Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = toxic nectar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1764 KiB  
Review
Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees
by Bandele Morrison, Laura R. Newburn and Gordon Fitch
Insects 2025, 16(4), 414; https://doi.org/10.3390/insects16040414 - 15 Apr 2025
Viewed by 1042
Abstract
Bees rely on pollen and nectar for nutrition, but floral products provide more than just macronutrients; many also contain an array of plant secondary metabolites (PSMs). These compounds are generally thought to serve primarily defensive purposes but also appear to promote longevity and [...] Read more.
Bees rely on pollen and nectar for nutrition, but floral products provide more than just macronutrients; many also contain an array of plant secondary metabolites (PSMs). These compounds are generally thought to serve primarily defensive purposes but also appear to promote longevity and immune function, protect against disease agents, and detoxify toxicants. This review presents a comprehensive overview of PSMs, as well as some fatty acids, with documented health benefits for eusocial bees at ecologically relevant exposure levels and the plant species whose floral products and/or resin are known to contain them. We find medicinal metabolites to be widespread but unevenly distributed across the plant phylogeny, with a few families containing a majority of the species known to produce PSMs with documented health benefits. We discuss the current state of knowledge and identify gaps in our understanding. The existing literature on the health benefits of metabolites, and particularly PSMs, to bees is spread across multiple fields; our hope is that this review will bring these fields closer together and encourage further investigation of the role of metabolites in promoting bee health in ecological contexts. Full article
(This article belongs to the Special Issue Bee Conservation: Behavior, Health and Pollination Ecology)
Show Figures

Figure 1

17 pages, 2379 KiB  
Article
New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy
by Andrea Mara, Federica Mainente, Vasiliki Soursou, Yolanda Picó, Iratxe Perales, Asma Ghorab, Gavino Sanna, Isabel Borrás-Linares, Gianni Zoccatelli and Marco Ciulu
Molecules 2025, 30(2), 410; https://doi.org/10.3390/molecules30020410 - 19 Jan 2025
Cited by 4 | Viewed by 1433
Abstract
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, [...] Read more.
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy. The honeydew elements, conductivity, color, antioxidant properties, total polyphenol content, hydroxymethylfurfural, major and trace elements, toxic and rare earth elements, and pesticide residues were measured in 59 samples of honeydew honey from forest, eucalyptus, fir, oak, and citrus sources. Physico-chemical and antioxidant properties were unable to differentiate the botanical origin of Italian honeydew honeys. Similarly, the mineral composition did not vary significantly, whereas rare earth elements appeared to be promising markers for classifying their origin. Multivariate analysis allowed discriminating fir honeydews from the other varieties. Concerning safety aspects, pesticide residues were detected in 90% of the samples, with fir honeydews exhibiting the lowest contamination levels, probably due to its production in less industrialized areas. Acetamiprid and imidacloprid were the most prevalent pesticide residues, but their concentrations were below the limit indicated by the EFSA. These findings suggest the need for a continuous monitoring program for contaminants to ensure safety and to assess risk. Full article
Show Figures

