Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = toxigenic fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1742 KB  
Article
Climate Change and Severe Drought Impact on Aflatoxins and Fungi in Brazil Nuts: A Molecular Approach
by Ariane Mendonça Kluczkovski, Janaína Santos Barroncas, Hanna Lemos, Heloisa Lira Barros, Leiliane Sodré, Liliana de Oliveira Rocha, Taynara Souza Soto, Maria Luana Vinhote and Augusto Kluczkovski
Int. J. Mol. Sci. 2025, 26(19), 9592; https://doi.org/10.3390/ijms26199592 - 1 Oct 2025
Viewed by 245
Abstract
The Brazil nut production chain, which is reliant on Amazonian environmental conditions, is significantly affected by climate change, particularly extreme droughts, which decrease production and compromise sanitary quality. This study evaluated the influence of severe drought on aflatoxin concentrations and sequence toxigenic fungi [...] Read more.
The Brazil nut production chain, which is reliant on Amazonian environmental conditions, is significantly affected by climate change, particularly extreme droughts, which decrease production and compromise sanitary quality. This study evaluated the influence of severe drought on aflatoxin concentrations and sequence toxigenic fungi in Brazil nuts harvested during the 2023 off-season. Aflatoxins were quantified using high-performance liquid chromatography, while fungal sequencing involved DNA extraction, PCR, and sequencing analysis. Findings indicated that all Brazil nut samples collected during extreme drought contained detectable aflatoxins, with 10% exceeding the legal threshold of 10 µg/kg. Phylogenetic analysis identified four isolates as Penicillium citrinum. Additional morphological and sequencing analyses identified Aspergillus species from the Circumdati and Flavi sections, although one isolate could not be taxonomically classified. These results demonstrate the aflatoxin production by fungi in Brazil nuts in an unprecedented way under drought conditions. Furthermore, the diversity of fungal species during drought underscores the risk of contamination, emphasizing the necessity for monitoring future harvests to improve management and ensure product safety. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

18 pages, 1671 KB  
Article
Toxigenic Aspergillus Diversity and Mycotoxins in Organic Spanish Grape Berries
by Clara Melguizo, Andrea Tarazona, Jéssica Gil-Serna, Fernando Mateo, Belén Patiño and Eva María Mateo
Toxins 2025, 17(10), 487; https://doi.org/10.3390/toxins17100487 - 30 Sep 2025
Viewed by 451
Abstract
Grapes are frequently contaminated by Aspergillus section Nigri fungi and ochratoxin A (OTA), with A. niger also capable of producing substantial fumonisin B2 (FB2) levels. Emerging evidence suggests that aflatoxigenic fungi may eventually replace ochratoxigenic fungi in certain regions due [...] Read more.
Grapes are frequently contaminated by Aspergillus section Nigri fungi and ochratoxin A (OTA), with A. niger also capable of producing substantial fumonisin B2 (FB2) levels. Emerging evidence suggests that aflatoxigenic fungi may eventually replace ochratoxigenic fungi in certain regions due to better adaptation to changes in climatic conditions. However, research on the toxigenic fungal community and mycotoxins in grapes from organic vineyards remains limited. Research on Spanish conventional grapes is also deficient, with most of the available literature being outdated. The present study investigates the diversity of toxigenic fungi and the presence of mycotoxins in organically cultivated grape berries in Spain, which are renowned for their significant oenological tradition. This study employed species-specific PCR protocols for fungal characterization and optimized methods for the analysis of OTA, FB2, and aflatoxin B1 (AFB1) by UPLC–ESI–MS/MS. The most prevalent species present were Aspergillus flavus, A. niger, A. parasiticus, A. steynii, A. carbonarius, and A. westerdijkiae (67.1%, 43.5%, 20.0%, 14.1%, 14.1%, and 11.8% of the samples, respectively). OTA was detected only in 16 samples (19%), averaging 0.48 ng/g and peaking at 0.7 ng/g, which were lower than previously reported for conventional grapes. There was no FB2 or AFB1 detected. This study is pioneering in its exploration of the occurrence of toxigenic mycobiota, beyond Nigri fungi, and subsequent potential for other serious mycotoxins to contaminate Spain’s organic grapes. Full article
Show Figures

