Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = tracheal replacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3769 KiB  
Article
Antimicrobial Resistance Patterns and Biofilm Analysis via Sonication in Intensive Care Unit Patients at a County Emergency Hospital in Romania
by Ioana Roxana Codru, Bogdan Ioan Vintilă, Alina Simona Bereanu, Mihai Sava, Livia Mirela Popa and Victoria Birlutiu
Pharmaceuticals 2025, 18(2), 161; https://doi.org/10.3390/ph18020161 - 25 Jan 2025
Cited by 1 | Viewed by 1148
Abstract
Background/Objectives: Ventilator-associated pneumonia (VAP) remains a critical challenge in ICU settings, often driven by the biofilm-mediated bacterial colonization of endotracheal tubes (ETTs). This study investigates antimicrobial resistance patterns and biofilm dynamics in ICU patients, focusing on microbial colonization and resistance trends in tracheal [...] Read more.
Background/Objectives: Ventilator-associated pneumonia (VAP) remains a critical challenge in ICU settings, often driven by the biofilm-mediated bacterial colonization of endotracheal tubes (ETTs). This study investigates antimicrobial resistance patterns and biofilm dynamics in ICU patients, focusing on microbial colonization and resistance trends in tracheal aspirates and endotracheal tube biofilms at a county emergency hospital in Romania. Methods: We conducted a longitudinal analysis of ICU patients requiring mechanical ventilation for more than 48 h. Tracheal aspirates and ETT biofilms were collected at three key time points: T1 (baseline), T2 (48 h post-intubation with ETT replacement), and T3 (92–100 h post-T2); these were analyzed using sonication and microbiological techniques to assess microbial colonization and antimicrobial resistance patterns. Results: In a total of 30 patients, bacteria from the ESKAPEE group (e.g., Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus) dominated the microbiota, increasing their prevalence over time. Resistance to carbapenems, colistin, and vancomycin was notably observed, particularly among K. pneumoniae and A. baumannii. Biofilm analysis revealed high persistence rates and the emergence of multidrug-resistant strains, underscoring the role of ETTs as reservoirs for resistant pathogens. The replacement of ETTs at T2 correlated with a shift in microbial composition and reduced biofilm-associated contamination. Conclusions: This study highlights the temporal evolution of antimicrobial resistance and biofilm-associated colonization in a limited number of ICU patients (30 patients). The findings support implementing routine ETT management strategies, including scheduled replacements and advanced biofilm-disruption techniques, to mitigate VAP risk and improve patient outcomes. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

15 pages, 5966 KiB  
Article
Long-Term Survival and Regeneration Following Transplantation of 3D-Printed Biodegradable PCL Tracheal Grafts in Large-Scale Porcine Models
by Sen-Ei Shai, Yi-Ling Lai, Yi-Wen Hung, Chi-Wei Hsieh, Kuo-Chih Su, Chun-Hsiang Wang, Te-Hsin Chao, Yung-Tsung Chiu, Chia-Ching Wu and Shih-Chieh Hung
Bioengineering 2024, 11(8), 832; https://doi.org/10.3390/bioengineering11080832 - 14 Aug 2024
Cited by 6 | Viewed by 1843
Abstract
Polycaprolactone (PCL) implants in large animals show great promise for tracheal transplantation. However, the longest survival time achieved to date is only about three weeks. To meet clinical application standards, it is essential to extend the survival time and ensure the complete integration [...] Read more.
Polycaprolactone (PCL) implants in large animals show great promise for tracheal transplantation. However, the longest survival time achieved to date is only about three weeks. To meet clinical application standards, it is essential to extend the survival time and ensure the complete integration and functionality of the implant. Our study investigates the use of three-dimensional (3D)-printed, biodegradable, PCL-based tracheal grafts for large-scale porcine tracheal transplantation, assessing the feasibility and early structural integrity crucial for long-term survival experiments. A biodegradable PCL tracheal graft was fabricated using a BIOX bioprinter and transplanted into large-scale porcine models. The grafts, measuring 20 × 20 × 1.5 mm, were implanted following a 2 cm circumferential resection of the porcine trachea. The experiment design was traditionally implanted in eight porcines to replace four-ring tracheal segments, only two of which survived more than three months. Data were collected on the graft construction and clinical outcomes. The 3D-printed biosynthetic grafts replicated the native organ with high fidelity. The implantations were successful, without immediate complications. At two weeks, bronchoscopy revealed significant granulation tissue around the anastomosis, which was managed with laser ablation. The presence of neocartilage, neoglands, and partial epithelialization near the anastomosis was verified in the final pathology findings. Our study demonstrates in situ regenerative tissue growth with intact cartilage following transplantation, marked by neotissue formation on the graft’s exterior. The 90-day survival milestone was achieved due to innovative surgical strategies, reinforced with strap muscle attached to the distal trachea. Further improvements in graft design and granulation tissue management are essential to optimize outcomes. Full article
(This article belongs to the Special Issue Tissue Engineering and Regenerative Medicine in Bioengineering)
Show Figures

