Tracheal Tissue Engineering: Principles and State of the Art
Abstract
:1. Introduction
2. Anatomy and Physiology of the Trachea
3. Approaches to Tracheal Tissue Engineering
4. Scaffold Options
5. Cell Types for Tracheal Regeneration
6. The Role of Stem Cells
7. Seeding Methods and Bioreactors
8. Vascular Supply
9. In Vivo Animal Models
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pêgo-Fernandes, P.M.; de Azevedo-Pereira, A.E. Tracheal Transplantation: Is There Lumen at the End of the Tunnel? Sao Paulo Med. J. 2009, 127, 249–250. [Google Scholar] [CrossRef]
- Etienne, H.; Fabre, D.; Gomez Caro, A.; Kolb, F.; Mussot, S.; Mercier, O.; Mitilian, D.; Stephan, F.; Fadel, E.; Dartevelle, P. Tracheal Replacement. Eur. Respir. J. 2018, 51, 1702211. [Google Scholar] [CrossRef]
- Verzeletti, V.; Mammana, M.; Zambello, G.; Dell’Amore, A.; Rea, F. Human Tracheal Transplantation: A Systematic Review of Case Reports. Clin. Transplant. 2024, 38, e15238. [Google Scholar] [CrossRef]
- Neville, W.E.; Bolanowski, J.P.; Kotia, G.G. Clinical Experience with the Silicone Tracheal Prosthesis. J. Thorac. Cardiovasc. Surg. 1990, 99, 604–612, discussion 612–613. [Google Scholar] [CrossRef]
- Maziak, D.E.; Todd, T.R.; Keshavjee, S.H.; Winton, T.L.; Van Nostrand, P.; Pearson, F.G. Adenoid Cystic Carcinoma of the Airway: Thirty-Two-Year Experience. J. Thorac. Cardiovasc. Surg. 1996, 112, 1522–1531, discussion 1531–1532. [Google Scholar] [CrossRef]
- Genden, E.M.; Miles, B.A.; Harkin, T.J.; DeMaria, S.; Kaufman, A.J.; Mayland, E.; Kaul, V.F.; Florman, S.S. Single-Stage Long-Segment Tracheal Transplantation. Am. J. Transplant. 2021, 21, 3421–3427. [Google Scholar] [CrossRef]
- Delaere, P.; Vranckx, J.; Verleden, G.; De Leyn, P.; Van Raemdonck, D. Leuven Tracheal Transplant Group Tracheal Allotransplantation after Withdrawal of Immunosuppressive Therapy. N. Engl. J. Med. 2010, 362, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Genden, E.M.; Urken, M.L. Laryngeal and Tracheal Transplantation: Ethical Limitations. Mt. Sinai J. Med. 2003, 70, 163–165. [Google Scholar] [PubMed]
- Martinod, E.; Radu, D.M.; Onorati, I.; Portela, A.M.S.; Peretti, M.; Guiraudet, P.; Destable, M.-D.; Uzunhan, Y.; Freynet, O.; Chouahnia, K.; et al. Airway Replacement Using Stented Aortic Matrices: Long-Term Follow-up and Results of the TRITON-01 Study in 35 Adult Patients. Am. J. Transplant. 2022, 22, 2961–2970. [Google Scholar] [CrossRef] [PubMed]
- Stocco, E.; Barbon, S.; Mammana, M.; Zambello, G.; Contran, M.; Parnigotto, P.P.; Macchi, V.; Conconi, M.T.; Rea, F.; De Caro, R.; et al. Preclinical and Clinical Orthotopic Transplantation of Decellularized/Engineered Tracheal Scaffolds: A Systematic Literature Review. J. Tissue Eng. 2023, 14, 20417314231151826. [Google Scholar] [CrossRef] [PubMed]
- Grillo, H.C. Tracheal Replacement: A Critical Review. Ann. Thorac. Surg. 2002, 73, 1995–2004. [Google Scholar] [CrossRef]
- Minnich, D.J.; Mathisen, D.J. Anatomy of the Trachea, Carina, and Bronchi. Thorac. Surg. Clin. 2007, 17, 571–585. [Google Scholar] [CrossRef]
