Analysis of Differences in Volatile Components of Rucheng Baimao (Camellia pubescens) Black Tea in Different Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
2.2. Equipment and Apparatus
2.3. Sensory Evaluation
2.4. Detection of Volatile Components
2.5. Calculation of Relative Odor Activity Value (rOAV)
2.6. Data Processing
3. Results and Discussion
3.1. Sensory Aroma Evaluation of Black Tea in Different Seasons
3.2. Analysis of Volatile Components in Black Tea from Different Seasons
3.3. Analysis of Aroma Index of Black Tea in Different Seasons
3.4. Multivariate Statistical Analysis
3.4.1. Analysis of Differential Volatile Components in Black Tea from Different Seasons
3.4.2. rOAV Analysis of Differential Volatile Components
3.4.3. Analysis of Key Differential Volatile Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, H.-L.; Huang, W.-J.; Chen, Z.-J.; Chen, Z.; Shi, J.-F.; Kong, Q.; Sun, S.-L.; Jiang, X.-H.; Chen, D.; Yan, S.-J. GC–MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food Res. Int. 2019, 120, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.-Y.; Baldermann, S.; Watanabe, N. Recent studies of the volatile compounds in tea. Food Res. Int. 2013, 53, 585–599. [Google Scholar] [CrossRef]
- Li, S.-M.; Lo, C.-Y.; Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Black tea: Chemical analysis and stability. Food Funct. 2013, 4, 10–18. [Google Scholar] [CrossRef]
- Yin, X.; Huang, J.-A.; Huang, J.; Wu, W.-L.; Tong, T.; Liu, S.-J.; Zhou, L.-Y.; Liu, Z.-H.; Zhang, S.-G. Identification of volatile and odor-active compounds in Hunan black tea by SPME/GC-MS and multivariate analysis. LWT 2022, 164, 113656. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, S.-G.; Huang, J.; Bao, X.-C.; Zhou, L.-Y.; Dai, W.-D.; Zhao, C.-J.; Huang, J.-A.; Liu, Z.-H. Study on the chemical constituents of Hunan black tea. J. Tea Sci. 2019, 39, 150–158. [Google Scholar] [CrossRef]
- Li, N.; Zhong, X.-G.; Huang, H.-S.; Chen, Y.-Y.; Su, B.-W. Research progress on characteristic tea tree resources of Rucheng Baimao tea. J. Tea Commun. 2019, 46, 129–134. [Google Scholar]
- Ouyang, J.; Jiang, R.-G.; Chen, H.-Y.; Liu, Q.; Yi, X.-Q.; Wen, S.; Huang, F.-F.; Zhang, X.-Y.; Li, J.; Wen, H.-T.; et al. Characterization of key odorants in ‘Baimaocha’ black teas from different regions. Food Chem. X 2024, 22, 101303. [Google Scholar] [CrossRef]
- Zhong, X.-G.; Huang, H.-S.; Li, N.; Su, B.-W. Effect of withering and fermentation technology on the quality of “Rucheng Baimaocha” processed black tea. Food Ferment. Ind. 2022, 48, 137–144. [Google Scholar] [CrossRef]
- Kumazawa, K.; Wada, Y.; Masuda, H. Characterization of epoxydecenal isomers as potent odorants in black tea (Dimbula) infusion. J. Agric. Food Chem. 2006, 54, 4795–4801. [Google Scholar] [CrossRef]
- Chen, Q.-C.; Zhu, Y.; Liu, Y.-F.; Liu, Y.; Dong, C.-W.; Lin, Z.; Teng, J. Black tea aroma formation during the fermentation period. Food Chem. 2022, 374, 131640. [Google Scholar] [CrossRef]
