Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = traditional dendrimers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
53 pages, 3300 KiB  
Review
A Comprehensive Review of Smart Thermosensitive Nanocarriers for Precision Cancer Therapy
by Atena Yaramiri, Rand Abo Asalh, Majd Abo Asalh, Nour AlSawaftah, Waad H. Abuwatfa and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(15), 7322; https://doi.org/10.3390/ijms26157322 - 29 Jul 2025
Viewed by 617
Abstract
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. [...] Read more.
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. Nanotechnology, particularly nanomedicine, provides innovative approaches to enhance drug delivery, including the use of nanoparticles. One such type of SDD is thermosensitive nanoparticles, which respond to internal and external stimuli, such as temperature changes, to release drugs precisely at tumor sites and minimize off-target effects. On the other hand, hyperthermia is a cancer treatment mode that goes back centuries and has become popular because it can target cancer cells while sparing healthy tissue. This paper presents a comprehensive review of smart thermosensitive nanoparticles for cancer treatment, with a primary focus on organic nanoparticles. The integration of hyperthermia with temperature-sensitive nanocarriers, such as micelles, hydrogels, dendrimers, liposomes, and solid lipid nanoparticles, offers a promising approach to improving the precision and efficacy of cancer therapy. By leveraging temperature as a controlled drug release mechanism, this review highlights the potential of these innovative systems to enhance treatment outcomes while minimizing adverse side effects. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

25 pages, 814 KiB  
Review
Nanoparticles for Glioblastoma Treatment
by Dorota Bartusik-Aebisher, Kacper Rogóż and David Aebisher
Pharmaceutics 2025, 17(6), 688; https://doi.org/10.3390/pharmaceutics17060688 - 23 May 2025
Cited by 1 | Viewed by 906
Abstract
GBM is the most common and aggressive primary brain tumor in adults, characterized by low survival rates, high recurrence, and resistance to conventional therapies. Traditional diagnostic and therapeutic methods remain limited due to the difficulty in permeating the blood–brain barrier (BBB), diffuse tumor [...] Read more.
GBM is the most common and aggressive primary brain tumor in adults, characterized by low survival rates, high recurrence, and resistance to conventional therapies. Traditional diagnostic and therapeutic methods remain limited due to the difficulty in permeating the blood–brain barrier (BBB), diffuse tumor cell infiltration, and tumor heterogeneity. In recent years, nano-based technologies have emerged as innovative approaches for the detection and treatment of GBM. A wide variety of nanocarriers, including dendrimers, liposomes, metallic nanoparticles, carbon nanotubes, carbon dots, extracellular vesicles, and many more demonstrate the ability to cross the BBB, precisely deliver therapeutic agents, and enhance the effects of radiotherapy and immunotherapy. Surface functionalization, peptide modification, and cell membrane coating improve the targeting capabilities of nanostructures toward GBM cells and enable the exploitation of their photothermal, magnetic, and optical properties. Furthermore, the development of miRNA nanosponge systems offers the simultaneous inhibition of multiple tumor growth mechanisms and the modulation of the immunosuppressive tumor microenvironment. This article presents current advancements in nanotechnology for GBM, with a particular focus on the characteristics and advantages of specific groups of nanoparticles, including their role in radiosensitization. Full article
(This article belongs to the Special Issue Nano-Based Technology for Glioblastoma)
Show Figures