Graphical abstract

78 pages, 2585 KB  
Review
Engineered Metal Nanoparticles: A Possible Small Solution to Big Problems Associated with Toxigenic Fungi and Mycotoxins
by Eva María Mateo, Fernando Mateo, Andrea Tarazona and Misericordia Jiménez
Toxins 2025, 17(8), 378; https://doi.org/10.3390/toxins17080378 - 30 Jul 2025
Viewed by 1768
Abstract
Mycotoxins are secondary metabolites produced primarily by certain species of the genera Aspergillus, Fusarium, Penicillium, Alternaria, and Claviceps. Toxigenic fungi and mycotoxins are prevalent in staple foods, resulting in significant economic losses and detrimental impacts on public health [...] Read more.
Mycotoxins are secondary metabolites produced primarily by certain species of the genera Aspergillus, Fusarium, Penicillium, Alternaria, and Claviceps. Toxigenic fungi and mycotoxins are prevalent in staple foods, resulting in significant economic losses and detrimental impacts on public health and food safety. These fungi demonstrate remarkable adaptation to water and heat stress conditions associated with climate change, and the use of synthetic antifungals can lead to the selection of resistant strains. In this context, the development of novel strategies for their prevention and control of food is a priority objective. This review synthesizes the extant knowledge concerning the antifungal and anti-mycotoxin potential of the primary metal nanoparticles (silver, copper) and metal oxide nanoparticles (copper oxide and zinc oxide) studied in the literature. It also considers synthesis methods and the lack of consensus on technical definitions and regulations. Despite methodological gaps and the scarcity of publications analyzing the effect of these NPs on fungal growth and mycotoxin production simultaneously, it can be concluded that these NPs present high reactivity, stability, and the ability to combat these food risks. However, aspects related to their biosafety and consumer acceptance remain major challenges that must be addressed for their implementation in the food industry. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

22 pages, 1271 KB  
Article
Toxigenic Fungi and Co-Occurring Mycotoxins in Maize (Zea mayz L.) Samples from the Highlands and Coast of Ecuador
by Héctor Palacios-Cabrera, Juliana Fracari, Marina Venturini Copetti, Carlos Augusto Mallmann, Marcelo Almeida, María Raquel Meléndez-Jácome and Wilson Vásquez-Castillo
Foods 2025, 14(15), 2630; https://doi.org/10.3390/foods14152630 - 26 Jul 2025
Viewed by 813
Abstract
Maize is a key crop in Ecuador for both human and animal consumption. Its vulnerability to fungal contamination and mycotoxins poses risks to food safety. The aim of this study was to analyze the occurrence of fungi and mycotoxins in maize grown in [...] Read more.
Maize is a key crop in Ecuador for both human and animal consumption. Its vulnerability to fungal contamination and mycotoxins poses risks to food safety. The aim of this study was to analyze the occurrence of fungi and mycotoxins in maize grown in different regions of Ecuador (29 localities) and postharvest factors influencing contamination. Fungal identification was performed through culturing and morphological analysis. Analysis of multi-toxins was carried out using liquid chromatography coupled with mass spectrometry (LC-MS/MS). Statistical analyses included PCA and linear regression models. Fungal contamination was found in 93.3% of samples; mycotoxins were present in 90%. Fusarium and Aspergillus were dominant. Fumonisins (66.6%), zearalenone (30%), aflatoxins (16.7%), and trichothecenes B (13.3%) were the most prevalent. Co-occurrence of up to three mycotoxins per sample was observed, more frequent on the coast. Grain moisture and temperature were strongly correlated with contamination levels. The study reveals widespread contamination of Ecuadorian maize, with environmental and postharvest factors playing key roles. This poses a food safety concern, highlighting the need for improved storage and monitoring systems. Full article
(This article belongs to the Special Issue Mycotoxins in Foods: Occurrence, Detection, and Control)
Show Figures