Graphical abstract

11 pages, 6365 KiB  
Article
Decellularized Wharton’s Jelly and Amniotic Membrane Demonstrate Potential Therapeutic Implants in Tracheal Defects in Rabbits
by Aloysio Enck Neto, Katia Martins Foltz, Thiago Fuchs, Luize Kremer Gamba, Marcos Antonio Denk, Paulo Cesar Lock Silveira, Thatyanne Gradowski do Nascimento, Alice Machado Clemencia, Julio César Francisco, Lucia de Noronha and Luiz César Guarita-Souza
Life 2024, 14(6), 782; https://doi.org/10.3390/life14060782 - 20 Jun 2024
Cited by 2 | Viewed by 1183
Abstract
Background: Tracheal grafts have been investigated for over a century, aiming to replace various lesions. However, tracheal reconstruction surgery remains a challenge, primarily due to anatomical considerations, intraoperative airway management, the technical complexity of reconstruction, and the potential postoperative morbidity and mortality. Due [...] Read more.
Background: Tracheal grafts have been investigated for over a century, aiming to replace various lesions. However, tracheal reconstruction surgery remains a challenge, primarily due to anatomical considerations, intraoperative airway management, the technical complexity of reconstruction, and the potential postoperative morbidity and mortality. Due to research development, the amniotic membrane (AM) and Wharton’s Jelly (WJ) arise as alternatives within the new set of therapeutic alternatives. These structures hold significant therapeutic potential for tracheal defects. This study analyzed the capacity of tracheal tissue regeneration after 60 days of decellularized WJ and AM implantation in rabbits submitted to conventional tracheostomy. Methods: An in vivo experimental study was carried out using thirty rabbits separated into three groups (Control, AM, and WJ) (n = 10). The analyses were performed 60 days after surgery through immunohistochemistry. Results: Different immunomarkers related to scar regeneration, such as aggrecan, TGF-β1, and α-SMA, were analyzed. However, they highlighted no significant difference between the groups. Collagen type I, III, and Aggrecan also showed no significant difference between the groups. Conclusions: Both scaffolds appeared to be excellent frameworks for tissue engineering, presenting biocompatibility and a desirable microenvironment for cell survival; however, they did not display histopathological benefits in trachea tissue regeneration. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