Graphical abstract

25 pages, 2751 KiB  
Article
Analysis of Chemical Traits of Pollen from Nine Ericaceous Species in Southwestern China
by Xiaoyue Wang, Jianghu Wang, Shunyu Wang, Yang Li, Haifeng Xu, Yin Yi and Xiaoxin Tang
Horticulturae 2024, 10(12), 1262; https://doi.org/10.3390/horticulturae10121262 - 28 Nov 2024
Viewed by 1012
Abstract
Chemical traits (primary and secondary metabolites) are important features of plants. An increasing number of studies have focused on the ecological significance of secondary metabolites in plant parts, especially in pollen. Ericaceae species exhibit significant morphological variations and diverse colors, are widely distributed [...] Read more.
Chemical traits (primary and secondary metabolites) are important features of plants. An increasing number of studies have focused on the ecological significance of secondary metabolites in plant parts, especially in pollen. Ericaceae species exhibit significant morphological variations and diverse colors, are widely distributed throughout China and are popular ornamental garden plants. The chemical trait of pollen in Ericaceae species and their potential ecological significance remain unclear. We selected a total of nine Ericaceae species from three nature reserves in southwestern China, which were the predominant flowering Ericaceae plants for each site, and measured their floral characteristics, nectar volume and sugar concentration. We determined the types of pollinators of these species based on a literature review and used UPLC-QTOF-MS to analyze the types and relative contents of primary metabolites (amino acids and fatty acids) and secondary metabolites (terpenoids, phenolics and nitrogenous compounds) in the pollen and other tissues, including the stems, leaves, petals and nectar. The results showed that each species exhibited unique floral characteristics. Enkianthus ruber, Pieris formosa, Rhododendron agastum, R. irroratum, R. virgatum and R. rubiginosum were pollinated by bees, and R. delavayi, R. decorum and R. excellens were pollinated by diverse animals (bees, birds and Lepidoptera). The pollen of these Ericaceae species was rich in phenolics and terpenoids, especially flavonoids. Grayanotoxin, andromedotoxin and asebotin (toxic diterpene compounds) were also detected in the pollen of some of the Ericaceae species in our study, and their response value was low. The relative contents and diversity of secondary metabolites in the pollen were higher than those in the nectar but lower than those in the leaves, petals and stems. The five chemical compounds with the highest content (four flavonoids, one triterpene) in the pollen were also detected in the stems, leaves and petals, and the response value of most of these chemicals in pollen was not significantly correlated with that in other tissues. Rhododendron species has a closer relationship with chemical traits in pollen compared with Enkianthus and Pieris species. The response value of total secondary metabolites in the pollen of species pollinated only by bees was higher than that of species pollinated by diverse animals. Our research indicates that the pollen of ericaceous species contains a wide array of metabolites, establishing a foundation for advancing the nutritional potential of the pollen of horticultural ericaceous species and deepening our understanding of its chemical and ecological significance. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

16 pages, 1831 KiB  
Article
Azoxystrobin Exposure Impacts on Development Status and Physiological Responses of Worker Bees (Apis mellifera L.) from Larval to Pupal Stages
by Xinle Duan, Huanjing Yao, Wenlong Tong, Manqiong Xiong, Shaokang Huang and Jianghong Li
Int. J. Mol. Sci. 2024, 25(21), 11806; https://doi.org/10.3390/ijms252111806 - 3 Nov 2024
Cited by 3 | Viewed by 1612
Abstract
Honeybee larvae and pupae form the cornerstone of colony survival, development, and reproduction. Azoxystrobin is an effective strobilurin fungicide that is applied during the flowering stage for controlling plant pathogens. The contaminated nectar and pollen resulting from its application are collected by forager [...] Read more.
Honeybee larvae and pupae form the cornerstone of colony survival, development, and reproduction. Azoxystrobin is an effective strobilurin fungicide that is applied during the flowering stage for controlling plant pathogens. The contaminated nectar and pollen resulting from its application are collected by forager bees and impact the health of honeybee larvae and pupae. The current study evaluated the survival, development, and physiological effects of azoxystrobin exposure on the larvae and pupae of Apis mellifera worker bees. The field-recommended concentrations of azoxystrobin were found to suppress the survival indices and lifespan in the larval as well as pupal stages; moreover, the rates of the survival and pupation of larvae as well as the body weights of the pupae and newly-emerged adult bees were significantly reduced upon long-term exposure to azoxystrobin. In addition, azoxystrobin ingestion induced changes in the expression of genes critical for the development, immunity, and nutrient metabolism of larvae and pupae, although the expression profile of these genes differed between the larval and pupal stages. Results indicated the chronic toxicity of azoxystrobin on the growth and development of honeybee larvae and pupae, which would affect their sensitivity to pathogens and other external stresses during the development stage and the study will provide vital information regarding the pollination safety and rational use of pesticides. Full article
(This article belongs to the Special Issue Pesticide Exposure and Toxicity: 2nd Edition)
Show Figures