- Joshi, R.; Gulati, A. Fractionation and identification of minor and aroma-active constituents in Kangra orthodox black tea. Food Chem. 2015, 167, 290–298. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Yan, H.; Zhu, Y.; Liu, X.; Lv, H.-P.; Zhang, Y.; Dai, W.-D.; Guo, L.; Tan, J.-F.; Peng, Q.-H.; et al. Identification and quantification of key odorants in the world’s four most famous black teas. Food Res. Int. 2019, 121, 73–83. [Google Scholar] [CrossRef]
- Liu, H.-C.; Xu, Y.-J.; Wu, J.-J.; Wen, J.; Yu, Y.-S.; An, K.-J.; Zou, B. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Res. Int. 2021, 150, 110784. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.-H.; Wu, Y.; Qu, F.-F.; Liu, L.; Wang, B.-Y.; Wang, P.-Q.; Zhang, X.-F. HS−SPME/GC−MS reveals the season effects on volatile compounds of green tea in high−latitude region. Foods 2022, 11, 3016. [Google Scholar] [CrossRef]
- Huang, H.-S.; Su, B.-W.; Zhong, X.-G.; Zhao, X.; Yin, X.; Huang, H. A comparative analysis of the quality of time black tea with several special resources (varieties) in Hunan. J. Tea Commun. 2016, 43, 9–15. [Google Scholar]
- Wen, H.-T.; Xie, S.-L.; Li, T.-Z.; He, Z.-H. Development status and reflections on the tea industry in Rucheng County, Hunan province. China Tea 2019, 41, 56–59. [Google Scholar]
- GB/T23776-2018; Methodology of Sensory Evaluation of Tea. Standardization Administration of the People’s Republic of China: Beijing, China, 2018.
- Zhu, J.-Y.; Li, Y.; Shi, L.-L.; Zhou, Y.-B.; Wen, H.-T. Dynamic changes in aroma components during the processing of Rucheng Baimao (Camellia pubescens) black tea. Mod. Food Sci. Technol. 2025, 1–18. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Zhang, X.-M.; Jiang, R.-G.; Ouyang, J.; Liu, Q.; Li, J.; Wen, H.-T.; Li, Q.; Chen, J.-H.; Xiong, L.-G.; et al. Characterization of aroma differences on three drying treatments in Rucheng Baimao (Camellia pubescens) white tea. LWT 2023, 179, 114659. [Google Scholar] [CrossRef]
- Jiang, R.-G.; Huang, Y.; Jin, Y.-L.; Li, Y.-D.; Huang, J.-A.; Li, Q. Study of aroma compounds and their source in Fu brick tea. J. Food Sci. Biotechnol. 2021, 40, 101–111. [Google Scholar] [CrossRef]
- Xiao, Z.-B.; Wu, Q.-Y.; Niu, Y.-W.; Wu, M.-L.; Zhu, J.-C.; Zhou, X.; Chen, X.-M.; Wang, H.-L.; Li, J.; Kong, J.-L. Characterization of the key aroma compounds in five varieties of mandarins by gas chromatography–olfactometry, odor activity values, aroma recombination, and omission analysis. J. Agric. Food Chem. 2017, 65, 8392–8401. [Google Scholar] [CrossRef]
- Chen, W.; Hu, D.; Miao, A.-Q.; Qiu, G.-J.; Qiao, X.-Y.; Xia, H.-L.; Ma, C.-Y. Understanding the aroma diversity of Dancong tea (Camellia sinensis) from the floral and honey odors: Relationship between volatile compounds and sensory characteristics by chemometrics. Food Control 2022, 140, 109103. [Google Scholar] [CrossRef]