15 pages, 6803 KiB  
Article
Regeneration Process of an Autologous Tissue-Engineered Trachea (aTET) in a Rat Patch Tracheoplasty Model
by Shun Iwasaki, Koichi Deguchi, Ryosuke Iwai, Yasuhide Nakayama and Hiroomi Okuyama
Bioengineering 2024, 11(3), 243; https://doi.org/10.3390/bioengineering11030243 - 29 Feb 2024
Cited by 2 | Viewed by 2142
Abstract
The treatment of long-tracheal lesion is difficult because there are currently no viable grafts for tracheal replacement. To solve this problem, we have developed an autologous Tissue-Engineered Trachea (aTET), which is made up of collagenous tissues and cartilage-like structures derived from rat chondrocytes. [...] Read more.
The treatment of long-tracheal lesion is difficult because there are currently no viable grafts for tracheal replacement. To solve this problem, we have developed an autologous Tissue-Engineered Trachea (aTET), which is made up of collagenous tissues and cartilage-like structures derived from rat chondrocytes. This graft induced successful long-term survival in a small-animal experiment in our previous study. In this study, we investigated the regeneration process of an aTET to attain reproducible success. We prepared an aTET by using a specially designed mold and performed patch tracheoplasty with an aTET. We assigned twenty-seven rats to three groups according to the three types of patch grafts used: aTET patches (the aTET group), fresh tracheal autograft patches (the Ag group), or polylactic acid and polycaprolactone copolymer sheets (the PPc group). In each group, gross and histological evaluations were performed at 1 month (n = 3), 3 months (n = 3), and 6 months (n = 3) after implantation. We obtained high survival rates in all groups, but only the PPc group attained thick tracheal walls with granular tissues and no tracheal regeneration. On the other hand, the aTET and Ag groups reproducibly achieved complete tracheal regeneration in 6 months. So, an aTET could be a promising candidate for tracheal regeneration grafts. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

16 pages, 1552 KiB  
Review
Tracheal Tissue Engineering: Principles and State of the Art
by Marco Mammana, Alessandro Bonis, Vincenzo Verzeletti, Andrea Dell’Amore and Federico Rea
Bioengineering 2024, 11(2), 198; https://doi.org/10.3390/bioengineering11020198 - 19 Feb 2024
Cited by 14 | Viewed by 3681
Abstract
Patients affected by long-segment tracheal defects or stenoses represent an unsolved surgical issue, since they cannot be treated with the conventional surgery of tracheal resection and consequent anastomosis. Hence, different strategies for tracheal replacement have been proposed (synthetic materials, aortic allografts, transplantation, autologous [...] Read more.
Patients affected by long-segment tracheal defects or stenoses represent an unsolved surgical issue, since they cannot be treated with the conventional surgery of tracheal resection and consequent anastomosis. Hence, different strategies for tracheal replacement have been proposed (synthetic materials, aortic allografts, transplantation, autologous tissue composites, and tissue engineering), each with advantages and drawbacks. Tracheal tissue engineering, on the other hand, aims at recreating a fully functional tracheal substitute, without the need for the patient to receive lifelong immunosuppression or endotracheal stents. Tissue engineering approaches involve the use of a scaffold, stem cells, and humoral signals. This paper reviews the main aspects of tracheal TE, starting from the choice of the scaffold to the type of stem cells that can be used to seed the scaffold, the methods for their culture and expansion, the issue of graft revascularization at the moment of in vivo implantation, and experimental models of tracheal research. Moreover, a critical insight on the state of the art of tracheal tissue engineering is also presented. Full article
(This article belongs to the Special Issue Stem Cell for Tissue Engineering)
Show Figures