Figure 1

24 pages, 5596 KiB  
Review
Visual-, Olfactory-, and Nectar-Taste-Based Flower Aposematism
by Simcha Lev-Yadun
Plants 2024, 13(3), 391; https://doi.org/10.3390/plants13030391 - 29 Jan 2024
Cited by 7 | Viewed by 2681
Abstract
Florivory, i.e., flower herbivory, of various types is common and can strongly reduce plant fitness. Flowers suffer two very different types of herbivory: (1) the classic herbivory of consuming tissues and (2) nectar theft. Unlike the non-reversibility of consumed tissues, nectar theft, while [...] Read more.
Florivory, i.e., flower herbivory, of various types is common and can strongly reduce plant fitness. Flowers suffer two very different types of herbivory: (1) the classic herbivory of consuming tissues and (2) nectar theft. Unlike the non-reversibility of consumed tissues, nectar theft, while potentially reducing a plant’s fitness by lowering its attraction to pollinators, can, in various cases, be fixed quickly by the production of additional nectar. Therefore, various mechanisms to avoid or reduce florivory have evolved. Here, I focus on one of the flowers’ defensive mechanisms, aposematism, i.e., warning signaling to avoid or at least reduce herbivory via the repelling of herbivores. While plant aposematism of various types was almost ignored until the year 2000, it is a common anti-herbivory defense mechanism in many plant taxa, operating visually, olfactorily, and, in the case of nectar, via a bitter taste. Flower aposematism has received only very little focused attention as such, and many of the relevant publications that actually demonstrated herbivore repellence and avoidance learning following flower signaling did not refer to repellence as aposematism. Here, I review what is known concerning visual-, olfactory-, and nectar-taste-based flower aposematism, including some relevant cases of mimicry, and suggest some lines for future research. Full article
Show Figures

Figure 1

20 pages, 3448 KiB  
Article
Analysis of Pyrrolizidine Alkaloids in Stingless Bee Honey and Identification of a Botanical Source as Ageratum conyzoides
by Natasha L. Hungerford, Norhasnida Zawawi, Tianqi (Evonne) Zhu, Steve J. Carter, Kevin J. Melksham and Mary T. Fletcher
Toxins 2024, 16(1), 40; https://doi.org/10.3390/toxins16010040 - 12 Jan 2024
Cited by 1 | Viewed by 2438
Abstract
Stingless bee honeys (SBHs) from Australian and Malaysian species were analysed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the presence of pyrrolizidine alkaloids (PAs) and the corresponding N-oxides (PANOs) due to the potential for such hepatotoxic alkaloids to contaminate honey [...] Read more.
Stingless bee honeys (SBHs) from Australian and Malaysian species were analysed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the presence of pyrrolizidine alkaloids (PAs) and the corresponding N-oxides (PANOs) due to the potential for such hepatotoxic alkaloids to contaminate honey as a result of bees foraging on plants containing these alkaloids. Low levels of alkaloids were found in these SBHs when assessed against certified PA standards in targeted analysis. However, certain isomers were identified using untargeted analysis in a subset of honeys of Heterotrigona itama which resulted in the identification of a PA weed species (Ageratum conyzoides) near the hives. The evaluation of this weed provided a PA profile matching that of the SBH of H. itama produced nearby, and included supinine, supinine N-oxide (or isomers) and acetylated derivatives. These PAs lacking a hydroxyl group at C7 are thought to be less hepatoxic. However, high levels were also observed in SBH (and in A. conyzoides) of a potentially more toxic diester PA corresponding to an echimidine isomer. Intermedine, the C7 hydroxy equivalent of supinine, was also observed. Species differences in nectar collection were evident as the same alkaloids were not identified in SBH of G. thoracica from the same location. This study highlights that not all PAs and PANOs are identified using available standards in targeted analyses and confirms the need for producers of all types of honey to be aware of nearby potential PA sources, particularly weeds. Full article
Show Figures