Figure 1

17 pages, 3260 KB  
Article
Interaction of Trichoderma Species with Fusarium graminearum Growth and Its Trichothecene Biosynthesis as Further Contribution in Selection of Potential Biocontrol Agents
by Xianfeng Ren, Lixia Fan, Guidong Li, Ilya V. Lyagin, Bingchun Zhang, Mingxiao Ning, Mengmeng Yan, Jing Gao, Fei Wang, Changying Guo and Antonio F. Logrieco
J. Fungi 2025, 11(7), 521; https://doi.org/10.3390/jof11070521 - 14 Jul 2025
Viewed by 979
Abstract
The interactions of Fusarium graminearum PG-Fg1 and its main trichothecenes with the 28 Trichoderma isolates were studied in vitro. The antagonistic effect assessed by dual-culture tests showed that Trichoderma isolates arrested the growth of PG-Fg1 after contact, overgrew the PG-Fg1 colony and inhibited [...] Read more.
The interactions of Fusarium graminearum PG-Fg1 and its main trichothecenes with the 28 Trichoderma isolates were studied in vitro. The antagonistic effect assessed by dual-culture tests showed that Trichoderma isolates arrested the growth of PG-Fg1 after contact, overgrew the PG-Fg1 colony and inhibited the production of deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON), and 15-acetyldeoxynivalenol (15-ADON) by up to 95.3%, 99.4%, and 99.6%, respectively. PG-Fg1 was hard to overgrow Trichoderma for further extension. Additionally, the inhibitory effects on PG-Fg1 by the Trichoderma metabolites, including volatiles and non-volatiles, were also investigated. Most of the Trichoderma isolates produced metabolites which inhibited PG-Fg1 growth and mycotoxins production. Specifically, Trichoderma non-volatiles and volatiles showed Fusarium growth inhibition rates ranging from 7% to 72% and 3% to 32%, respectively. Notably, non-volatile compounds from two isolates and volatiles from one isolate up-regulated the expression of DON biosynthesis genes (tri4 and tri5), leading to increased production of DON, 3-ADON, and 15-ADON. This study highlights the potential risk posed by certain Trichoderma strains as microbial agents, which can stimulate toxigenic fungi to produce higher levels of mycotoxins. Based on our results and previous reports, when selecting Trichoderma species as biocontrol agents against Fusarium graminearum, its effects on mycotoxins production should be carefully assessed, particularly given observed stimulatory impacts. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