- Furlow, P.W.; Mathisen, D.J. Surgical Anatomy of the Trachea. Ann. Cardiothorac. Surg. 2018, 7, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Delaere, P.; Lerut, T.; Van Raemdonck, D. Tracheal Transplantation: State of the Art and Key Role of Blood Supply in Its Success. Thorac. Surg. Clin. 2018, 28, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Fishman, J.M.; Lowdell, M.; Birchall, M.A. Stem Cell-Based Organ Replacements-Airway and Lung Tissue Engineering. Semin. Pediatr. Surg. 2014, 23, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Haykal, S.; Zhou, Y.; Marcus, P.; Salna, M.; Machuca, T.; Hofer, S.O.P.; Waddell, T.K. The Effect of Decellularization of Tracheal Allografts on Leukocyte Infiltration and of Recellularization on Regulatory T Cell Recruitment. Biomaterials 2013, 34, 5821–5832. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.W.; Murphy, S.V.; Feng, X.; Wright, S.C. Tracheal Reconstruction in a Canine Model. Otolaryngol. Head. Neck Surg. 2014, 150, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Pepper, V.; Best, C.A.; Buckley, K.; Schwartz, C.; Onwuka, E.; King, N.; White, A.; Dharmadhikari, S.; Reynolds, S.D.; Johnson, J.; et al. Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement. Otolaryngol. Head. Neck Surg. 2019, 161, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Fux, T.; Österholm, C.; Themudo, R.; Simonson, O.; Grinnemo, K.-H.; Corbascio, M. Synthetic Tracheal Grafts Seeded with Bone Marrow Cells Fail to Generate Functional Tracheae: First Long-Term Follow-up Study. J. Thorac. Cardiovasc. Surg. 2020, 159, 2525–2537.e23. [Google Scholar] [CrossRef]
- Toomes, H.; Mickisch, G.; Vogt-Moykopf, I. Experiences with Prosthetic Reconstruction of the Trachea and Bifurcation. Thorax 1985, 40, 32–37. [Google Scholar] [CrossRef]
- Deslauriers, J.; Ginsberg, R.J.; Nelems, J.M.; Pearson, F.G. Innominate Artery Rupture. A Major Complication of Tracheal Surgery. Ann. Thorac. Surg. 1975, 20, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Neville, W.E.; Bolanowski, P.J.; Soltanzadeh, H. Prosthetic Reconstruction of the Trachea and Carina. J. Thorac. Cardiovasc. Surg. 1976, 72, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Kandi, R.; Sachdeva, K.; Choudhury, S.D.; Pandey, P.M.; Mohanty, S. A Facile 3D Bio-Fabrication of Customized Tubular Scaffolds Using Solvent-Based Extrusion Printing for Tissue-Engineered Tracheal Grafts. J. Biomed. Mater. Res. A 2023, 111, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.B.; Kim, D.; Kim, D.; Park, H.; Lee, S.-H. Engineering and Functionalization of Gelatin Biomaterials: From Cell Culture to Medical Applications. Tissue Eng. Part. B Rev. 2020, 26, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Wang, C. Recent Advances in the Use of Gelatin in Biomedical Research. Biotechnol. Lett. 2015, 37, 2139–2145. [Google Scholar] [CrossRef]