Figure 1

18 pages, 710 KiB  
Review
Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions
by Ahilanandan Dushianthan, Michael P. W. Grocott, Ganapathy Senthil Murugan, Tom M. A. Wilkinson and Anthony D. Postle
Diagnostics 2023, 13(18), 2964; https://doi.org/10.3390/diagnostics13182964 - 15 Sep 2023
Cited by 16 | Viewed by 5528
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults, leading to the requirement for mechanical ventilation and poorer outcomes. Dysregulated surfactant metabolism and function are characteristic of ARDS. A combination of alveolar epithelial damage leading to altered [...] Read more.
Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults, leading to the requirement for mechanical ventilation and poorer outcomes. Dysregulated surfactant metabolism and function are characteristic of ARDS. A combination of alveolar epithelial damage leading to altered surfactant synthesis, secretion, and breakdown with increased functional inhibition from overt alveolar inflammation contributes to the clinical features of poor alveolar compliance and alveolar collapse. Quantitative and qualitative alterations in the bronchoalveolar lavage and tracheal aspirate surfactant composition contribute to ARDS pathogenesis. Compared to neonatal respiratory distress syndrome (nRDS), replacement studies of exogenous surfactants in adult ARDS suggest no survival benefit. However, these studies are limited by disease heterogeneity, variations in surfactant preparations, doses, and delivery methods. More importantly, the lack of mechanistic understanding of the exact reasons for dysregulated surfactant remains a significant issue. Moreover, studies suggest an extremely short half-life of replaced surfactant, implying increased catabolism. Refining surfactant preparations and delivery methods with additional co-interventions to counteract surfactant inhibition and degradation has the potential to enhance the biophysical characteristics of surfactant in vivo. Full article
(This article belongs to the Special Issue What’s New in Acute Respiratory Distress Syndrome)
Show Figures

Figure 1

13 pages, 2083 KiB  
Article
Evaluation of Structural Viability of Porcine Tracheal Scaffolds after 3 and 6 Months of Storage under Three Different Protocols
by Alberto Bruning Guimaraes, Aristides Tadeu Correia, Ronaldo Soares da Silva, Elizabete Silva dos Santos, Natalia de Souza Xavier Costa, Marisa Dolhnikoff, Marina Maizato, Idagene Aparecida Cestari, Paulo Manuel Pego-Fernandes and Paulo Francisco Guerreiro Cardoso
Bioengineering 2023, 10(5), 584; https://doi.org/10.3390/bioengineering10050584 - 12 May 2023
Cited by 3 | Viewed by 1737
Abstract
Tracheal replacement with a bioengineered tracheal substitute has been developed for long-segment tracheal diseases. The decellularized tracheal scaffold is an alternative for cell seeding. It is not defined if the storage scaffold produces changes in the scaffold’s biomechanical properties. We tested three protocols [...] Read more.
Tracheal replacement with a bioengineered tracheal substitute has been developed for long-segment tracheal diseases. The decellularized tracheal scaffold is an alternative for cell seeding. It is not defined if the storage scaffold produces changes in the scaffold’s biomechanical properties. We tested three protocols for porcine tracheal scaffold preservation immersed in PBS and alcohol 70%, in the fridge and under cryopreservation. Ninety-six porcine tracheas (12 in natura, 84 decellularized) were divided into three groups (PBS, alcohol, and cryopreservation). Twelve tracheas were analyzed after three and six months. The assessment included residual DNA, cytotoxicity, collagen contents, and mechanical properties. Decellularization increased the maximum load and stress in the longitudinal axis and decreased the maximum load in the transverse axis. The decellularization of the porcine trachea produced structurally viable scaffolds, with a preserved collagen matrix suitable for further bioengineering. Despite the cyclic washings, the scaffolds remained cytotoxic. The comparison of the storage protocols (PBS at 4 °C, alcohol at 4 °C, and slow cooling cryopreservation with cryoprotectants) showed no significant differences in the amount of collagen and in the biomechanical properties of the scaffolds. Storage in PBS solution at 4 °C for six months did not change the scaffold mechanics. Full article
(This article belongs to the Special Issue Stem Cell-Based Approaches for Treatment of Lung Disease)
Show Figures