Graphical abstract

13 pages, 1073 KiB  
Article
Protective Role of Bergamot Polyphenolic Fraction (BPF) against Deltamethrin Toxicity in Honeybees (Apis mellifera)
by Roberto Bava, Fabio Castagna, Stefano Ruga, Rosamaria Caminiti, Saverio Nucera, Rosa Maria Bulotta, Clara Naccari, Domenico Britti, Vincenzo Mollace and Ernesto Palma
Animals 2023, 13(24), 3764; https://doi.org/10.3390/ani13243764 - 6 Dec 2023
Cited by 4 | Viewed by 1932
Abstract
Pesticide-induced poisoning phenomena are a serious problem for beekeeping and can cause large losses of honeybee populations due to acute and sub-acute poisoning. The reduced responsiveness of honeybees to the damage caused by pesticides used in agriculture can be traced back to a [...] Read more.
Pesticide-induced poisoning phenomena are a serious problem for beekeeping and can cause large losses of honeybee populations due to acute and sub-acute poisoning. The reduced responsiveness of honeybees to the damage caused by pesticides used in agriculture can be traced back to a general qualitative and quantitative impoverishment of the nectar resources of terrestrial ecosystems. Malnutrition is associated with a decline in the functionality of the immune system and the systems that are delegated to the detoxification of the organism. This research aimed to verify whether bergamot polyphenolic extract (BPF) could have protective effects against poisoning by the pyrethroid pesticide deltamethrin. The studies were conducted with caged honeybees under controlled conditions. Sub-lethal doses of pesticides and related treatments for BPF were administered. At a dose of 21.6 mg/L, deltamethrin caused mortality in all treated subjects (20 caged honeybees) after one day of administration. The groups where BPF (1 mg/kg) was added to the toxic solution recorded the survival of honeybees by up to three days. Comparing the honeybees of the groups in which the BPF-deltamethrin association was added to the normal diet (sugar solution) with those in which deltamethrin alone was added to the normal diet, the BPF group had a statistically significant reduction in the honeybee mortality rate (p ≤ 0.05) and a greater consumption of food. Therefore, it can be argued that the inclusion of BPF and its constituent antioxidants in the honeybee diet reduces toxicity and oxidative stress caused by oral intake of deltamethrin. Furthermore, it can be argued that BPF administration could compensate for metabolic energy deficits often induced by the effects of malnutrition caused by environmental degradation and standard beekeeping practices. Full article
(This article belongs to the Special Issue Perspectives in Veterinary Toxicology and Pharmacology)
Show Figures

Figure 1

11 pages, 3731 KiB  
Article
Evolutionary Adaptation of Genes Involved in Galactose Derivatives Metabolism in Oil-Tea Specialized Andrena Species
by Gonghua Lin, Zuhao Huang, Bo He, Kai Jiang, Tianjuan Su and Fang Zhao
Genes 2023, 14(5), 1117; https://doi.org/10.3390/genes14051117 - 22 May 2023
Cited by 2 | Viewed by 2495
Abstract
Oil-tea (Camellia oleifera) is a woody oil crop whose nectar includes galactose derivatives that are toxic to honey bees. Interestingly, some mining bees of the genus Andrena can entirely live on the nectar (and pollen) of oil-tea and are able to [...] Read more.
Oil-tea (Camellia oleifera) is a woody oil crop whose nectar includes galactose derivatives that are toxic to honey bees. Interestingly, some mining bees of the genus Andrena can entirely live on the nectar (and pollen) of oil-tea and are able to metabolize these galactose derivatives. We present the first next-generation genomes for five and one Andrena species that are, respectively, specialized and non-specialized oil-tea pollinators and, combining these with the published genomes of six other Andrena species which did not visit oil-tea, we performed molecular evolution analyses on the genes involved in the metabolizing of galactose derivatives. The six genes (NAGA, NAGA-like, galM, galK, galT, and galE) involved in galactose derivatives metabolism were identified in the five oil-tea specialized species, but only five (with the exception of NAGA-like) were discovered in the other Andrena species. Molecular evolution analyses revealed that NAGA-like, galK, and galT in oil-tea specialized species appeared under positive selection. RNASeq analyses showed that NAGA-like, galK, and galT were significantly up-regulated in the specialized pollinator Andrena camellia compared to the non-specialized pollinator Andrena chekiangensis. Our study demonstrated that the genes NAGA-like, galK, and galT have played an important role in the evolutionary adaptation of the oil-tea specialized Andrena species. Full article
(This article belongs to the Special Issue Wildlife Genomics and Genetic Diversity)
Show Figures