29 pages, 4367 KB  
Article
Endophytic Microbiome Is a Unique Repository of Bio-Foes Against Toxigenic Fungi Harming Peanut Productivity
by Nagwa I. M. Helal, Mona H. Badawi, Abeer M. El-Hadidy, Mohamed K. M. Agha, Ahmed Abou-Shady and Mohamed Fayez
Microbiol. Res. 2025, 16(7), 141; https://doi.org/10.3390/microbiolres16070141 - 1 Jul 2025
Viewed by 728
Abstract
The major objective was to investigate the protective capabilities of endophytic bacterial strains isolated from a number of medicinal plant species towards Aspergillus spp. secured from the internal tissues of fungi-infected peanuts. Among 32 fungal isolates surveyed for mycotoxin production in various culture [...] Read more.
The major objective was to investigate the protective capabilities of endophytic bacterial strains isolated from a number of medicinal plant species towards Aspergillus spp. secured from the internal tissues of fungi-infected peanuts. Among 32 fungal isolates surveyed for mycotoxin production in various culture media (PDA, RBCA, YES, CA), 10 isolates qualitatively producing AFB1, besides 10 OTA-producers, were assayed by HPLC for quantitative toxin production. Aspergillus spp. isolate Be 13 produced an extraordinary quantity of 1859.18 μg mL−1 AFB1, against the lowest toxin level of 280.40 μg mL−1 produced by the fungus isolate IS 4. The estimated amounts of OTA were considerably lower and fell in the range 0.88–6.00 μg mL−1; isolate Sa 1 was superior, while isolate Be 7 seemed inferior. Based on ITS gene sequencing, the highly toxigenic Aspergillus spp. isolates Be 13 and Sa 1 matched the description of A. novoparasiticus and A. ochraceus, respectively, ochraceus, respectively, which are present in GenBank with identity exceeding 99%. According to 16S rRNA gene sequencing, these antagonists labeled Ar6, Ma27 and So34 showed the typical characteristics of Pseudomonas aeruginosa, Bacillus subtilis and Bacillus velezensis, respectively, with similarity percentages of 99–100. The plant growth-promoting activity measurements of the identified endophytes indicated the production of 16.96–80.00 μg/100 mL culture medium of IAA. Phosphate-solubilizing capacity varied among endophytes from 2.50 to 21.38 μg/100 mL. The polysaccharide production pool of bacterial strains ranged between 2.74 and 6.57 mg mL−1. P. aeruginosa Ar6 and B. velezensis successfully produced HCN, but B. subtilis failed. The in vitro mycotoxin biodegradation potential of tested bacterial endophytes indicated the superiority of B. velezensis in degrading both mycotoxins (AFB1-OTA) with average percentage of 88.7; B. subtilis ranked thereafter (85.6%). The 30-day old peanut (cv. Giza 6) seedlings grown in gnotobiotic system severely injured due to infection with AFB1/OTA-producing fungi, an effect expressed in significant reductions in shoot and root growth traits. Simultaneous treatment with the endophytic antagonists greatly diminished the harmful impact of the pathogens; B. velezensis was the pioneer, not P. aeruginosa Ar6. In conclusion, these findings proved that several endophytic bacterial species have the potential as alternative tools to chemical fungicides for protecting agricultural commodities against mycotoxin-producing fungi. Full article
Show Figures

Figure 1

17 pages, 5041 KB  
Article
Exploring the Characteristics of Atoxigenic Aspergillus flavus Isolates and Their Biocontrol Impact on Soil Fungal Communities
by Yanyan Zhang, Wanning Wang, Chenggui Piao, Wenjin Li, Peter J. Cotty, Shihua Shan, Usman Rasheed, Quirico Migheli and Qing Kong
J. Fungi 2025, 11(7), 491; https://doi.org/10.3390/jof11070491 - 27 Jun 2025
Viewed by 821
Abstract
Aspergillus flavus can produce aflatoxins, posing a threat of contamination to peanuts. To mitigate this issue, the use of biocontrol isolates, which do not produce aflatoxins (AF), has been considered to reduce aflatoxin levels. In this study, we evaluated five different [...] Read more.
Aspergillus flavus can produce aflatoxins, posing a threat of contamination to peanuts. To mitigate this issue, the use of biocontrol isolates, which do not produce aflatoxins (AF), has been considered to reduce aflatoxin levels. In this study, we evaluated five different AF isolates belonging to different vegetative compatibility groups, all of which exhibited varying degrees of deletion in aflatoxin biosynthesis gene clusters. One isolate that exhibited poor competitive ability against toxigenic A. flavus was eliminated, and the remaining four isolates were formulated as biocontrol agents and applied to a peanut field in Tai’an, Shandong, as a combination. Three months after application, the soil aflatoxin content was reduced from 0.62 ± 0.01 to 0.19 ± 0.03 μg/kg (inhibition rate: 69.35%). Among filamentous fungi in the soil, the proportion of AF isolates increased from 0% to 4.33%. Using SSR-specific primers, the microbial agents were recovered. We discovered that among the four AF isolates, CA04 had a lower colonization rate compared to the other three (only 12.00% of the total AF population), suggesting that the absence of sclerotia may result in poor reversibility and weaker dispersal ability. We utilized Illumina sequencing to investigate the changes in soil fungal ecology. The results showed a reduction in the population density of harmful fungi, such as Fusarium spp. (66.18%) and Plectosphaerella spp. (79.90%), but an increase in the density of Nothopassalora personata. This is the first study on the dispersal distance and soil fungal community structure following the application of AF agents in peanut fields in China. Full article
Show Figures