Figure 1

57 pages, 5635 KiB  
Review
Last Fifteen Years of Nanotechnology Application with Our Contribute
by Silvana Alfei and Guendalina Zuccari
Nanomaterials 2025, 15(4), 265; https://doi.org/10.3390/nano15040265 - 10 Feb 2025
Cited by 3 | Viewed by 2826
Abstract
Currently, nanotechnology is the most promising science, engineering, and technology conducted at the nanoscale (nm), which is used in several sectors. Collectively, nanotechnology is causing a new industrial revolution, and nano-based products are becoming increasingly important for the global market and economy. The [...] Read more.
Currently, nanotechnology is the most promising science, engineering, and technology conducted at the nanoscale (nm), which is used in several sectors. Collectively, nanotechnology is causing a new industrial revolution, and nano-based products are becoming increasingly important for the global market and economy. The interest in nanomaterials has been strongly augmented during the last two decades, and this fact can be easily evaluated by considering the number of studies present in the literature. In November 2024, they accounted for 764,279 experimental studies developed in the years 2009–2024. During such a period, our group contributed to the field of applicative nanotechnology with several experimental and review articles, which we hope could have relevantly enhanced the knowledge of the scientific community. In this new publication, an exhaustive overview regarding the main types of developed nanomaterials, the characterization techniques, and their applications has been discussed. Particular attention has been paid to nanomaterials employed for the enhancement of bioavailability and delivery of bioactive molecules and to those used for ameliorating traditional food packaging. Then, we briefly reviewed our experimental studies on the development of nanoparticles (NPs), dendrimers, micelles, and liposomes for biomedical applications by collecting inherent details in a reader-friendly table. A brief excursus about our reviews on the topic has also been provided, followed by the stinging question of nanotoxicology. Indeed, although the application of nanotechnology translates into a great improvement in the properties of non-nanosized pristine materials, there may still be a not totally predictable risk for humans, animals, and the environment associated with an extensive application of NPs. Nanotoxicology is a science in rapid expansion, but several sneaky risks are not yet fully disclosed. So, the final part of this study discusses the pending issue related to the possible toxic effects of NPs and their impact on customers’ acceptance in a scenario of limited knowledge. Full article
(This article belongs to the Special Issue The Future of Nanotechnology: Healthcare and Manufacturing)
Show Figures

Graphical abstract

23 pages, 2695 KiB  
Review
Lipidic and Inorganic Nanoparticles for Targeted Glioblastoma Multiforme Therapy: Advances and Strategies
by Ewelina Musielak and Violetta Krajka-Kuźniak
Micro 2025, 5(1), 2; https://doi.org/10.3390/micro5010002 - 3 Jan 2025
Cited by 8 | Viewed by 2680
Abstract
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems [...] Read more.
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems hold great potential to revolutionize drug delivery. Glioblastoma multiforme (GBM) is one of the most common and lethal brain tumors, and its heterogeneous and aggressive nature complicates current treatments, which primarily rely on surgery. One of the significant obstacles to effective treatment is the poor penetration of drugs across the BBB. Moreover, GBM is often referred to as a “cold” tumor, characterized by an immunosuppressive tumor microenvironment (TME) and minimal immune cell infiltration, which limits the effectiveness of immunotherapies. Therefore, developing novel, more effective treatments is critical to improving the survival rate of GBM patients. Current strategies for enhancing treatment outcomes focus on the controlled, targeted delivery of chemotherapeutic agents to GBM cells across the BBB using nanoparticles. These therapies must be designed to engage specialized transport systems, allowing for efficient BBB penetration, improved therapeutic efficacy, and reduced systemic toxicity and drug degradation. Lipid and inorganic nanoparticles can enhance brain delivery while minimizing side effects. These formulations may include epitopes—small antigen fragments that bind directly to free antibodies, B cell receptors, or T cell receptors—that interact with transport systems and enable BBB crossing, thereby boosting therapeutic efficacy. Lipid-based nanoparticles (LNPs), such as liposomes, niosomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), are among the most promising delivery systems due to their unique properties, including their size, surface modification capabilities, and proven biosafety. Additionally, inorganic nanoparticles such as gold nanoparticles, mesoporous silica, superparamagnetic iron oxide nanoparticles, and dendrimers offer promising alternatives. Inorganic nanoparticles (INPs) can be easily engineered, and their surfaces can be modified with various elements or biological ligands to enhance BBB penetration, targeted delivery, and biocompatibility. Strategies such as surface engineering and functionalization have been employed to ensure biocompatibility and reduce cytotoxicity, making these nanoparticles safer for clinical applications. The use of INPs in GBM treatment has shown promise in improving the efficacy of traditional therapies like chemotherapy, radiotherapy, and gene therapy, as well as advancing newer treatment strategies, including immunotherapy, photothermal and photodynamic therapies, and magnetic hyperthermia. This article reviews the latest research on lipid and inorganic nanoparticles in treating GBM, focusing on active and passive targeting approaches. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