- Fang, X.; Xu, W.-C.; Jiang, G.-X.; Sui, M.-Y.; Xiao, J.-Y.; Ning, Y.-Y.; Niaz, R.; Wu, D.-W.; Feng, X.-G.; Chen, J.-H.; et al. Monitoring the dynamic changes in aroma during the whole processing of Qingzhuan tea at an industrial scale: From fresh leaves to finished tea. Food Chem. 2024, 439, 137810. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.-J.; Hao, S.-X.; Zhou, J.-Y.; Feng, W.-J.; Zhu, M.-Y.; Wu, J.-L.; Zhang, Y.-Z.; Yu, Y. Profiling volatile compounds in fresh leaves of 22 major oolong tea germplasm cultivated in Fujian of China. Sci. Hortic. 2024, 327, 112849. [Google Scholar] [CrossRef]
- He, C.; Li, Y.-C.; Zhou, J.-T.; Yu, X.-L.; Zhang, D.; Chen, Y.-Q.; Ni, D.-J.; Yu, Z. Study on the suitability of tea cultivars for processing oolong tea from the perspective of aroma based on olfactory sensory, electronic nose, and GC-MS data correlation analysis. Foods 2022, 11, 2880. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-X.; Kun, J.-R.; Lin, Y.-Z.; Dai, H.-W.; Weng, T.-J.; Li, Z.-W.; Tong, H.-R. Analysis of aroma quality of pearl orchid at different flowering stages and Zhulan scented tea. Food Sci. 2024, 45, 168–179. [Google Scholar] [CrossRef]
- Huang, W.-J.; Fang, S.-M.; Wang, J.; Zhuo, C.; Luo, Y.-H.; Yu, Y.-L.; Li, L.-Q.; Wang, Y.-J.; Deng, W.-W.; Ning, J.-M. Sensomics analysis of the effect of the withering method on the aroma components of Keemun black tea. Food Chem. 2022, 395, 133549. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Wei, R.; Zheng, J.J.; Zheng, J.; Zhang, W.; Yasir, M.; Kayama, K.; Liu, X.-Q.; Su, Z.-C. Volatile and non-volatile compounds profiling and their role in sensory and antioxidative attributes of two species of “red snow tea” (Lethariella). J. Food Compos. Anal. 2024, 133, 106422. [Google Scholar] [CrossRef]
- Ren, W.-W.; Xu, M.-T.; Chen, W.-X.; Gu, M.-Y.; Zeng, S.-S.; Jin, S.; Chen, B.-W.; Ye, N.-X. Analysis of aroma components in Anxi Huang Jingui oolong tea tea using different wrapping-twisting methods via HS-SPME-GC-MS. Sci. Technol. Food Ind. 2024, 45, 263–271. [Google Scholar] [CrossRef]
- Shen, S.-S.; Wu, H.-T.; Li, T.-H.; Sun, H.-R.; Wang, Y.-J.; Ning, J.-M. Formation of aroma characteristics driven by volatile components during long-term storage of An tea. Food Chem. 2023, 411, 135487. [Google Scholar] [CrossRef]
- Sun, Z.-G.; Yang, X.-D.; Wu, W.; Yang, P.-F.; Yang, J.; Bai, B.; Huang, K.; Liu, Y.-Z.; Liu, S.; Cui, F.-X. Characteristic aroma components of cucumber based on odor activity value analysis before and after rotary spinning cone column treatment. Food Ferment. Ind. 2024, 50, 309–316. [Google Scholar] [CrossRef]
- Wen, S.; Sun, L.-L.; Zhang, S.-W.; Chen, Z.-Z.; Chen, R.-H.; Li, Z.-G.; Lai, X.-F.; Zhang, Z.-B.; Cao, J.-X.; Li, Q.; et al. The formation mechanism of aroma quality of green and yellow teas based on GC-MS/MS metabolomics. Food Res. Int. 2023, 172, 113137. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.-B.; Wang, H.-L.; Niu, Y.-W.; Zhu, J.-C.; Ma, N. Analysis of aroma components in four chinese Congou black teas by odor active values and aroma extract dilution analysis coupled with partial least squares regression. Food Sci. 2018, 39, 242–249. [Google Scholar]