Figure 1

23 pages, 400 KB  
Review
Review on the Occurrence of Mycotoxigenic Fungi in Dried Fruits and the Role of Stored-Product Insects
by Dimitrios-Evangelos Miliordos, Georgia V. Baliota, Christos G. Athanassiou and Pantelis I. Natskoulis
Toxins 2025, 17(7), 313; https://doi.org/10.3390/toxins17070313 - 20 Jun 2025
Viewed by 2074
Abstract
Dried fruits, which are widely produced in different parts of the world, and, especially in the Mediterranean basin, are broadly known for their durability and their nutritional value. This is primarily due to their ability to be stored for long periods of time [...] Read more.
Dried fruits, which are widely produced in different parts of the world, and, especially in the Mediterranean basin, are broadly known for their durability and their nutritional value. This is primarily due to their ability to be stored for long periods of time and their concentrated nutrient content. However, these fruits can be at risk of contamination by specific stored-product insects and various toxigenic fungal species at different stages of their production process, including cultivation, harvesting, processing, drying, and storage. As a result, the dried fruits that are consumed may contain mycotoxins, which pose a potential risk for human health. The risk is significant in both industrialized and developing nations, as climate change and inadequate sanitation practices contribute to the proliferation of mycotoxins in these commodities. It is worth noting that there are several factors that contribute to the production of mycotoxins, such as the type of fruit, geographical location, climatic conditions, harvest treatments, and storage management practices, with specialized insects, known as “stored-product insects”, playing a crucial role in this latter stage. Therefore, it is critically important to gain a comprehensive understanding of the interaction among insects, fungi, and mycotoxins to effectively mitigate this problem. In this review, the primary objective is to bridge the knowledge gap by consolidating data from various regions to gain a global perspective on this topic. Full article
(This article belongs to the Section Mycotoxins)
14 pages, 1603 KB  
Article
Overview and Diversity of Fungi of the Genus Aspergillus Section Nigri on Maize and Small Grains
by Milica Lučev, Jelena Stepanović, Vesna Kandić Raftery, Zoran Čamdzija, Ana Obradović, Milan Stevanović and Slavica Stanković
Foods 2025, 14(12), 2146; https://doi.org/10.3390/foods14122146 - 19 Jun 2025
Viewed by 1136
Abstract
The presence of filamentous fungi with toxigenic ability from the Aspergillus genera is frequently found in maize kernels, and this can lead to decay and mycotoxin contamination of the kernels. In this study, we morphologically and molecularly characterized 45 isolates of Aspergillus section [...] Read more.
The presence of filamentous fungi with toxigenic ability from the Aspergillus genera is frequently found in maize kernels, and this can lead to decay and mycotoxin contamination of the kernels. In this study, we morphologically and molecularly characterized 45 isolates of Aspergillus section Nigri originating from maize and small grains (wheat, triticale, and spelt) in Serbia. Based on morphological traits, they were classified into two morpho groups. Representative isolates from both morpho groups were further molecularly characterized through sequencing of ITS, CaM and RPB2 genes in order to compare species composition, which could affect specific mycotoxicological risks. Morpho GroupI was molecularly identified as Aspergillus welwitschiae and morpho GroupII as Aspergillus tubingensis. Phylogenetic analysis of the CaM gene revealed that the Serbian Aspergillus welwitschiae isolate belongs to the H8 haplotype, while A. tubingensis isolates clustered into two subclusters. This is the first report of A. tubingensis as the causal agent of black mold of small grains (wheat, triticale and spelt) in Serbia. This distribution underscores the ecological preferences of species within the genus Aspergillus Section Nigri across various agricultural products. It emphasizes the importance of comprehending their occurrence, distribution, aggressiveness and potential for mycotoxin production in food safety assessments. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