35 pages, 28860 KiB  
Review
Dendrimers, Dendrons, and the Dendritic State: Reflection on the Last Decade with Expected New Roles in Pharma, Medicine, and the Life Sciences
by Donald A. Tomalia
Pharmaceutics 2024, 16(12), 1530; https://doi.org/10.3390/pharmaceutics16121530 - 28 Nov 2024
Cited by 7 | Viewed by 2038 | Correction
Abstract
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization [...] Read more.
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.e., dendrons/dendrimers) with nanoscale sizes and structure-controlled features that match and rival discrete in vivo biopolymers such as proteins and nucleic acids (i.e., DNA, siRNA, mRNA, etc.). These dendritic architectures exhibit unprecedented new intrinsic properties widely recognized to define a new fourth major polymer architecture class, namely: Category (IV): dendrons, dendrimers, and random hyperbranched polymers after traditional categories: (I) linear, (II) cross-linked, and (III) simple-branched types. Historical confusion over the first examples of the structure confirmed and verified cascade, dendron, dendrimer, and arborol syntheses, while associated misuse of accepted dendritic terminology is also reviewed and clarified. The importance of classifying all dendrons and dendrimers based on branch cell symmetry and the significant role of critical nanoscale-design parameters (CNDPs) for optimizing dendritic products for pharma/nanomedicine applications with a focus on enhancing stealth, non-complement activation properties is presented. This is followed by an overview of the extraordinary growth observed for amphiphilic dendron/dendrimer syntheses and their self-assembly into dendritic supramolecular assemblies, as well as many unique applications demonstrated in pharma and nanomedicine, especially involving siRNA delivery and mRNA vaccine development. This perspective is concluded with optimistic expectations predicted for new dendron and dendrimer application roles in pharma, nanomedicine, and life sciences. Full article
Show Figures

Figure 1

23 pages, 2795 KiB  
Review
Dendrimers: Exploring Their Wide Structural Variety and Applications
by María Pérez-Ferreiro, Adrián M. Abelairas, Alejandro Criado, I. Jénnifer Gómez and Jesús Mosquera
Polymers 2023, 15(22), 4369; https://doi.org/10.3390/polym15224369 - 9 Nov 2023
Cited by 67 | Viewed by 8869
Abstract
Dendrimers constitute a distinctive category of synthetic materials that bear resemblance to proteins in various aspects, such as discrete structural organization, globular morphology, and nanoscale dimensions. Remarkably, these attributes coexist with the capacity for facile large-scale production. Due to these advantages, the realm [...] Read more.
Dendrimers constitute a distinctive category of synthetic materials that bear resemblance to proteins in various aspects, such as discrete structural organization, globular morphology, and nanoscale dimensions. Remarkably, these attributes coexist with the capacity for facile large-scale production. Due to these advantages, the realm of dendrimers has undergone substantial advancement since their inception in the 1980s. Numerous reviews have been dedicated to elucidating this subject comprehensively, delving into the properties and applications of quintessential dendrimer varieties like PAMAM, PPI, and others. Nevertheless, the contemporary landscape of dendrimers transcends these early paradigms, witnessing the emergence of a diverse array of novel dendritic architectures in recent years. In this review, we aim to present a comprehensive panorama of the expansive domain of dendrimers. As such, our focus lies in discussing the key attributes and applications of the predominant types of dendrimers existing today. We will commence with the conventional variants and progressively delve into the more pioneering ones, including Janus, supramolecular, shape-persistent, and rotaxane dendrimers. Full article
(This article belongs to the Special Issue Carbon/Natural Polymer Materials: Preparation and Applications)
Show Figures

Figure 1

15 pages, 901 KiB  
Review
The Potential of Nano-Based Photodynamic Treatment as a Therapy against Oral Leukoplakia: A Narrative Review
by Angela Angjelova, Elena Jovanova, Alessandro Polizzi, Simona Santonocito, Antonino Lo Giudice and Gaetano Isola
J. Clin. Med. 2023, 12(21), 6819; https://doi.org/10.3390/jcm12216819 - 28 Oct 2023
Cited by 9 | Viewed by 2868
Abstract
Oral leukoplakia is a predominantly white lesion of the oral mucosa that cannot be classified as any other definable lesion with the risk of progressing into malignancy. Despite the advancements in conventional therapy, the rates of malignant transformation remain notably high, affecting 4.11% [...] Read more.
Oral leukoplakia is a predominantly white lesion of the oral mucosa that cannot be classified as any other definable lesion with the risk of progressing into malignancy. Despite the advancements in conventional therapy, the rates of malignant transformation remain notably high, affecting 4.11% of adults, due to the difficulty of accurate diagnosis and indistinct treatment. Photodynamic therapy (PDT), being a minimally invasive surgical intervention, employs a variety of factors, including light, nano-photosensitizers (PSs) and oxygen in the management of precancerous lesions. PDT faces limitations in administering photosensitizers (PSs) because of their low water solubility. However, these challenges could be effectively resolved through the incorporation of PSs in nanostructured drug delivery systems, such as gold nanoparticles, micelles, liposomes, metal nanoparticles, dendrimers and quantum dots. This review will give an overview of the different innovative PS approaches in the management of premalignant lesions, highlighting the most recent advancements. From a clinical perspective, it is expected that nanotechnology will overcome barriers faced by traditional therapeutics and will address critical gaps in clinical cancer care. Full article
Show Figures

