul 2023
Cited by 2 | Viewed by 2309
Abstract
The ‘Lilly of the Valley’ species, Convallaria, is renowned for its fragrant white flowers and distinctive fresh and green floral scent, attributed to a rich composition of volatile organic compounds (VOCs). However, the molecular mechanisms underlying the biosynthesis of this floral scent [...] Read more.
The ‘Lilly of the Valley’ species, Convallaria, is renowned for its fragrant white flowers and distinctive fresh and green floral scent, attributed to a rich composition of volatile organic compounds (VOCs). However, the molecular mechanisms underlying the biosynthesis of this floral scent remain poorly understood due to a lack of transcriptomic data. In this study, we conducted the first comparative transcriptome analysis of C. keiskei, encompassing the leaf, flower, and root tissues. Our aim was to investigate the terpene synthase (TPS) genes and differential gene expression (DEG) patterns associated with essential oil biosynthesis. Through de novo assembly, we generated a substantial number of unigenes, with the highest count in the root (146,550), followed by the flower (116,434) and the leaf (72,044). Among the identified unigenes, we focused on fifteen putative ckTPS genes, which are involved in the synthesis of mono- and sesquiterpenes, the key aromatic compounds responsible for the essential oil biosynthesis in C. keiskei. The expression of these genes was validated using quantitative PCR analysis. Both DEG and qPCR analyses revealed the presence of ckTPS genes in the flower transcriptome, responsible for the synthesis of various compounds such as geraniol, germacrene, kaurene, linalool, nerolidol, trans-ocimene and valencene. The leaf transcriptome exhibited genes related to the biosynthesis of kaurene and trans-ocimene. In the root, the identified unigenes were associated with synthesizing kaurene, trans-ocimene and valencene. Both analyses indicated that the genes involved in mono- and sesquiterpene biosynthesis are more highly expressed in the flower compared to the leaf and root. This comprehensive study provides valuable resources for future investigations aiming to unravel the essential oil-biosynthesis-related genes in the Convallaria genus. Full article
(This article belongs to the Special Issue Recent Advances in Plant Genomics and Transcriptome Analysis)
Show Figures

Figure 1

15 pages, 1320 KiB  
Article
Chemical Variation and Environmental Influence on Essential Oil of Cinnamomum camphora
by Ting Zhang, Yongjie Zheng, Chao Fu, Haikuan Yang, Xinliang Liu, Fengying Qiu, Xindong Wang and Zongde Wang
Molecules 2023, 28(3), 973; https://doi.org/10.3390/molecules28030973 - 18 Jan 2023
Cited by 34 | Viewed by 3563
Abstract
Cinnamomum camphora is a traditional aromatic plant used to produce linalool and borneol flavors in southern China; however, its leaves also contain many other unutilized essential oils. Herein, we report geographic relationships for the yield and compositional diversity of C. camphora essential oils. [...] Read more.
Cinnamomum camphora is a traditional aromatic plant used to produce linalool and borneol flavors in southern China; however, its leaves also contain many other unutilized essential oils. Herein, we report geographic relationships for the yield and compositional diversity of C. camphora essential oils. The essential oils of 974 individual trees from 35 populations in 13 provinces were extracted by hydrodistillation and analyzed qualitatively and quantitatively by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection, respectively. Oil yields ranged from 0.01% to 3.46%, with a significantly positive correlation with latitude and a significantly negative correlation with longitude. In total, 41 compounds were identified, including 15 monoterpenoids, 24 sesquiterpenoids, and two phenylpropanoids. Essential oil compositions varied significantly among individuals and could be categorized into various chemotypes. The six main chemotypes were eucalyptol, nerolidol, camphor, linalool, selina, and mixed types. The other 17 individual plants were chemotypically rare and exhibited high levels of methyl isoeugenol, methyl eugenol, δ-selinene, or borneol. Eucalyptol-type plants had the highest average oil yield of 1.64%, followed in decreasing order by linalool-, camphor-, mixed-, selina-, and nerolidol-type plants. In addition, the five main compounds exhibited a clear geographic gradient. Eucalyptol and linalool showed a significantly positive correlation with latitude, while selina-6-en-4-ol was significantly and negatively correlated with latitude. trans-Nerolidol and selina-6-en-4-ol showed significantly positive correlations with longitude, whereas camphor was significantly and negatively correlated with longitude. Canonical correspondence analysis indicated that environmental factors could strong effect the oil yield and essential oil profile of C. camphora. Full article
(This article belongs to the Collection Essential Oils)
Show Figures

Figure 1

16 pages, 3054 KiB  
Article
Dynamic Changes of Volatile Compounds during the Xinyang Maojian Green Tea Manufacturing at an Industrial Scale
by Peng Yin, Jing-Jing Wang, Ya-Shuai Kong, Yao Zhu, Jun-Wei Zhang, Hao Liu, Xiao Wang, Gui-Yi Guo, Guang-Ming Wang and Zhong-Hua Liu
Foods 2022, 11(17), 2682; https://doi.org/10.3390/foods11172682 - 2 Sep 2022
Cited by 22 | Viewed by 3993
Abstract
Xinyang Maojian (XYMJ) is one of the premium green teas and originates from Xinyang, which is the northernmost green tea production area in China. The special geographic location, environmental conditions, and manufacturing process contribute to the unique flavor and rich nutrition of XYMJ [...] Read more.
Xinyang Maojian (XYMJ) is one of the premium green teas and originates from Xinyang, which is the northernmost green tea production area in China. The special geographic location, environmental conditions, and manufacturing process contribute to the unique flavor and rich nutrition of XYMJ green tea. Aroma is an important quality indicator in XYMJ green tea. In order to illustrate the aroma of XYMJ green tea, the key odorants in XYMJ green tea and their dynamic changes during the manufacturing processes were analyzed by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 73 volatile compounds of six different chemical classes were identified in the processed XYMJ green tea samples, and the manufacturing processes resulted in the losses of total volatile compounds. Among the identified volatile compounds, twenty-four aroma-active compounds, such as trans-nerolidol, geranylacetone, nonanal, (+)-δ-cadinene, linalool, (Z)-jasmone, cis-3-hexenyl butyrate, cis-3-hexenyl hexanoate, methyl jasmonate, and β-ocimene, were identified as the key odorants of XYMJ green tea based on odor activity value (OAV). The key odorants are mainly volatile terpenes (VTs) and fatty acid-derived volatiles (FADVs). Except for (+)-δ-cadinene, copaene, cis-β-farnesene, (Z,E)-α-farnesene and phytol acetate, the key odorants significantly decreased after fixing. The principal coordinate analysis (PCoA) and the hierarchical cluster analysis (HCA) analyses suggested that fixing was the most important manufacturing process for the aroma formation of XYMJ green tea. These findings of this study provide meaningful information for the manufacturing and quality control of XYMJ green tea. Full article
(This article belongs to the Special Issue Advances on Tea Chemistry and Function)
Show Figures

Figure 1

Back to TopTop