- Xu, Y.-J.; Zhou, H.-C.; Zhang, X.-L.; Liu, Y.-Q.; Lei, P.-D. Differences in flavor quality and chemical composition of 1-year-stored Keemun black tea. Food Ferment. Ind. 2024, 1–13. [Google Scholar] [CrossRef]
- Yun, J.; Cui, C.-J.; Zhang, S.-H.; Zhu, J.-J.; Peng, C.-Y.; Cai, H.-M.; Yang, X.-G.; Hou, R.-Y. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lv, H.-P.; Shao, C.-Y.; Kang, S.; Zhang, Y.; Guo, L.; Dai, W.-D.; Tan, J.-F.; Peng, Q.-H.; Lin, Z. Identification of key odorants responsible for chestnut-like aroma quality of green teas. Food Res. Int. 2018, 108, 74–82. [Google Scholar] [CrossRef]
- Cao, B.-Y.; Pu, D.-D.; Zheng, R.-Y.; Meng, R.-X.; Sun, B.-G.; Zhang, Y.-Y. Characterization of the aroma-active compounds among 20 pungent spices by SAFE-SPME-GC-MS/O. Food Sci. 2023, 1–16. [Google Scholar] [CrossRef]
- Ge, C.; Zhang, P.; Li, J.-K.; Jia, X.-Y.; Wu, D.; Li, C.-Y.; Liu, L. Storage resistance and volatile matter changes in two varieties of raspberries. Sci. Technol. Food Ind. 2025, 46, 239–249. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Ho, C.-T.; Schwab, W.; Wan, X.-C. Aroma profiles of green tea made with fresh tea leaves plucked in summer. Food Chem. 2021, 363, 130328. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Ho, C.-T.; Schwab, W.; Wan, X.-C. Effect of the roasting degree on flavor quality of large-leaf yellow tea. Food Chem. 2021, 347, 129016. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Ho, C.-T.; Wan, X.-C.; Zhu, H.; Liu, Q.; Wen, Z. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing. Food Chem. 2021, 341, 128230. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Schwab, W.; Ho, C.-T.; Song, C.-K.; Wan, X.-C. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC–MS and GC-IMS. Food Chem. 2022, 376, 131933. [Google Scholar] [CrossRef]
- Miao, Y.-W.; Zhou, J.-Y.; Yang, C.-M.; Luo, Z.-F.; Wang, Y.; Gong, Z.-L.; Tong, H.-R. Analysis of quality in Shoumei white tea from different tea plant varieties. Sci. Technol. Food Ind. 2024, 45, 283–294. [Google Scholar] [CrossRef]
- Qiao, D.-H.; Mi, X.-Z.; An, Y.-L.; Xie, H.; Cao, K.-M.; Chen, H.-R.; Chen, M.-Y.; Liu, S.-R.; Chen, J.; Wei, C.-L. Integrated metabolic phenotypes and gene expression profiles revealed the effect of spreading on aroma volatiles formation in postharvest leaves of green tea. Food Res. Int. 2021, 149, 110680. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.-Y.; Zhu, C.-Y.; Fan, R.-Y.; Mao, G.-L.; Huang, Y.-J.; Wu, P.-Z.; Zeng, J.-W. Analysis of the change of major aroma volatile compounds of ‘Gonggan’ mandarin fruits during postharvest storage. Food Ferment. Ind. 2024, 1–10. [Google Scholar] [CrossRef]