Graphical abstract

14 pages, 2759 KiB  
Article
Lysine-Dendrimer, a New Non-Aggressive Solution to Rebalance the Microbiota of Acne-Prone Skin
by Julie Leignadier, Marie Drago, Olivier Lesouhaitier, Magalie Barreau, Albert Dashi, Oliver Worsley and Joan Attia-Vigneau
Pharmaceutics 2023, 15(8), 2083; https://doi.org/10.3390/pharmaceutics15082083 - 3 Aug 2023
Cited by 5 | Viewed by 3328
Abstract
Acne is a chronic inflammatory skin disease that affects the quality of life of patients. Several treatments exist for acne, but their effectiveness tends to decrease over time due to increasing resistance to treatment and associated side effects. To circumvent these issues, a [...] Read more.
Acne is a chronic inflammatory skin disease that affects the quality of life of patients. Several treatments exist for acne, but their effectiveness tends to decrease over time due to increasing resistance to treatment and associated side effects. To circumvent these issues, a new approach has emerged that involves combating the pathogen Cutibacterium acnes while maintaining the homeostasis of the skin microbiome. Recently, it was shown that the use of a G2 lysine dendrigraft (G2 dendrimer) could specifically decrease the C. acnes phylotype (IAI) involved in acne, compared to non-acne-causing C. acnes (phylotype II) bacteria. In the present study, we demonstrate that the efficacy of this technology is related to its 3D structure, which, in contrast to the linear form, significantly decreases the inflammation factor (IL-8) linked to acne. In addition, our in-vitro data confirm the specific activity of the G2 dendrimer: after treatment of bacterial cultures and biofilms, the G2 dendrimer affected neither non-acneic C. acnes nor commensal bacteria of the skin (Staphylococcus epidermidis, S. hominis, and Corynebacterium minutissimum). In parallel, comparative in-vitro and in-vivo studies with traditional over-the-counter molecules showed G2’s effects on the survival of commensal bacteria and the reduction of acne outbreaks. Finally, metagenomic analysis of the cutaneous microbiota of volunteers who applied a finished cosmetic product containing the G2 dendrimer confirmed the ability of G2 to rebalance cutaneous acne microbiota dysbiosis while maintaining commensal bacteria. These results confirm the value of using this G2 dendrimer to gently prevent the appearance of acne vulgaris while respecting the cutaneous microbiota. Full article
(This article belongs to the Special Issue Applications of Dendrimers in Biomedicine)
Show Figures

Figure 1

22 pages, 2890 KiB  
Review
Nanotechnology in Cancer Diagnosis and Treatment
by Noor Alrushaid, Firdos Alam Khan, Ebtesam Abdullah Al-Suhaimi and Abdelhamid Elaissari
Pharmaceutics 2023, 15(3), 1025; https://doi.org/10.3390/pharmaceutics15031025 - 22 Mar 2023
Cited by 124 | Viewed by 25108
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on [...] Read more.
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment. Full article
(This article belongs to the Special Issue Study of Nanoparticles for Photodynamic Therapy and Imaging)
Show Figures