55 pages, 3842 KB  
Review
New Strategies and Artificial Intelligence Methods for the Mitigation of Toxigenic Fungi and Mycotoxins in Foods
by Fernando Mateo, Eva María Mateo, Andrea Tarazona, María Ángeles García-Esparza, José Miguel Soria and Misericordia Jiménez
Toxins 2025, 17(5), 231; https://doi.org/10.3390/toxins17050231 - 7 May 2025
Cited by 3 | Viewed by 2217
Abstract
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in [...] Read more.
The proliferation of toxigenic fungi in food and the subsequent production of mycotoxins constitute a significant concern in the fields of public health and consumer protection. This review highlights recent strategies and emerging methods aimed at preventing fungal growth and mycotoxin contamination in food matrices as opposed to traditional approaches such as chemical fungicides, which may leave toxic residues and pose risks to human and animal health as well as the environment. The novel methodologies discussed include the use of plant-derived compounds such as essential oils, classified as Generally Recognized as Safe (GRAS), polyphenols, lactic acid bacteria, cold plasma technologies, nanoparticles (particularly metal nanoparticles such as silver or zinc nanoparticles), magnetic materials, and ionizing radiation. Among these, essential oils, polyphenols, and lactic acid bacteria offer eco-friendly and non-toxic alternatives to conventional fungicides while demonstrating strong antimicrobial and antifungal properties; essential oils and polyphenols also possess antioxidant activity. Cold plasma and ionizing radiation enable rapid, non-thermal, and chemical-free decontamination processes. Nanoparticles and magnetic materials contribute advantages such as enhanced stability, controlled release, and ease of separation. Furthermore, this review explores recent advancements in the application of artificial intelligence, particularly machine learning methods, for the identification and classification of fungal species as well as for predicting the growth of toxigenic fungi and subsequent mycotoxin production in food products and culture media. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

6 pages, 194 KB  
Editorial
Mycotoxins and Fungal Toxins: Current Status and Future Perspectives
by Jianhua Wang, Josefa Tolosa, Wenyu Wang and Xianli Yang
Toxins 2025, 17(4), 176; https://doi.org/10.3390/toxins17040176 - 3 Apr 2025
Cited by 1 | Viewed by 1447
Abstract
Many toxigenic fungi are devastating pathogens of crop, fruit, and vegetable diseases worldwide [...] Full article
(This article belongs to the Special Issue Mycotoxins and Fungal Toxins: Current Status and Future Perspectives)
25 pages, 2527 KB  
Article
Preharvest Natural Multitoxin Contamination of Winter Wheat Genotypes in Hungary with Special Attention to Aflatoxins and HT-2 Toxin
by Attila Berényi, Balázs Szabó, Tamás Meszlényi, Csaba Vágvölgyi, Beáta Tóth and Ákos Mesterházy
Agriculture 2024, 14(11), 2024; https://doi.org/10.3390/agriculture14112024 - 11 Nov 2024
Cited by 2 | Viewed by 1950
Abstract
Toxigenic fungi are among the most significant disease-causing agents in wheat. DON is the most common Fusarium mycotoxin, and for a long time, it was the only toxin researched. However, multitoxin data from wheat samples have drawn attention to the fact that much [...] Read more.
Toxigenic fungi are among the most significant disease-causing agents in wheat. DON is the most common Fusarium mycotoxin, and for a long time, it was the only toxin researched. However, multitoxin data from wheat samples have drawn attention to the fact that much more toxins can be involved in the wheat toxin story than we supposed earlier. For resistance breeding, we need a more detailed approach to identify toxins that occur above the limit and identify the source of the fungal species that produces them. This study analyzed local wheat varieties for fungal infections and natural multitoxin contamination. Eighteen winter wheat genotypes were tested for fungal contaminations across three different locations in 2021 and 2022. Fourteen different mycotoxins—deoxynivalenol, aflatoxins (B1, B2, G1, and G2), fumonisins (B1 and B2), sterigmatocystin, ochratoxin A, zearalenone, T-2, HT-2, and diacetoxyscirpenol—were analyzed using HPLC/triple-quad MS. Toxigenic species such as Fusarium, Aspergillus, and Penicillium had low rates of occurrence, but the toxin contamination was often surprisingly high. Many samples without corresponding fungal infections were also identified as containing mycotoxins. Therefore, the identified fungal infection is less useful for forecasting toxin level. In conclusion, mycotoxin contamination is decisive. Most samples were contaminated by one or more mycotoxins. Although the mycotoxin concentrations typically remained below EU limits, some samples exhibited higher levels, particularly aflatoxins and Ht-2 toxin. Significant variations were observed across year, location, and genotype. For several toxins, significant genotype differences were identified, supporting the hypothesis that resistance may be a useful and suitable control measure. Stability of toxin contamination across years and locations is a very valuable trait; genotypes were identified with low toxin levels and stability (low variance) to all mycotoxins tested. It seems that, in addition to DON, more attention should be given to aflatoxin B1, B2, and G1, which provided similar concentrations. The HT-2 toxin was present in many samples surpassing EU limits. This is the first report on the dangerous occurrence of preharvest-origin aflatoxins and the HT-2 toxin of wheat in Hungary. Full article
(This article belongs to the Special Issue Feature Papers in Agricultural Product Quality and Safety)
Show Figures