Figure 1

12 pages, 529 KiB  
Article
The Negligible Effect of Toxic Metal Accumulation in the Flowers of Melliferous Plants on the Mineral Composition of Monofloral Honeys
by Monika Tomczyk, Grzegorz Zaguła, Mateusz Kaczmarski, Czesław Puchalski and Małgorzata Dżugan
Agriculture 2023, 13(2), 273; https://doi.org/10.3390/agriculture13020273 - 22 Jan 2023
Cited by 11 | Viewed by 2915
Abstract
The accumulation of heavy metals in plant pollen and nectar exposes pollinators to environmental contaminations. Although honeybees act as biofilters and impede the transfer of heavy metals to honey, possible antagonistic interactions could negatively affect the mineral composition of bee-processed nectar. The aim [...] Read more.
The accumulation of heavy metals in plant pollen and nectar exposes pollinators to environmental contaminations. Although honeybees act as biofilters and impede the transfer of heavy metals to honey, possible antagonistic interactions could negatively affect the mineral composition of bee-processed nectar. The aim of this study was to assess the level of harmful metals (Cd, Pd, Hg, Al, Ni and Tl) in relation to essential macro- (K, Ca and Mg) and microelements (Mn, Fe, Zn, Cu and Se) in three melliferous plant species (n = 45)—rapeseed, dandelion, and goldenrod—using the ICP-OES method. Metal transferability to three types of monofloral honey (n = 45) produced from these plants was evaluated. Among the studied plants, goldenrod and dandelion were found to be Cd and Pb accumulators; however, regardless of the plant species, only traces of harmful metals were found in honey (<0.015 and <0.043 mg/kg, respectively). What is more, the adverse impact of accumulated toxic metals (Tl, Cd, Ni, Pb and Al) on Ca, Mg and K levels in plants was noted, though it was not reflected in honey. Our findings suggest that in moderately contaminated environments, toxic metals are not transferred to honey and do not disturb its beneficial mineral composition. Full article
(This article belongs to the Special Issue The Pollinators in Agricultural Ecosystems)
Show Figures

Figure 1

12 pages, 902 KiB  
Article
Chronic Cadmium Exposure Induces Impaired Olfactory Learning and Altered Brain Gene Expression in Honey Bees (Apis mellifera)
by Zhiguo Li, Yuanmei Qiu, Jing Li, Kunlin Wan, Hongyi Nie and Songkun Su
Insects 2022, 13(11), 988; https://doi.org/10.3390/insects13110988 - 27 Oct 2022
Cited by 12 | Viewed by 2522
Abstract
The honey bee (Apis mellifera) plays vital ecological roles in the pollination of crops and the maintenance of ecological balance, and adult honey bees may be exposed to exogenous chemicals including heavy metals during their foraging activities. Cadmium (Cd) is regarded [...] Read more.
The honey bee (Apis mellifera) plays vital ecological roles in the pollination of crops and the maintenance of ecological balance, and adult honey bees may be exposed to exogenous chemicals including heavy metals during their foraging activities. Cadmium (Cd) is regarded as a nonessential toxic metal and is readily accumulated in plants; honey bees can therefore acquire Cd through the collection of contaminated nectar. In the present study, honey bees were chronically exposed to Cd to investigate the effects of sublethal cadmium doses on the olfactory learning and brain gene expression profiles of honey bees. The results showed that Cd-treated bees exhibited significantly impaired olfactory learning performances in comparison with control bees. Moreover, the head weight was significantly lower in Cd-treated bees than in control bees after chronic exposure to Cd. Gene expression profiles between the Cd treatment and the control revealed that 79 genes were significantly differentially expressed. Genes encoding chemoreceptors and olfactory proteins were downregulated, whereas genes involved in response to oxidative stress were upregulated in Cd-treated bees. The results suggest that Cd exposure exerts oxidative stress in the brain of honey bees, and the dysregulated expression of genes encoding chemoreceptors, olfactory proteins, and cytochrome P450 enzymes is probably associated with impaired olfactory learning in honey bees. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