Figure 1

21 pages, 5119 KiB  
Article
Investigation of the In Vitro and In Vivo Biocompatibility of a Three-Dimensional Printed Thermoplastic Polyurethane/Polylactic Acid Blend for the Development of Tracheal Scaffolds
by Asmak Abdul Samat, Zuratul Ain Abdul Hamid, Mariatti Jaafar, Chern Chung Ong and Badrul Hisham Yahaya
Bioengineering 2023, 10(4), 394; https://doi.org/10.3390/bioengineering10040394 - 23 Mar 2023
Cited by 23 | Viewed by 3181
Abstract
Tissue-engineered polymeric implants are preferable because they do not cause a significant inflammatory reaction in the surrounding tissue. Three-dimensional (3D) technology can be used to fabricate a customised scaffold, which is critical for implantation. This study aimed to investigate the biocompatibility of a [...] Read more.
Tissue-engineered polymeric implants are preferable because they do not cause a significant inflammatory reaction in the surrounding tissue. Three-dimensional (3D) technology can be used to fabricate a customised scaffold, which is critical for implantation. This study aimed to investigate the biocompatibility of a mixture of thermoplastic polyurethane (TPU) and polylactic acid (PLA) and the effects of their extract in cell cultures and in animal models as potential tracheal replacement materials. The morphology of the 3D-printed scaffolds was investigated using scanning electron microscopy (SEM), while the degradability, pH, and effects of the 3D-printed TPU/PLA scaffolds and their extracts were investigated in cell culture studies. In addition, subcutaneous implantation of 3D-printed scaffold was performed to evaluate the biocompatibility of the scaffold in a rat model at different time points. A histopathological examination was performed to investigate the local inflammatory response and angiogenesis. The in vitro results showed that the composite and its extract were not toxic. Similarly, the pH of the extracts did not inhibit cell proliferation and migration. The analysis of biocompatibility of the scaffolds from the in vivo results suggests that porous TPU/PLA scaffolds may facilitate cell adhesion, migration, and proliferation and promote angiogenesis in host cells. The current results suggest that with 3D printing technology, TPU and PLA could be used as materials to construct scaffolds with suitable properties and provide a solution to the challenges of tracheal transplantation. Full article
(This article belongs to the Special Issue Applications of Bioprinting in Biomedicine)
Show Figures

Figure 1

12 pages, 2340 KiB  
Article
Airway Findings in Patients with Hunter Syndrome Treated with Intravenous Idursulfase
by Richard De Vuyst, Elizabeth Jalazo, Tamy Moraes Tsujimoto, Feng-Chang Lin, Joseph Muenzer and Marianne S. Muhlebach
J. Clin. Med. 2023, 12(2), 480; https://doi.org/10.3390/jcm12020480 - 6 Jan 2023
Viewed by 3153
Abstract
People with Hunter syndrome are known to be affected by a variety of airway pathologies. Treatment of Hunter syndrome with the enzyme replacement therapy (ERT) idursulfase is now the standard of care. However, it is not known how ERT changes the progression of [...] Read more.
People with Hunter syndrome are known to be affected by a variety of airway pathologies. Treatment of Hunter syndrome with the enzyme replacement therapy (ERT) idursulfase is now the standard of care. However, it is not known how ERT changes the progression of airway involvement. To evaluate this, we performed a retrospective analysis of bronchoscopies performed on children with Hunter syndrome who were part of intrathecal ERT trials. Findings for airway pathology were extracted from bronchoscopy reports and analyses were performed for cross-sectional and longitudinal changes in airway disease. One-hundred and thirty bronchoscopies from 23 subjects were analyzed. Upper airway disease (adenoid hypertrophy and/or pharyngomalacia) was reported in 93% and 87% of bronchoscopies, respectively. Laryngeal abnormalities were recognized in 46% of cases. There were lower airway (tracheal and or bronchial) findings in 64% of all bronchoscopies and prevalence increased with age. Evaluations over time adjusted for repeat evaluations showed that increasing airway involvement was associated with older age (p = 0.0007) despite ongoing ERT. No association was discovered between age of intravenous ERT initiation and progression of airway disease. Individuals with Hunter syndrome who are receiving intravenous enzyme replacement therapy showed the progression of airways disease supporting the need for regular airway monitoring and intervention. Full article
(This article belongs to the Special Issue New Insights into Pediatric Pulmonology)
Show Figures