Figure 1

16 pages, 821 KB  
Article
MycoTWIN Working Group Discussion: A Multi-Actor Perspective on Future Research Directions for Mycotoxins and Toxigenic Fungi Along the Food and Feed Chain
by Martina Loi, Antonio Moretti, Vincenzo Lippolis, Hayrettin Özer, Ceyda Pembeci Kodolbas, Elif Yener, İlknur Demirtaş, Pilar Vila-Donat, Lara Manyes and Veronica M. T. Lattanzio
Foods 2024, 13(22), 3582; https://doi.org/10.3390/foods13223582 - 9 Nov 2024
Cited by 1 | Viewed by 1469
Abstract
Mycotoxin research is facing unprecedented challenges, starting from the urgent need to cope with the consequences of climate change, the global shortage of grain due to unstable political scenarios, and the major transformation of the supply chains after the COVID-19 pandemic. In this [...] Read more.
Mycotoxin research is facing unprecedented challenges, starting from the urgent need to cope with the consequences of climate change, the global shortage of grain due to unstable political scenarios, and the major transformation of the supply chains after the COVID-19 pandemic. In this scenario, the mycotoxin contamination of human and animal foods is still unavoidable, thus representing a major challenge to global food security. Next to this, the shift to sustainable and circular food production might be accompanied by an increase in food safety issues involving mycotoxins, e.g., when new technologies are applied to reuse side streams from the food industry, it is not known if and how mycotoxins accumulate in these by-products. MycoTWIN is an EU-funded Horizon 2020 project which fosters knowledge transfer and scientific cooperation within the Mediterranean area, involving worldwide experts, decision makers, and stakeholders in the field of mycotoxigenic fungi and mycotoxins. The MycoTWIN project hosted working group meetings, whose aim was to propose operational plans and/or scientific strategic plans to shape the future research directions to better cope with these challenges. In the working group cycle “Future proof approaches for the management of toxigenic fungi and associated mycotoxins along the food chain”, a multi-actor group was guided in co-creation exercises to elaborate on future research directions and propose relevant actions to be implemented for the present to long-term time periods. The discussion focused on three main topics relevant to the assessment and management of risks associated with mycotoxins and toxigenic fungi: (i) needs for the harmonization of molecular and chemical methods and data analysis, (ii) from lab research to marketable solutions: how to fill the gap, and (iii) gaps in data quality for risk assessment. Full article
Show Figures