- Shi, Y.-L.; Zhu, Y.; Ma, W.-J.; Yang, G.-Z.; Wang, M.-Q.; Shi, J.; Peng, Q.-H.; Lin, Z.; Lv, H.-P. Research progress on the volatile compounds of premium roasted green tea. J. Tea Sci. 2021, 41, 285–301. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Su, D.; Ren, H.-T.; Lv, Q.; Ren, L.; Li, Y.-L.; Zhou, H.-J. Effect of different drying methods after fermentation on the aroma of Pu-erh tea (ripe tea). LWT 2022, 171, 114129. [Google Scholar] [CrossRef]
- Wu, Q.-J.; Zhou, Z.; Lin, F.-M.; Qi, S.-Y.; Zhou, M.-S.; Peng, L.-Q.; Sun, W.-J. Quality difference and its forming material basis of Wuyi Shuixian rock Tea with different management methods. Chin. J. Trop. Crops 2024, 45, 576–591. [Google Scholar] [CrossRef]
- Xu, M.-T.; Gu, M.-Y.; Chen, J.; Wei, M.-X.; Chen, Q.; Wu, W.-X.; Zheng, Y.-C.; Ye, N.-X. Flavor quality analysis of ‘Jinmudan’ and ‘Jinguanyin’ high aroma black tea using metabolomics. Food Sci. 2024, 45, 150–161. [Google Scholar] [CrossRef]
- Yang, G.-Z.; Zhou, M.-X.; Shi, J.; Peng, Q.-H.; Lin, Z.; Lv, H.-P.; Simal-Gandara, J. How anaerobic treatment is controlling the volatile components and key odorants of purple-colored leaf tea. J. Food Compos. Anal. 2023, 122, 105451. [Google Scholar] [CrossRef]
- Yin, X.; Xiao, Y.-B.; Wang, K.-F.; Wu, W.-L.; Huang, J.; Liu, S.-J.; Zhang, S.-G. Effect of shaking manners on floral aroma quality and identification of key floral-aroma-active compounds in Hunan black tea. Food Res. Int. 2023, 174, 113515. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-T.; He, C.; Qin, M.-X.; Luo, Q.-Q.; Jiang, X.-F.; Zhu, J.-Y.; Qiu, L.; Yu, Z.; Zhang, D.; Chen, Y.-Q.; et al. Characterizing and decoding the effects of different fermentation levels on key aroma substances of Congou black tea by sensomics. J. Agric. Food Chem. 2023, 71, 14706–14719. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Ho, C.-T.; Zheng, X.; Li, S.-M. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Zhai, X.-T.; Zhang, L.; Granvogl, M.; Ho, C.-T.; Wan, X.-C. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3867–3909. [Google Scholar] [CrossRef] [PubMed]
- Owuor, P.O. Comparison of gas chromatographic volatile profiling methods for assessing the flavour quality of kenyan black teas. J. Sci. Food Agric. 1992, 59, 189–197. [Google Scholar] [CrossRef]
- Shi, Z.-P. Tea Evaluation and Inspection; China Agriculture Press: Beijing, China, 2010. [Google Scholar]
- Huang, H.; Yu, P.-H.; Zhao, X.; Zhong, N.; Zheng, H.-F. HS-SPME-GC-MS analysis of volatile components of Congou black tea processed from Baojing Huangjincha 1 from different harvesting seasons. Food Sci. 2020, 41, 188–196. [Google Scholar]
- Su, D.; He, J.-J.; Zhou, Y.-Z.; Li, Y.-L.; Zhou, H.-J. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chem. 2022, 373, 131587. [Google Scholar] [CrossRef]
- Wan, X.-C. Tea Biochemistry; China Agriculture Press: Beijing, China, 2003. [Google Scholar]
- Cui, J.-L.; Zhai, X.-T.; Guo, D.-Y.; Du, W.-K.; Gao, T.; Zhou, J.; Schwab, W.G.; Song, C.-K. Characterization of key odorants in Xinyang Maojian green tea and their changes during the manufacturing process. J. Agric. Food Chem. 2022, 70, 279–288. [Google Scholar] [CrossRef]