- Afewerki, S.; Sheikhi, A.; Kannan, S.; Ahadian, S.; Khademhosseini, A. Gelatin-Polysaccharide Composite Scaffolds for 3D Cell Culture and Tissue Engineering: Towards Natural Therapeutics. Bioeng. Transl. Med. 2019, 4, 96–115. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V.V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Theus, A.S.; Ning, L.; Kabboul, G.; Hwang, B.; Tomov, M.L.; LaRock, C.N.; Bauser-Heaton, H.; Mahmoudi, M.; Serpooshan, V. 3D Bioprinting of Nanoparticle-Laden Hydrogel Scaffolds with Enhanced Antibacterial and Imaging Properties. iScience 2022, 25, 104947. [Google Scholar] [CrossRef] [PubMed]
- Dell, A.C.; Wagner, G.; Own, J.; Geibel, J.P. 3D Bioprinting Using Hydrogels: Cell Inks and Tissue Engineering Applications. Pharmaceutics 2022, 14, 2596. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Bai, J.; Shao, K.; Tang, W.; Zhao, X.; Lin, D.; Huang, S.; Chen, C.; Ding, Z.; Ye, J. Poly(Vinyl Alcohol) Hydrogels: The Old and New Functional Materials. Int. J. Polym. Sci. 2021, 2021, e2225426. [Google Scholar] [CrossRef]
- Pan, S.; Shen, Z.; Xia, T.; Pan, Z.; Dan, Y.; Li, J.; Shi, H. Hydrogel Modification of 3D Printing Hybrid Tracheal Scaffold to Construct an Orthotopic Transplantation. Am. J. Transl. Res. 2022, 14, 2910–2925. [Google Scholar]
- Xu, X.; Shen, Z.; Shan, Y.; Sun, F.; Lu, Y.; Zhu, J.; Sun, Y.; Shi, H. Application of Tissue Engineering Techniques in Tracheal Repair: A Bibliometric Study. Bioengineered 2023, 14, 2274150. [Google Scholar] [CrossRef]
- Serrano-Aroca, Á.; Cano-Vicent, A.; Sabater, I.; Serra, R.; El-Tanani, M.; Aljabali, A.; Tambuwala, M.M.; Mishra, Y.K. Scaffolds in the Microbial Resistant Era: Fabrication, Materials, Properties and Tissue Engineering Applications. Mater. Today Bio 2022, 16, 100412. [Google Scholar] [CrossRef]
- Mattavelli, D.; Fiorentino, A.; Tengattini, F.; Colpani, A.; Agnelli, S.; Buffoli, B.; Ravanelli, M.; Ferrari, M.; Schreiber, A.; Rampinelli, V.; et al. Additive Manufacturing for Personalized Skull Base Reconstruction in Endoscopic Transclival Surgery: A Proof-of-Concept Study. World Neurosurg. 2021, 155, e439–e452. [Google Scholar] [CrossRef]
- Gao, M.; Zhang, H.; Dong, W.; Bai, J.; Gao, B.; Xia, D.; Feng, B.; Chen, M.; He, X.; Yin, M.; et al. Tissue-Engineered Trachea from a 3D-Printed Scaffold Enhances Whole-Segment Tracheal Repair. Sci. Rep. 2017, 7, 5246. [Google Scholar] [CrossRef]
- Park, J.-H.; Yoon, J.-K.; Lee, J.B.; Shin, Y.M.; Lee, K.-W.; Bae, S.-W.; Lee, J.; Yu, J.; Jung, C.-R.; Youn, Y.-N.; et al. Experimental Tracheal Replacement Using 3-Dimensional Bioprinted Artificial Trachea with Autologous Epithelial Cells and Chondrocytes. Sci. Rep. 2019, 9, 2103. [Google Scholar] [CrossRef]
- Chang, J.W.; Park, S.A.; Park, J.-K.; Choi, J.W.; Kim, Y.-S.; Shin, Y.S.; Kim, C.-H. Tissue-Engineered Tracheal Reconstruction Using Three-Dimensionally Printed Artificial Tracheal Graft: Preliminary Report. Artif. Organs 2014, 38, E95–E105. [Google Scholar] [CrossRef]
- Frejo, L.; Grande, D.A. 3D-Bioprinted Tracheal Reconstruction: An Overview. Bioelectron. Med. 2019, 5, 15. [Google Scholar] [CrossRef]