17 pages, 3170 KiB  
Article
Adult Honeybees and Beeswax as Indicators of Trace Elements Pollution in a Vulnerable Environment: Distribution among Different Apicultural Compartments
by Effrosyni Zafeiraki, Rastislav Sabo, Konstantinos M. Kasiotis, Kyriaki Machera, Lucia Sabová and Tomáš Majchrák
Molecules 2022, 27(19), 6629; https://doi.org/10.3390/molecules27196629 - 6 Oct 2022
Cited by 15 | Viewed by 2731
Abstract
Bees in search of diet sources intensively fly within a radius of up to 3 km, encountering nectar, pollen, and water sources which are potentially contaminated. Consequently, their products can provide valuable information about potential pollution. In the current study, 27 macro and [...] Read more.
Bees in search of diet sources intensively fly within a radius of up to 3 km, encountering nectar, pollen, and water sources which are potentially contaminated. Consequently, their products can provide valuable information about potential pollution. In the current study, 27 macro and trace elements, including the most hazardous ones, were measured in bees, honey, wax, pollen, and larvae, obtained from seven explicitly industrial areas in eastern regions of Slovakia, using a validated ICP-MS method. All the analysed elements were detected at least in one matrix. The detected concentrations of toxic elements, such as Hg, Pb, and Cd were in some cases higher in wax and bee samples, compared with honey, larvae, and pollen. In particular, Pb and Hg maximum concentrations were detected in the wax samples from Poša (3193 µg/kg) and Strážske_A (90 μg/kg). In addition, adult bees accumulated more elements than larvae, while wax and adult bees seemed more suitable for monitoring macro and trace elements in the surrounding environment. Statistical analysis emphasizing bees and wax correlated Cd with the Strážske area, possibly attributed to the intensified industrial activity in this region. Full article
(This article belongs to the Special Issue Analytical Techniques in Environmental Chemistry)
Show Figures

Graphical abstract

14 pages, 640 KiB  
Article
Mineral and Trace Element Analysis of Australian/Queensland Apis mellifera Honey
by Natasha L. Hungerford, Ujang Tinggi, Benjamin L. L. Tan, Madeleine Farrell and Mary T. Fletcher
Int. J. Environ. Res. Public Health 2020, 17(17), 6304; https://doi.org/10.3390/ijerph17176304 - 29 Aug 2020
Cited by 29 | Viewed by 4297
Abstract
Honey is an extensively utilized sweetener containing sugars and water, together with small quantities of vitamins, minerals, fatty acids, amino acids and proteins. Naturally produced by honeybees (Apis mellifera) from floral nectar, honey is increasingly sold as a health food product [...] Read more.
Honey is an extensively utilized sweetener containing sugars and water, together with small quantities of vitamins, minerals, fatty acids, amino acids and proteins. Naturally produced by honeybees (Apis mellifera) from floral nectar, honey is increasingly sold as a health food product due to its nutritious features. Certain honeys are retailed as premium, trendy products. Honeybees are regarded as environmental monitors, but few reports examine the impact of environment on Australian honey trace elements and minerals. In higher density urban and industrial environments, heavy metals can be common, while minerals and trace elements can have ubiquitous presence in both agricultural and urban areas. Honey hives are traditionally placed in rural and forested areas, but increasingly the trend is to keep hives in more urban areas. This study aimed to determine the levels of 26 minerals and trace elements and assess elemental differences between honeys from various regional Queensland and Australian sources. Honey samples (n = 212) were acquired from markets, shops and supermarkets in Queensland while urban honeys were purchased online. The honey samples were classified into four groups according to their regional sources: urban, rural, peri-urban and blend honey. Elemental analyses of honey were performed using ICP-MS and ICP-OES after microwave and hot block digestion. Considerable variations of essential trace elements (Co, Cu, Cr, Fe, Mn, Mo and Zn) and mineral levels (Ca, K, Mg, Na and P) were found in honeys surveyed. There were significant differences (p < 0.05) between urban and rural honey samples for B, Na, P, Mn, K, Ca and Cu. Significant differences (p < 0.05) were also found between blend and urban honey samples for K, Cu, P, Mn, Sr, Ni, B and Na. Peri-urban versus urban honeys showed significant differences in P, K and Mn. For rural and peri-urban honeys, the only significant difference (p < 0.05) was for Na. Toxic heavy metals were detected at relatively low levels in honey products. The study revealed that the Queensland/Australian honey studied is a good source of K and Zn and would constitute a good nutritional source of these elements. Full article
(This article belongs to the Special Issue Trace Element Exposure and Metabolism in Human Health)
Show Figures