Graphical abstract

13 pages, 1061 KB  
Article
Assessment of the Quality, Bioactive Compounds, and Antimicrobial Activity of Egyptian, Ethiopian, and Syrian Black Cumin Oils
by Adel Gabr Abdel-Razek, Minar Mahmoud M. Hassanein, Shimaa Moawad, Amr Farouk, Ahmed Noah Badr, Mohamed Gamal Shehata, Aleksander Siger, Anna Grygier and Magdalena Rudzińska
Molecules 2024, 29(21), 4985; https://doi.org/10.3390/molecules29214985 - 22 Oct 2024
Cited by 2 | Viewed by 1761
Abstract
Background: The oils obtained from the seeds of Nigella sativa, also named black cumin, are rich in bioactive compounds that strengthen immunity and support human health. This study aimed to compare Nigella sativa oils pressed from Egyptian (Eg-NSSO), Ethiopian (Et-NSSO), and Syrian [...] Read more.
Background: The oils obtained from the seeds of Nigella sativa, also named black cumin, are rich in bioactive compounds that strengthen immunity and support human health. This study aimed to compare Nigella sativa oils pressed from Egyptian (Eg-NSSO), Ethiopian (Et-NSSO), and Syrian (Sy-NSSO) seeds. Methods: The analyzed oils were obtained from a local company. The content of phenolic compounds, tocochromanols, phytosterols, volatile compounds, triglycerides, and fatty acids composition was determined using chromatographic methods. The oxidative stability was determined by Rancimat technique as well as the determination of DPPH and ABTS scavenging activity. As an assessment of bioactivity, the antimicrobial and anti-aflatoxigenic properties of oils were evaluated. Results: Ethiopian oil had highest content of phenolic compounds, flavonoids, phytosterols, and tocochromanols and was characterized by the longest induction period (IP = 7.89 h). The share of thymoquinone was the highest in Ethiopian oil (34.84%), followed by Egyptian (27.36%), then Syrian (22.59%). Ethiopian oil recorded a high antibacterial activity, while Egyptian oil showed a unique antifungal activity against toxigenic fungi. Aflatoxins’ secretion into liquid medium containing NSSO was reduced, especially with Egyptian oil. Full article
(This article belongs to the Special Issue New Insight into Edible Oil: From Food Chemistry to Health Benefits)
Show Figures

Figure 1

18 pages, 1111 KB  
Review
RNAi-Based Approaches to Control Mycotoxin Producers: Challenges and Perspectives
by Alexander A. Stakheev, Michael Taliansky, Natalia O. Kalinina and Sergey K. Zavriev
J. Fungi 2024, 10(10), 682; https://doi.org/10.3390/jof10100682 - 29 Sep 2024
Cited by 2 | Viewed by 1878
Abstract
Mycotoxin contamination of food and feed is a worldwide problem that needs to be addressed with highly efficient and biologically safe techniques. RNA interference (RNAi) is a natural mechanism playing an important role in different processes in eukaryotes, including the regulation of gene [...] Read more.
Mycotoxin contamination of food and feed is a worldwide problem that needs to be addressed with highly efficient and biologically safe techniques. RNA interference (RNAi) is a natural mechanism playing an important role in different processes in eukaryotes, including the regulation of gene expression, maintenance of genome stability, protection against viruses and others. Recently, RNAi-based techniques have been widely applied for the purposes of food safety and management of plant diseases, including those caused by mycotoxin-producing fungi. In this review, we summarize the current state-of-the-art RNAi-based approaches for reducing the aggressiveness of key toxigenic fungal pathogens and mycotoxin contamination of grain and its products. The ways of improving RNAi efficiency for plant protection and future perspectives of this technique, including progress in methods of double-stranded RNA production and its delivery to the target cells, are also discussed. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection)
Show Figures

Figure 1

Back to TopTop