- Chia, H.N.; Wu, B.M. Recent Advances in 3D Printing of Biomaterials. J. Biol. Eng. 2015, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Hung, S.-H.; Su, C.-H.; Lee, F.-P.; Tseng, H. Larynx Decellularization: Combining Freeze-Drying and Sonication as an Effective Method. J. Voice 2013, 27, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Khalid, T.; Soriano, L.; Lemoine, M.; Cryan, S.-A.; O’Brien, F.J.; O’Leary, C. Development of Tissue-Engineered Tracheal Scaffold with Refined Mechanical Properties and Vascularisation for Tracheal Regeneration. Front. Bioeng. Biotechnol. 2023, 11, 1187500. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.Y.; Park, J.Y.; Lee, B.Y.; Kim, M.S. Comparison of Scaffolds Fabricated via 3D Printing and Salt Leaching: In Vivo Imaging, Biodegradation, and Inflammation. Polymers 2020, 12, 2210. [Google Scholar] [CrossRef]
- Kim, U.-J.; Park, J.; Joo Kim, H.; Wada, M.; Kaplan, D.L. Three-Dimensional Aqueous-Derived Biomaterial Scaffolds from Silk Fibroin. Biomaterials 2005, 26, 2775–2785. [Google Scholar] [CrossRef]
- Mano, J.F.; Silva, G.A.; Azevedo, H.S.; Malafaya, P.B.; Sousa, R.A.; Silva, S.S.; Boesel, L.F.; Oliveira, J.M.; Santos, T.C.; Marques, A.P.; et al. Natural Origin Biodegradable Systems in Tissue Engineering and Regenerative Medicine: Present Status and Some Moving Trends. J. R. Soc. Interface 2007, 4, 999–1030. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, F.; Moradi, L.; Shadmehr, M.B.; Bonakdar, S.; Droodinia, A.; Safshekan, F. In-Vivo Characterization of a 3D Hybrid Scaffold Based on PCL/Decellularized Aorta for Tracheal Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 81, 74–83. [Google Scholar] [CrossRef]
- Batioglu-Karaaltin, A.; Karaaltin, M.V.; Ovali, E.; Yigit, O.; Kongur, M.; Inan, O.; Bozkurt, E.; Cansiz, H. In Vivo Tissue-Engineered Allogenic Trachea Transplantation in Rabbits: A Preliminary Report. Stem Cell Rev. Rep. 2015, 11, 347–356. [Google Scholar] [CrossRef]
- Du, X.F.; Kwon, S.K.; Song, J.-J.; Cho, C.G.; Park, S.-W. Tracheal Reconstruction by Mesenchymal Stem Cells with Small Intestine Submucosa in Rabbits. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 345–351. [Google Scholar] [CrossRef]
- Kojima, K.; Bonassar, L.J.; Ignotz, R.A.; Syed, K.; Cortiella, J.; Vacanti, C.A. Comparison of Tracheal and Nasal Chondrocytes for Tissue Engineering of the Trachea. Ann. Thorac. Surg. 2003, 76, 1884–1888. [Google Scholar] [CrossRef]
- Go, T.; Jungebluth, P.; Baiguero, S.; Asnaghi, A.; Martorell, J.; Ostertag, H.; Mantero, S.; Birchall, M.; Bader, A.; Macchiarini, P. Both Epithelial Cells and Mesenchymal Stem Cell-Derived Chondrocytes Contribute to the Survival of Tissue-Engineered Airway Transplants in Pigs. J. Thorac. Cardiovasc. Surg. 2010, 139, 437–443. [Google Scholar] [CrossRef]
- Villalba-Caloca, J.; Sotres-Vega, A.; Giraldo-Gómez, D.M.; Gaxiola-Gaxiola, M.O.; Piña-Barba, M.C.; García-Montes, J.A.; Martínez-Fonseca, S.; Alonso-Gómez, M.; Santibáñez-Salgado, J.A. In Vivo Performance of Decellularized Tracheal Grafts in the Reconstruction of Long Length Tracheal Defects: Experimental Study. Int. J. Artif. Organs 2021, 44, 718–726. [Google Scholar] [CrossRef]