- Gemert, L.J.v. Compilations of Odour Threshold Values in Air, Water and Other Media; Science Publishing Company: Beijing, China, 2018. [Google Scholar]
- Huang, J.-F.; Yan, T.-Y.; Yang, J.-F.; Xu, H. Aroma components analysis and origin differentiation of black tea based on ATD-GC-MS and E-nose. Horticulturae 2023, 9, 885. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Zheng, T.-T.; Zhao, M.-M.; Gong, W.-Y.; Wang, Q.-M.; Yan, L.; Zhang, W.-J. Characterization of key odor-active compounds in sun-dried black tea by sensory and instrumental-directed flavor analysis. Foods 2022, 11, 1740. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Zhu, H.-K.; Chen, J.-Y.; Xie, J.-L.; Shen, S.; Deng, Y.-L.; Zhu, J.-Y.; Yuan, H.-B.; Jiang, Y.-W. Characterization of the key aroma compounds in black teas with different aroma types by using gas chromatography electronic nose, gas chromatography-ion mobility spectrometry, and odor activity value analysis. LWT 2022, 163, 113492. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Wan, X.-C.; Shi, Z.-P.; Xia, T. Studies on the content of glycosidic tea aroma precursors in leaves of Zhuye during different seasons green tea processing and storage. Food Ferment. Ind. 2003, 29, 1–4. [Google Scholar]
- Qin, X.-X.; Zhou, J.-T.; He, C.; Qiu, L.; Zhang, D.; Yu, Z.; Wang, Y.; Ni, D.-J.; Chen, Y.-Q. Non-targeted metabolomics characterization of flavor formation of Lichuan black tea processed from different cultivars in Enshi. Food Chem. X 2023, 19, 100809. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-Q.; Yang, Y.; Liu, Z.-Z.; Fang, Z.; Lin, J.-Q.; Zhan, S.-X.; Zhan, X.-Y.; Chen, C.-S.; Sun, Y. Quality analysis of a new tea line ‘606’ oolong tea in different seasons. Sci. Technol. Food Ind. 2023, 44, 272–281. [Google Scholar] [CrossRef]
Tea Samples | Seasons | Aroma | Score |
---|---|---|---|
Spring | Floral–fruity aroma, refreshing sensation, with sweet fragrance | 90.20 ± 1.17 a | |
Summer | Possesses a floral aroma | 82.40 ± 0.80 c | |
Autumn | The floral fragrance is pure and harmonious | 86.60 ± 1.36 b |
Volatile Components | VIP Value | p-Value |
---|---|---|
Geraniol | 4.70 | 0.00 |
Linalool | 3.07 | 0.00 |
Hotrienol | 2.48 | 0.00 |
Methyl salicylate | 2.31 | 0.01 |
α-Farnesene | 2.19 | 0.00 |
Nonanal | 2.05 | 0.00 |
Quinuclidine | 2.04 | 0.00 |
(E)-Geranic acid | 1.95 | 0.00 |
Caffeine | 1.74 | 0.02 |
Phenylacetaldehyde | 1.71 | 0.00 |
Benzaldehyde | 1.64 | 0.00 |
Methyl geranoate | 1.60 | 0.00 |
Phenethyl alcohol | 1.56 | 0.00 |
Tetradecane | 1.52 | 0.00 |
2-Heptanol | 1.49 | 0.00 |
Benzyl alcohol | 1.49 | 0.00 |
(Z)-6-Methyl-2-undecene | 1.46 | 0.00 |
(E)-Linalool oxide (furanoid) | 1.39 | 0.01 |
4,6,8-Trimethyl-1-nonene | 1.37 | 0.00 |
(E)-Linalool oxide (pyranoid) | 1.16 | 0.00 |
3,4,5-Trimethyloxazole | 1.16 | 0.00 |
Jasmine lactone | 1.15 | 0.00 |
5-Methyl-2-hexanol | 1.15 | 0.00 |
2,6,11-Trimethyldodecane | 1.14 | 0.00 |
2,6-Dimethyl-3,7-octadien-2,6-diol | 1.13 | 0.00 |