Figure 1

26 pages, 3705 KiB  
Article
Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application
by Anastasiia Shuba, Tatiana Kuchmenko and Ruslan Umarkhanov
Sensors 2022, 22(21), 8529; https://doi.org/10.3390/s22218529 - 5 Nov 2022
Cited by 9 | Viewed by 3394
Abstract
When developing methods for diagnosing pathologies and diseases in humans and animals using electronic noses, one of the important trends is the miniaturization of devices, while maintaining significant information for diagnostic purposes. A combination of several sorbents that have unique sorption features of [...] Read more.
When developing methods for diagnosing pathologies and diseases in humans and animals using electronic noses, one of the important trends is the miniaturization of devices, while maintaining significant information for diagnostic purposes. A combination of several sorbents that have unique sorption features of volatile organic compounds (VOCs) on one transducer is a possible option for the miniaturization of sensors for gas analysis. This paper considers the principles of creating polycomposite coatings on the electrodes of piezoelectric quartz resonators, including the choice of sorbents for the formation of sensitive layers, determining the mass and geometry of the formation of sensitive layers in a polycomposite coating, as well as an algorithm for processing the output data of sensors to obtain maximum information about the qualitative and quantitative composition of the gas phase. A comparative analysis of the efficiency and kinetics of VOC vapor sorption by sensors with polycomposite coatings and a set of sensors with relevant single coatings has been carried out. Regression equations have been obtained to predict the molar-specific sensitivity of the microbalance of VOC vapors by a sensor with a polycomposite coating of three sorbents with an error of 5–15% based on the results of the microbalance of VOC vapors on single coatings. A method for creating “visual prints” of sensor signals with polycomposite coatings is shown, with results comparable to those from an array of sensors. The parameters Aij are proposed for obtaining information on the qualitative composition of the gas phase when processing the output data of sensors with polycomposite coatings. A biochemical study of exhaled breath condensate (EBC) samples, a microbiological investigation of calf tracheal washes, and a clinical examination were conducted to assess the presence of bovine respiratory disease (BRD). An analysis of the gas phase over EBC samples with an array of sensors with polycomposite coatings was also carried out. The “visual prints” of the responses of sensors with polycomposite coatings and the results of the identification of VOCs in the gas phase over EBC samples were compared to the results of bacteriological studies of tracheal washes of the studied calves. A connection was found between the parameters Aij of a group of sensors with polycomposite coatings and the biochemical parameters of biosamples. The adequacy of replacing an array of piezoelectric sensors with single coatings by the sensors with polycomposite coatings is shown. Full article
Show Figures

Figure 1

19 pages, 2931 KiB  
Article
Glycosaminoglycan, Antimicrobial Defence Molecule and Cytokine Appearance in Tracheal Hyaline Cartilage of Healthy Humans
by Arina Deņisova, Māra Pilmane and Pavlo Fedirko
J. Funct. Morphol. Kinesiol. 2022, 7(3), 55; https://doi.org/10.3390/jfmk7030055 - 21 Jul 2022
Cited by 2 | Viewed by 3170
Abstract
Hyaline cartilage is an important tracheal structure, yet little is known about its molecular composition, complicating investigation of pathologies and replacement options. Our aim was to research tracheal hyaline cartilage structure, protective tissue factors and variations in healthy humans. The tissue material was [...] Read more.
Hyaline cartilage is an important tracheal structure, yet little is known about its molecular composition, complicating investigation of pathologies and replacement options. Our aim was to research tracheal hyaline cartilage structure, protective tissue factors and variations in healthy humans. The tissue material was obtained from 10 cadavers obtained from the Riga Stradins University Institute of Anatomy and Anthropology archive. Tissues were stained with Bismarck brown and PAS for glycosaminoglycans, and immunohistochemistry was performed for HBD-2, HBD-3, HBD-4, IL-10 and LL-37. The slides were inspected by light microscopy and Spearman’s rank correlation coefficient was calculated. The extracellular matrix was positive across hyaline cartilage for PAS, yet Bismarck brown marked positive proliferation and growth zones. Numerous positive cells for both factors were found in all zones. All of the antimicrobial defence molecules and cytokines were found in a moderate number of cells, except in the mature cell zone with few positive cells. Spearman’s rank correlation coefficient revealed strong and moderate correlations between studied factors. Hyaline cartilage is a tracheal defence structure with a moderate number of antimicrobial defence protein and cytokine immunoreactive cells as well as numerous glycosaminoglycan positive cells. The extracellular matrix glycosaminoglycans provide structural scaffolding and intercellular signalling. The correlations between the studied factors confirm the synergistic activity of them. Full article
Show Figures