Figure 1

11 pages, 1737 KiB  
Article
Catalyzed Hairpin Assembly-Assisted DNA Dendrimer Enhanced Fluorescence Anisotropy for MicroRNA Detection
by Tianjin Xie, Yuxin Liu, Jiali Xie, Yujie Luo, Kai Mao, Chengzhi Huang, Yuanfang Li and Shujun Zhen
Chemosensors 2022, 10(12), 501; https://doi.org/10.3390/chemosensors10120501 - 27 Nov 2022
Cited by 4 | Viewed by 1919
Abstract
Biomacromolecules have been employed successfully as fluorescence anisotropy (FA) amplifiers for biosensing in reported studies. However, the sensitivities of the traditional biomacromolecule amplified FA strategies need to be improved because of the relatively low molecular weight or volume of a single biomacromolecule and [...] Read more.
Biomacromolecules have been employed successfully as fluorescence anisotropy (FA) amplifiers for biosensing in reported studies. However, the sensitivities of the traditional biomacromolecule amplified FA strategies need to be improved because of the relatively low molecular weight or volume of a single biomacromolecule and the 1:1 binding ratio between the fluorophore-linked probe and target. In this work, a DNA dendrimer with a high molecular weight and volume was employed as a new FA amplifier, which was coupled with target-catalyzed hairpin assembly (CHA) for the sensitive detection of miRNA-21. The fluorophore-modified probe DNA (pDNA) was fixed on the DNA dendrimer, resulting in a high FA value. The addition of miRNA-21 triggered the CHA process and produced plenty of H1-H2 hybrids. The complex of H1-H2 bound to the DNA dendrimer and released the pDNA through a toehold-mediated strand exchange reaction. Thus, a low FA value was obtained because of the low mass and volume of free pDNA. Based on the dramatically reduced FA, miRNA-21 was detected in the range of 1.0–19.0 nM and the limit of detection was 52.0 pM. In addition, our method has been successfully utilized for miRNA-21 detection in human serum. This strategy is sensitive and selective and is expected to be used to detect other biomolecules simply by changing the corresponding nucleic acid probe. Full article
(This article belongs to the Special Issue Nanoparticles in Chemical and Biological Sensing)
Show Figures

Figure 1

10 pages, 1376 KiB  
Article
Design of a Signal-Amplified Aptamer-Based Lateral Flow Test Strip for the Rapid Detection of Ochratoxin A in Red Wine
by Yinyin Liu, Dan Liu, Shuangshuang Cui, Can Li, Ziguang Yun, Jian Zhang and Fengxia Sun
Foods 2022, 11(11), 1598; https://doi.org/10.3390/foods11111598 - 28 May 2022
Cited by 24 | Viewed by 3906
Abstract
In order to improve the weak optical performance of gold nanoparticles and realize the signal amplification of lateral flow chromatography test strips, individual gold nanoparticles (AuNPs) were aggregated into gold nanoparticle aggregates through functional groups around polyamidoamine (PAMAM) dendrimers. A signal-amplified aptamer-based lateral [...] Read more.
In order to improve the weak optical performance of gold nanoparticles and realize the signal amplification of lateral flow chromatography test strips, individual gold nanoparticles (AuNPs) were aggregated into gold nanoparticle aggregates through functional groups around polyamidoamine (PAMAM) dendrimers. A signal-amplified aptamer-based lateral flow chromatography test strip was constructed for the rapid determination of ochratoxin A (OTA). Under optimal conditions, the visual detection limit of this test strip was 0.4 ng mL−1 and the semi-quantitative limit of detection (LOD) was 0.04 ng mL−1. Compared with other traditional aptamer lateral flow chromatography test strips, its sensitivity was improved about five times. The whole test could be completed within 15 min. The aptamer-based strip was applied to the detection of OTA in red wine; the average recoveries ranged from 93% to 105.8% with the relative standard deviation (RSD) varying from 3% to 8%, indicating that the test strip may be a potentially effective tool for the on-site detection of OTA. Full article
(This article belongs to the Special Issue Innovative Analytical Strategies to Ensure Food Safety)
Show Figures

Figure 1

29 pages, 1549 KiB  
Review
Nano-Scaled Materials and Polymer Integration in Biosensing Tools
by Hichem Moulahoum, Faezeh Ghorbanizamani, Emine Guler Celik and Suna Timur
Biosensors 2022, 12(5), 301; https://doi.org/10.3390/bios12050301 - 5 May 2022
Cited by 20 | Viewed by 5299
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed [...] Read more.
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics. Full article
(This article belongs to the Special Issue Biosensors in Nanotechnology)
Show Figures