2-Hexenal | 1.11 | 0.00 |
Benzyl nitrile | 1.08 | 0.00 |
2,6,10-Trimethyldodecane | 1.06 | 0.03 |
(Z)-3-Hexenoate | 1.05 | 0.00 |
2,6-Di-tert-butyl-4-methylphenol | 1.05 | 0.01 |
β-Ionone | 1.05 | 0.00 |
Trans-nerolidol | 1.04 | 0.00 |
(E)-Citral | 1.02 | 0.00 |
Heptadecane | 1.00 | 0.00 |
Volatile Components | Thresholds (μg/kg) | rOAV | ||
---|---|---|---|---|
SPBT | SUBT | AUBT | ||
Geraniol | 1 | 66.34 ± 8.50 | 10.25 ± 0.36 | 9.99 ± 0.71 |
Linalool | 6 | 3.08 ± 0.43 | 8.64 ± 0.68 | 5.37 ± 0.13 |
Hotrienol | 110 | - | - | 0.10 ± 0.00 |
Methyl salicylate | 16 | 1.65 ± 0.26 | 1.30 ± 0.08 | 0.87 ± 0.04 |
α-Farnesene | 87 | - | - | 0.10 ± 0.01 |
Nonanal | 1 | 10.63 ± 0.94 | - | - |
Quinuclidine | - | - | - | - |
(E)-Geranic acid | - | - | - | - |
Caffeine | 2000 | <0.1 | <0.1 | <0.1 |
Phenylacetaldehyde | 0.3 | 11.09 ± 1.07 | 42.87 ± 5.68 | 17.30 ± 1.30 |
Benzaldehyde | 3 | 0.85 ± 0.16 | 3.56 ± 0.54 | 1.15 ± 0.02 |
Methyl geranoate | - | - | - | - |
Phenethyl alcohol | 0.015 | 469.02 ± 74.84 | 781.15 ± 98.84 | 343.60 ± 29.48 |
Tetradecane | 1000 | <0.1 | <0.1 | <0.1 |
2-Heptanol | 13 | - | 0.45 ± 0.02 | - |
Benzyl alcohol | 2.54 | 1.46 ± 0.27 | 3.25 ± 0.50 | 0.90 ± 0.14 |
(Z)-6-Methyl-2-undecene | - | - | - | - |
(E)-Linalool oxide (furanoid) | 320 | <0.1 | <0.1 | <0.1 |
4,6,8-Trimethyl-1-nonene | - | - | - | - |
(E)-Linalool oxide (pyranoid) | 50 | <0.1 | <0.1 | 0.11 ± 0.01 |
3,4,5-Trimethyloxazole | - | - | - | - |
Jasmine lactone | 2000 | <0.1 | - | <0.1 |
5-Methyl-2-hexanol | 330 | <0.1 | - | <0.1 |
2,6,11-Trimethyldodecane | - | - | - | - |
2,6-Dimethyl-3,7-octadien-2,6-diol | - | - | - | - |
2-Hexenal | 30 | - | 0.12 ± 0.03 | - |
Benzyl nitrile | 1000 | <0.1 | - | <0.1 |
2,6,10-Trimethyldodecane | - | - | - | - |
(Z)-3-Hexenoate | - | - | - | - |
2,6-Di-tert-butyl-4-methylphenol | 1000 | <0.1 | <0.1 | - |
β-Ionone | 0.007 | 263.75 ± 70.63 | 639.95 ± 22.18 | 215.70 ± 16.87 |
Trans-nerolidol | 0.25 | 8.18 ± 1.40 | 15.23 ± 2.06 | 18.83 ± 1.01 |
(E)-Citral | 0.5 | 5.41 ± 1.34 | - | - |
Heptadecane | 10,000,000 | <0.1 | <0.1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Zhou, Y.; Wen, H. Analysis of Differences in Volatile Components of Rucheng Baimao (Camellia pubescens) Black Tea in Different Seasons. Foods 2025, 14, 763. https://doi.org/10.3390/foods14050763
Zhu J, Zhou Y, Wen H. Analysis of Differences in Volatile Components of Rucheng Baimao (Camellia pubescens) Black Tea in Different Seasons. Foods. 2025; 14(5):763. https://doi.org/10.3390/foods14050763
Chicago/Turabian StyleZhu, Junye, Yuebin Zhou, and Haitao Wen. 2025. "Analysis of Differences in Volatile Components of Rucheng Baimao (Camellia pubescens) Black Tea in Different Seasons" Foods 14, no. 5: 763. https://doi.org/10.3390/foods14050763
APA StyleZhu, J., Zhou, Y., & Wen, H. (2025). Analysis of Differences in Volatile Components of Rucheng Baimao (Camellia pubescens) Black Tea in Different Seasons. Foods, 14(5), 763. https://doi.org/10.3390/foods14050763