- Clark, E.S.; Best, C.; Onwuka, E.; Sugiura, T.; Mahler, N.; Bolon, B.; Niehaus, A.; James, I.; Hibino, N.; Shinoka, T.; et al. Effect of Cell Seeding on Neotissue Formation in a Tissue Engineered Trachea. J. Pediatr. Surg. 2016, 51, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Maughan, E.F.; Hynds, R.E.; Proctor, T.J.; Janes, S.M.; Elliott, M.; Birchall, M.A.; Lowdell, M.W.; De Coppi, P. Autologous Cell Seeding in Tracheal Tissue Engineering. Curr. Stem Cell Rep. 2017, 3, 279–289. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, M.P.; Fuentes-Julián, S.; Blázquez-Martínez, A.; Pascual, C.Y.; Aller, M.A.; Arias, J.; Arnalich-Montiel, F. Immunosuppressive Properties of Mesenchymal Stem Cells: Advances and Applications. Curr. Mol. Med. 2012, 12, 574–591. [Google Scholar] [CrossRef] [PubMed]
- Spees, J.L.; Lee, R.H.; Gregory, C.A. Mechanisms of Mesenchymal Stem/Stromal Cell Function. Stem Cell Res. Ther. 2016, 7, 125. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, K.A.; Yerkovich, S.T.; Chen, T.; McQualter, J.L.; Hopkins, P.M.-A.; Wells, C.A.; Chambers, D.C. Mesenchymal Stromal Cells Are Readily Recoverable from Lung Tissue, but Not the Alveolar Space, in Healthy Humans. Stem Cells 2016, 34, 2548–2558. [Google Scholar] [CrossRef] [PubMed]
- Baggio Simeoni, P.R.; Simeoni, R.B.; Bispo Machado Júnior, P.A.; de Almeida, M.B.; Dziedzic, D.S.M.; da Rosa, N.N.; Ferreira Stricker, P.E.; Dos Santos Miggiolaro, A.F.R.; Naves, G.; Neto, N.B.; et al. Tracheal Repair with Human Umbilical Cord Mesenchymal Stem Cells Differentiated in Chondrocytes Grown on an Acellular Amniotic Membrane: A Pre-Clinical Approach. Life 2021, 11, 879. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.G.; Park, S.A.; Lee, S.-H.; Choi, J.S.; Cho, H.; Lee, S.J.; Kwon, Y.-W.; Kwon, S.K. Transplantation of a 3D-Printed Tracheal Graft Combined with iPS Cell-Derived MSCs and Chondrocytes. Sci. Rep. 2020, 10, 4326. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.-W.; Lee, K.-W.; Park, J.-H.; Lee, J.; Jung, C.-R.; Yu, J.; Kim, H.-Y.; Kim, D.-H. 3D Bioprinted Artificial Trachea with Epithelial Cells and Chondrogenic-Differentiated Bone Marrow-Derived Mesenchymal Stem Cells. Int. J. Mol. Sci. 2018, 19, 1624. [Google Scholar] [CrossRef] [PubMed]
- Ke, D.; Yi, H.; Est-Witte, S.; George, S.; Kengla, C.; Lee, S.J.; Atala, A.; Murphy, S.V. Bioprinted Trachea Constructs with Patient-Matched Design, Mechanical and Biological Properties. Biofabrication 2019, 12, 015022. [Google Scholar] [CrossRef] [PubMed]
- Zang, M.; Zhang, Q.; Chang, E.I.; Mathur, A.B.; Yu, P. Decellularized Tracheal Matrix Scaffold for Tracheal Tissue Engineering: In Vivo Host Response. Plast. Reconstr. Surg. 2013, 132, 549e–559e. [Google Scholar] [CrossRef]