Graphical abstract

42 pages, 584 KiB  
Review
Impact of Biotic and Abiotic Stressors on Managed and Feral Bees
by Joseph Belsky and Neelendra K. Joshi
Insects 2019, 10(8), 233; https://doi.org/10.3390/insects10080233 - 1 Aug 2019
Cited by 97 | Viewed by 10958
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent [...] Read more.
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed. Full article
10 pages, 836 KiB  
Communication
Honeybees Tolerate Cyanogenic Glucosides from Clover Nectar and Flowers
by Antoine Lecocq, Amelia A. Green, Érika Cristina Pinheiro De Castro, Carl Erik Olsen, Annette B. Jensen and Mika Zagrobelny
Insects 2018, 9(1), 31; https://doi.org/10.3390/insects9010031 - 13 Mar 2018
Cited by 8 | Viewed by 5280
Abstract
Honeybees (Apis mellifera) pollinate flowers and collect nectar from many important crops. White clover (Trifolium repens) is widely grown as a temperate forage crop, and requires honeybee pollination for seed set. In this study, using a quantitative LC-MS (Liquid [...] Read more.
Honeybees (Apis mellifera) pollinate flowers and collect nectar from many important crops. White clover (Trifolium repens) is widely grown as a temperate forage crop, and requires honeybee pollination for seed set. In this study, using a quantitative LC-MS (Liquid Chromatography-Mass Spectrometry) assay, we show that the cyanogenic glucosides linamarin and lotaustralin are present in the leaves, sepals, petals, anthers, and nectar of T. repens. Cyanogenic glucosides are generally thought to be defense compounds, releasing toxic hydrogen cyanide upon degradation. However, increasing evidence indicates that plant secondary metabolites found in nectar may protect pollinators from disease or predators. In a laboratory survival study with chronic feeding of secondary metabolites, we show that honeybees can ingest the cyanogenic glucosides linamarin and amygdalin at naturally occurring concentrations with no ill effects, even though they have enzyme activity towards degradation of cyanogenic glucosides. This suggests that honeybees can ingest and tolerate cyanogenic glucosides from flower nectar. Honeybees retain only a portion of ingested cyanogenic glucosides. Whether they detoxify the rest using rhodanese or deposit them in the hive should be the focus of further research. Full article
Show Figures

Figure 1

13 pages, 1606 KiB  
Article
Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera)
by Ling-Hsiu Liao, Wen-Yen Wu and May R. Berenbaum
Insects 2017, 8(1), 22; https://doi.org/10.3390/insects8010022 - 14 Feb 2017
Cited by 60 | Viewed by 11665
Abstract
Because certain flavonols and phenolic acids are found in pollen and nectar of most angiosperms, they are routinely ingested by Apis mellifera, the western honey bee. The flavonol quercetin and the phenolic acid p-coumaric acid are known to upregulate detoxification enzymes [...] Read more.
Because certain flavonols and phenolic acids are found in pollen and nectar of most angiosperms, they are routinely ingested by Apis mellifera, the western honey bee. The flavonol quercetin and the phenolic acid p-coumaric acid are known to upregulate detoxification enzymes in adult bees; their presence or absence in the diet may thus affect the toxicity of ingested pesticides. We conducted a series of longevity assays with one-day-old adult workers to test if dietary phytochemicals enhance longevity and pesticide tolerance. One-day-old bees were maintained on sugar syrup with or without casein (a phytochemical-free protein source) in the presence or absence of quercetin and p-coumaric acid as well as in the presence or absence of two pyrethroid insecticides, bifenthrin and β-cyfluthrin. Dietary quercetin (hazard ratio, HR = 0.82), p-coumaric acid (HR = 0.91) and casein (HR = 0.74) were associated with extended lifespan and the two pyrethroid insecticides, 4 ppm bifenthrin (HR = 9.17) and 0.5 ppm β-cyfluthrin (HR = 1.34), reduced lifespan. Dietary quercetin enhanced tolerance of both pyrethroids; p-coumaric acid had a similar effect trend, although of reduced magnitude. Casein in the diet appears to eliminate the life-prolonging effect of p-coumaric acid in the absence of quercetin. Collectively, these assays demonstrate that dietary phytochemicals influence honey bee longevity and pesticide stress; substituting sugar syrups for honey or yeast/soy flour patties may thus have hitherto unrecognized impacts on adult bee health. Full article
(This article belongs to the Special Issue Interactions Among Threats to Honeybee Health)
Show Figures

Figure 1

Back to TopTop