Figure 1

13 pages, 739 KiB  
Article
Chest Tube Placement in Mechanically Ventilated Trauma Patients: Differences between Computed Tomography-Based Indication and Clinical Decision
by Manuel Florian Struck, Christian Kleber, Sebastian Ewens, Sebastian Ebel, Holger Kirsten, Sebastian Krämer, Stefan Schob, Georg Osterhoff, Felix Girrbach, Peter Hilbert-Carius, Benjamin Ondruschka and Gunther Hempel
J. Clin. Med. 2022, 11(14), 4043; https://doi.org/10.3390/jcm11144043 - 13 Jul 2022
Cited by 3 | Viewed by 3328
Abstract
The rate of occult pneumothorax in intubated and mechanically ventilated trauma patients until initial computed tomography (CT) remains undetermined. The primary aims of this study were to analyze initial chest CTs with respect to the thoracic pathology of trauma, the clinical injury severity, [...] Read more.
The rate of occult pneumothorax in intubated and mechanically ventilated trauma patients until initial computed tomography (CT) remains undetermined. The primary aims of this study were to analyze initial chest CTs with respect to the thoracic pathology of trauma, the clinical injury severity, and chest tube placement (CTP) before and after CT. In a single-center retrospective analysis of 616 intubated and mechanically ventilated adult patients admitted directly from the scene to the emergency department (ED), 224 underwent CTP (36%). Of these, 142 patients (62%) underwent CTP before CT, of which, 125 (88%) had significant chest injury on CT. Seventeen patients had minor or absent chest injuries, most of which were associated with transient or unrecognized tracheal tube malposition. After CT, CTP was performed in another 82 patients, of which, 56 (68.3%) had relevant pneumothorax and 26 had minor findings on CT. Sixty patients who had already undergone CTP before CT received another CTP after CT, of which, 15 (25%) had relevant pneumothorax and 45 (75%) had functionality issues or malposition requiring replacement. Nine patients showed small pneumothorax on CT, and did not undergo CTP (including four patients with CTP before CT). The physiological variables were unspecific, and the trauma scores were dependent on the CT findings for identifying patients at risk for CTP. In conclusion, the clinical decisions for CTP before CT are associated with relevant false-negative and false-positive cases. Clinical assessment and CT imaging, together, are important indicators for CTP decisions that cannot be achieved by using clinical assessment or CT alone. Full article
Show Figures