- Liu, L.; Wu, W.; Tuo, X.; Geng, W.; Zhao, J.; Wei, J.; Yan, X.; Yang, W.; Li, L.; Chen, F. Novel Strategy to Engineer Trachea Cartilage Graft with Marrow Mesenchymal Stem Cell Macroaggregate and Hydrolyzable Scaffold. Artif. Organs 2010, 34, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Asnaghi, M.A.; Jungebluth, P.; Raimondi, M.T.; Dickinson, S.C.; Rees, L.E.N.; Go, T.; Cogan, T.A.; Dodson, A.; Parnigotto, P.P.; Hollander, A.P.; et al. A Double-Chamber Rotating Bioreactor for the Development of Tissue-Engineered Hollow Organs: From Concept to Clinical Trial. Biomaterials 2009, 30, 5260–5269. [Google Scholar] [CrossRef]
- Haykal, S.; Salna, M.; Zhou, Y.; Marcus, P.; Fatehi, M.; Frost, G.; Machuca, T.; Hofer, S.O.P.; Waddell, T.K. Double-Chamber Rotating Bioreactor for Dynamic Perfusion Cell Seeding of Large-Segment Tracheal Allografts: Comparison to Conventional Static Methods. Tissue Eng. Part. C Methods 2014, 20, 681–692. [Google Scholar] [CrossRef]
- Tan, Q.; Steiner, R.; Yang, L.; Welti, M.; Neuenschwander, P.; Hillinger, S.; Weder, W. Accelerated Angiogenesis by Continuous Medium Flow with Vascular Endothelial Growth Factor inside Tissue-Engineered Trachea. Eur. J. Cardiothorac. Surg. 2007, 31, 806–811. [Google Scholar] [CrossRef]
- Dikina, A.D.; Strobel, H.A.; Lai, B.P.; Rolle, M.W.; Alsberg, E. Engineered Cartilaginous Tubes for Tracheal Tissue Replacement via Self-Assembly and Fusion of Human Mesenchymal Stem Cell Constructs. Biomaterials 2015, 52, 452–462. [Google Scholar] [CrossRef]
- Chiang, T.; Pepper, V.; Best, C.; Onwuka, E.; Breuer, C.K. Clinical Translation of Tissue Engineered Trachea Grafts. Ann. Otol. Rhinol. Laryngol. 2016, 125, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.G.; Sesterhenn, K.; Wustrow, F. Tracheal Allotransplantation in Man. Lancet 1979, 1, 433. [Google Scholar] [CrossRef]
- Klepetko, W.; Marta, G.M.; Wisser, W.; Melis, E.; Kocher, A.; Seebacher, G.; Aigner, C.; Mazhar, S. Heterotopic Tracheal Transplantation with Omentum Wrapping in the Abdominal Position Preserves Functional and Structural Integrity of a Human Tracheal Allograft. J. Thorac. Cardiovasc. Surg. 2004, 127, 862–867. [Google Scholar] [CrossRef]
- Hardillo, J.; Vanclooster, C.; Delaere, P.R. An Investigation of Airway Wound Healing Using a Novel in Vivo Model. Laryngoscope 2001, 111, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.; Bonassar, L.J.; Roy, A.K.; Vacanti, C.A.; Cortiella, J. Autologous Tissue-Engineered Trachea with Sheep Nasal Chondrocytes. J. Thorac. Cardiovasc. Surg. 2002, 123, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.; Kong, W.H.; Seo, S.W. Factors Affecting Tissue Culture and Transplantation Using Omentum. ASAIO J. 2010, 56, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.J.; De Coppi, P.; Speggiorin, S.; Roebuck, D.; Butler, C.R.; Samuel, E.; Crowley, C.; McLaren, C.; Fierens, A.; Vondrys, D.; et al. Stem-Cell-Based, Tissue Engineered Tracheal Replacement in a Child: A 2-Year Follow-up Study. Lancet 2012, 380, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Ohata, K.; Ott, H.C. Human-Scale Lung Regeneration Based on Decellularized Matrix Scaffolds as a Biologic Platform. Surg. Today 2020, 50, 633–643. [Google Scholar] [CrossRef]