Figure 1

99 pages, 65935 KiB  
Review
Heterogeneous Dendrimer-Based Catalysts
by Eduard Karakhanov, Anton Maximov and Anna Zolotukhina
Polymers 2022, 14(5), 981; https://doi.org/10.3390/polym14050981 - 28 Feb 2022
Cited by 20 | Viewed by 6008
Abstract
The present review compiles the advances in the dendritic catalysis within the last two decades, in particular concerning heterogeneous dendrimer-based catalysts and their and application in various processes, such as hydrogenation, oxidation, cross-coupling reactions, etc. There are considered three main approaches to the [...] Read more.
The present review compiles the advances in the dendritic catalysis within the last two decades, in particular concerning heterogeneous dendrimer-based catalysts and their and application in various processes, such as hydrogenation, oxidation, cross-coupling reactions, etc. There are considered three main approaches to the synthesis of immobilized heterogeneous dendrimer-based catalysts: (1) impregnation/adsorption on silica or carbon carriers; (2) dendrimer covalent grafting to various supports (silica, polystyrene, carbon nanotubes, porous aromatic frameworks, etc.), which may be performed in a divergent (as a gradual dendron growth on the support) or convergent way (as a grafting of whole dendrimer to the support); and (3) dendrimer cross-linking, using transition metal ions (resulting in coordination polymer networks) or bifunctional organic linkers, whose size, polarity, and rigidity define the properties of the resulted material. Additionally, magnetically separable dendritic catalysts, which can be synthesized using the three above-mentioned approaches, are also considered. Dendritic catalysts, synthesized in such ways, can be stored as powders and be easily separated from the reaction medium by filtration/centrifugation as traditional heterogeneous catalysts, maintaining efficiency as for homogeneous dendritic catalysts. Full article
(This article belongs to the Topic Multiple Application for Novel and Advanced Materials)
Show Figures

Graphical abstract

28 pages, 7380 KiB  
Review
Targeted Delivery Methods for Anticancer Drugs
by Valery V. Veselov, Alexander E. Nosyrev, László Jicsinszky, Renad N. Alyautdin and Giancarlo Cravotto
Cancers 2022, 14(3), 622; https://doi.org/10.3390/cancers14030622 - 26 Jan 2022
Cited by 100 | Viewed by 7730
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the [...] Read more.
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed. Full article
Show Figures

Figure 1

16 pages, 9254 KiB  
Article
Curcumin Loaded Dendrimers Specifically Reduce Viability of Glioblastoma Cell Lines
by John Gallien, Bhairavi Srinageshwar, Kellie Gallo, Gretchen Holtgrefe, Sindhuja Koneru, Paulina Sequeiros Otero, Catalina Alvarez Bueno, Jamie Mosher, Alison Roh, D. Stave Kohtz, Douglas Swanson, Ajit Sharma, Gary Dunbar and Julien Rossignol
Molecules 2021, 26(19), 6050; https://doi.org/10.3390/molecules26196050 - 6 Oct 2021
Cited by 54 | Viewed by 6706
Abstract
Glioblastoma (GB) is a deadly and aggressive cancer of the CNS. Even with extensive resection and chemoradiotherapy, patient survival is still only 15 months. To maintain growth and proliferation, cancer cells require a high oxidative state. Curcumin, a well-known anti-inflammatory antioxidant, is a [...] Read more.
Glioblastoma (GB) is a deadly and aggressive cancer of the CNS. Even with extensive resection and chemoradiotherapy, patient survival is still only 15 months. To maintain growth and proliferation, cancer cells require a high oxidative state. Curcumin, a well-known anti-inflammatory antioxidant, is a potential candidate for treatment of GB. To facilitate efficient delivery of therapeutic doses of curcumin into cells, we encapsulated the drug in surface-modified polyamidoamine (PAMAM) dendrimers. We studied the in vitro effectiveness of a traditional PAMAM dendrimer (100% amine surface, G4 NH2), surface-modified dendrimer (10% amine and 90% hydroxyl-G4 90/10-Cys), and curcumin (Cur)-encapsulated dendrimer (G4 90/10-Cys-Cur) on three species of glioblastoma cell lines: mouse-GL261, rat-F98, and human-U87. Using an MTT assay for cell viability, we found that G4 90/10-Cys-Cur reduced viability of all three glioblastoma cell lines compared to non-cancerous control cells. Under similar conditions, unencapsulated curcumin was not effective, while the non-modified dendrimer (G4 NH2) caused significant death of both cancerous and normal cells. By harnessing and optimizing the components of PAMAM dendrimers, we are providing a promising new route for delivering cancer therapeutics. Our results with curcumin suggest that antioxidants are good candidates for treating glioblastoma. Full article
(This article belongs to the Special Issue Recent Progress in Health Benefits from Curcumin)
Show Figures

Graphical abstract

Back to TopTop