Figure 1

17 pages, 6413 KiB  
Article
A Novel Bioreactor for Reconstitution of the Epithelium and Submucosal Glands in Decellularized Ferret Tracheas
by Albert C. Pai, Thomas J. Lynch, Bethany A. Ahlers, Vitaly Ievlev, John F. Engelhardt and Kalpaj R. Parekh
Cells 2022, 11(6), 1027; https://doi.org/10.3390/cells11061027 - 18 Mar 2022
Cited by 10 | Viewed by 2889
Abstract
Tracheal grafts introduce the possibility to treat airway pathologies that require resection. While there has been success with engraftment of the surface airway epithelium (SAE) onto decellularized tracheas, there has been minimal advancement in regenerating the submucosal glands (SMGs). We designed a cost-effective [...] Read more.
Tracheal grafts introduce the possibility to treat airway pathologies that require resection. While there has been success with engraftment of the surface airway epithelium (SAE) onto decellularized tracheas, there has been minimal advancement in regenerating the submucosal glands (SMGs). We designed a cost-effective open-system perfusion bioreactor to investigate the engraftment potential of ferret SAEs and murine myoepithelial cells (MECs) on a partly decellularized ferret trachea with the goal of creating a fully functional tracheal replacement. An air–liquid interface was also arranged by perfusing humidified air through the lumen of a recellularized conduit to induce differentiation. Our versatile bioreactor design was shown to support the successful partial decellularization and recellularization of ferret tracheas. The decellularized grafts maintained biomechanical integrity and chondrocyte viability, consistent with other publications. The scaffolds supported SAE basal cell engraftment, and early differentiation was observed once an air–liquid interface had been established. Lastly, MEC engraftment was sustained, with evidence of diffuse SMG reconstitution. This model will help shed light on SMG regeneration and basal cell differentiation in vitro for the development of fully functional tracheal grafts before transplantation. Full article
(This article belongs to the Special Issue Cell Therapy for Lung Disease)
Show Figures

Figure 1

13 pages, 3317 KiB  
Article
Evaluating Feasibility of Human Tissue Engineered Respiratory Epithelium Construct as a Potential Model for Tracheal Mucosal Reconstruction
by Mohd Heikal Mohd Yunus, Zahra Rashidbenam, Mh Busra Fauzi, Ruszymah Bt Hj Idrus and Aminuddin Bin Saim
Molecules 2021, 26(21), 6724; https://doi.org/10.3390/molecules26216724 - 6 Nov 2021
Cited by 7 | Viewed by 2736
Abstract
The normal function of the airway epithelium is vital for the host’s well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in [...] Read more.
The normal function of the airway epithelium is vital for the host’s well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Engineering and Molecular Medicine)
Show Figures

Figure 1

14 pages, 13499 KiB  
Article
Partial Decellularized Scaffold Combined with Autologous Nasal Epithelial Cell Sheet for Tracheal Tissue Engineering
by Luong Huu Dang, Shih-Han Hung, Yuan Tseng, Ly Xuan Quang, Nhi Thao Ngoc Le, Chia-Lang Fang and How Tseng
Int. J. Mol. Sci. 2021, 22(19), 10322; https://doi.org/10.3390/ijms221910322 - 25 Sep 2021
Cited by 13 | Viewed by 3171
Abstract
Decellularization has emerged as a potential solution for tracheal replacement. As a fully decellularized graft failed to achieve its purposes, the de-epithelialization partial decellularization protocol appeared to be a promising approach for fabricating scaffolds with preserved mechanical properties and few immune rejection responses [...] Read more.
Decellularization has emerged as a potential solution for tracheal replacement. As a fully decellularized graft failed to achieve its purposes, the de-epithelialization partial decellularization protocol appeared to be a promising approach for fabricating scaffolds with preserved mechanical properties and few immune rejection responses after transplantation. Nevertheless, a lack of appropriate concurrent epithelialization treatment can lead to luminal stenosis of the transplant and impede its eventual success. To improve re-epithelialization, autologous nasal epithelial cell sheets generated by our cell sheet engineering platform were utilized in this study under an in vivo rabbit model. The newly created cell sheets have an intact and transplantable appearance, with their specific characteristics of airway epithelial origin being highly expressed upon histological and immunohistochemical analysis. Subsequently, those cell sheets were incorporated with a partially decellularized tracheal graft for autograft transplantation under tracheal partial resection models. The preliminary results two months post operation demonstrated that the transplanted patches appeared to be wholly integrated into the host trachea with adequate healing of the luminal surface, which was confirmed via endoscopic and histologic evaluations. The satisfactory result of this hybrid scaffold protocol could serve as a potential solution for tracheal reconstructions in the future. Full article
Show Figures

Figure 1

Back to TopTop