- Yu, X.; Qian, G.; Chen, S.; Xu, D.; Zhao, X.; Du, C. A Tracheal Scaffold of Gelatin-Chondroitin Sulfate-Hyaluronan-Polyvinyl Alcohol with Orientated Porous Structure. Carbohydr. Polym. 2017, 159, 20–28. [Google Scholar] [CrossRef]
- Giraldo-Gomez, D.M.; García-López, S.J.; Tamay-de-Dios, L.; Sánchez-Sánchez, R.; Villalba-Caloca, J.; Sotres-Vega, A.; Del Prado-Audelo, M.L.; Gómez-Lizárraga, K.K.; Garciadiego-Cázares, D.; Piña-Barba, M.C. Fast Cyclical-Decellularized Trachea as a Natural 3D Scaffold for Organ Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110142. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, F.; Lu, Y.; Pan, S.; Yang, W.; Zhang, G.; Ma, J.; Shi, H. Rapid Preparation of Decellularized Trachea as a 3D Scaffold for Organ Engineering. Int. J. Artif. Organs 2021, 44, 55–64. [Google Scholar] [CrossRef]
- ten Hallers, E.J.O.; Rakhorst, G.; Marres, H.A.M.; Jansen, J.A.; van Kooten, T.G.; Schutte, H.K.; van Loon, J.-P.; van der Houwen, E.B.; Verkerke, G.J. Animal Models for Tracheal Research. Biomaterials 2004, 25, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Sato, T.; Araki, M.; Ichihara, S.; Nakada, A.; Yoshitani, M.; Itoi, S.; Yamashita, M.; Kanemaru, S.; Omori, K.; et al. In Situ Tissue Engineering for Tracheal Reconstruction Using a Luminar Remodeling Type of Artificial Trachea. J. Thorac. Cardiovasc. Surg. 2009, 138, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Macchiarini, P.; Jungebluth, P.; Go, T.; Asnaghi, M.A.; Rees, L.E.; Cogan, T.A.; Dodson, A.; Martorell, J.; Bellini, S.; Parnigotto, P.P.; et al. Clinical Transplantation of a Tissue-Engineered Airway. Lancet 2008, 372, 2023–2030. [Google Scholar] [CrossRef] [PubMed]
- The Editors of The Lancet, Expression of Concern: Clinical Transplantation of a Tissue-Engineered Airway. Lancet 2023, 401, 536. [CrossRef]
- De Block, A.; Delaere, P.; Hens, K. Philosophy of Science Can Prevent Manslaughter. J. Bioeth. Inq. 2022, 19, 537–543. [Google Scholar] [CrossRef]
Scaffold-Related Variables |
---|
|
|
|
|
Cell-Related Variables |
|
|
|
|
|
|
Vascularization |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mammana, M.; Bonis, A.; Verzeletti, V.; Dell’Amore, A.; Rea, F. Tracheal Tissue Engineering: Principles and State of the Art. Bioengineering 2024, 11, 198. https://doi.org/10.3390/bioengineering11020198
Mammana M, Bonis A, Verzeletti V, Dell’Amore A, Rea F. Tracheal Tissue Engineering: Principles and State of the Art. Bioengineering. 2024; 11(2):198. https://doi.org/10.3390/bioengineering11020198
Chicago/Turabian StyleMammana, Marco, Alessandro Bonis, Vincenzo Verzeletti, Andrea Dell’Amore, and Federico Rea. 2024. "Tracheal Tissue Engineering: Principles and State of the Art" Bioengineering 11, no. 2: 198. https://doi.org/10.3390/bioengineering11020198
APA StyleMammana, M., Bonis, A., Verzeletti, V., Dell’Amore, A., & Rea, F. (2024). Tracheal Tissue Engineering: Principles and State of the Art. Bioengineering, 11(2), 198. https://doi.org/10.3390/bioengineering11020198