Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = torsional pendulum system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1863 KiB  
Article
Parameter-Matching Multi-Objective Optimization for Diesel Engine Torsional Dampers
by Zhongxu Tian and Zhongda Ge
Appl. Sci. 2025, 15(10), 5639; https://doi.org/10.3390/app15105639 - 18 May 2025
Viewed by 452
Abstract
Torsional vibration dampers effectively mitigate torsional oscillations and additional stresses in diesel engine crankshaft systems, ensuring operational safety and reliability. Traditional damper selection principles, grounded in dual-pendulum dynamic models, focus on minimizing maximum torsional angles but fail to accurately characterize vibration behaviors in [...] Read more.
Torsional vibration dampers effectively mitigate torsional oscillations and additional stresses in diesel engine crankshaft systems, ensuring operational safety and reliability. Traditional damper selection principles, grounded in dual-pendulum dynamic models, focus on minimizing maximum torsional angles but fail to accurately characterize vibration behaviors in multi-cylinder engines. This study addresses this limitation by investigating dynamic modeling and numerical methods for an eight-cylinder diesel crankshaft system. A torsional vibration model was developed using Cholesky decomposition and the Jacobi sweep method for free vibration analysis, followed by dynamic response calculations through model decoupling and modal superposition. Parameter optimization of the damper was achieved via the NSGA-II multi-objective algorithm combined with a Bayesian-hyperparameter-optimized BP neural network. The results show that high-inertia-ratio dampers effectively suppress vibration and stress, while low-inertia-ratio configurations require approximately 20% elevated tuning ratios beyond theoretical parameters to achieve an additional 5% stress reduction, albeit with amplified torsional oscillations. Additionally, the study critically evaluates the numerical reliability of conventional dual-pendulum-based tuning ratio selection methods. This integrated approach enhances the precision of damper parameter matching for multi-cylinder engine applications. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

13 pages, 2989 KiB  
Article
Torsion Pendulum Apparatus for Ground Testing of Space Inertial Sensor
by Shaoxin Wang, Zuolei Wang, Dongxu Liu, Peng Dong, Jian Min, Ziren Luo, Keqi Qi and Jungang Lei
Sensors 2024, 24(23), 7816; https://doi.org/10.3390/s24237816 - 6 Dec 2024
Viewed by 1433
Abstract
The precise movement of the test mass along a geodesic is crucial for gravitational wave detection in space. To maintain this motion, the core payload-inertial sensor incorporates multiple functional units designed to mitigate various sources of stray force noise affecting the test mass. [...] Read more.
The precise movement of the test mass along a geodesic is crucial for gravitational wave detection in space. To maintain this motion, the core payload-inertial sensor incorporates multiple functional units designed to mitigate various sources of stray force noise affecting the test mass. Understanding the limits of these noise sources is essential for enhancing the inertial sensor system design. Additionally, thorough ground-based verification of these functional units is necessary to ensure their reliability for space missions. To address these challenges, we developed a low-frequency torsion pendulum apparatus that utilizes a commercial autocollimator as the optical readout element for testing this type of space inertial sensor. This paper provides a comprehensive overview of the apparatus’s operating principle, structural characteristics, and the results of laboratory tests of its background noise. Experimental data demonstrate that the torsion pendulum achieves a sensitivity of 1 × 10−11 Nm/Hz1/2 within the measurement band from 1 mHz to 0.1 Hz, confirming its suitability for various inertial sensor tests. Furthermore, the insights gained from constructing the torsion pendulum will inform future system upgrades. Full article
(This article belongs to the Special Issue Advanced Inertial Sensors: Advances, Challenges and Applications)
Show Figures

Figure 1

16 pages, 1249 KiB  
Article
Charging and Discharging Modeling of Inertial Sensors Based on Ultraviolet Charge Management
by Zihan Zhao, Tao Yu, Shang Wang, Huadong Li and Zhi Wang
Symmetry 2024, 16(9), 1209; https://doi.org/10.3390/sym16091209 - 14 Sep 2024
Cited by 1 | Viewed by 878
Abstract
Inertial sensors act as inertial references in space gravitational wave detection missions, necessitating that their internal test mass (TM) maintains minimal residual acceleration noise. High-energy particles and cosmic rays in space, along with ion pumps in ground-based torsion pendulum experiments, can cause charge [...] Read more.
Inertial sensors act as inertial references in space gravitational wave detection missions, necessitating that their internal test mass (TM) maintains minimal residual acceleration noise. High-energy particles and cosmic rays in space, along with ion pumps in ground-based torsion pendulum experiments, can cause charge accumulation on the TM surface, leading to increased residual acceleration noise. Consequently, a charge management system was introduced to control the TM’s charge. The complex light path propagation within the electrode housing (EH) makes the TM’s charging and discharging process difficult to theoretically calculate and fully simulate. To address this issue, we propose a simulation method for charging and discharging inertial sensors within ultraviolet (UV) charge management systems. This method innovatively considers the impact of photoelectron emission angle and the TM’s position offset from symmetry on performance. The method also simulates charging and discharging rates over time under conditions of symmetry and preliminarily examines factors affecting the TM’s equilibrium potential. Simulation results indicate that this method effectively models the charge management system’s operation, providing a valuable reference for system design. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

12 pages, 2026 KiB  
Article
Experimental Investigation of Impulsive Coupling Characteristics of Asteroid Simulants Based on Laser Ablation Propulsion
by Yingjie Ma, Hao Chang, Weijing Zhou and Zhilong Jian
Aerospace 2024, 11(5), 388; https://doi.org/10.3390/aerospace11050388 - 13 May 2024
Cited by 3 | Viewed by 2083
Abstract
The ablation impulse of typical asteroid simulants irradiated by a nanosecond pulsed laser has been investigated in a vacuum environment. A torsional pendulum measurement system was constructed to calculate the impulse of laser ablation. A 10 ns pulsed laser was used, with a [...] Read more.
The ablation impulse of typical asteroid simulants irradiated by a nanosecond pulsed laser has been investigated in a vacuum environment. A torsional pendulum measurement system was constructed to calculate the impulse of laser ablation. A 10 ns pulsed laser was used, with a 1064 nm wavelength, a 900 mJ maximum pulse energy, and a millimeter-scale ablation spot diameter. Impulsive coupling characteristics of six typical targets that imitate the substance of asteroids with various laser fluences were analyzed. Furthermore, the impulse coupling coefficient curves of different materials were fitted. The results reveal that the minimum laser fluence corresponding to a measurable ablation impulse is approximately 2.5 J/cm2, and the optimum laser fluence corresponding to the maximum impulse coupling coefficient is approximately 14.0 J/cm2. The trends of the laser ablation impulse coupling curves are roughly consistent for the six materials. Impulse coupling characteristics of the six typical materials can be represented by the same polynomial within a 95% confidence interval, so a unified rule has been given. In actual deflection tasks of asteroids, the unified impulse coupling characteristic can be used to implement laser deflection techniques, especially when the material of the asteroid cannot be accurately judged in time. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

16 pages, 6024 KiB  
Article
Using DWS Optical Readout to Improve the Sensitivity of Torsion Pendulum
by Shaoxin Wang, Heshan Liu, Lei Dai, Ziren Luo, Peng Xu, Pan Li, Ruihong Gao, Dayu Li and Keqi Qi
Sensors 2023, 23(19), 8087; https://doi.org/10.3390/s23198087 - 26 Sep 2023
Cited by 3 | Viewed by 1958
Abstract
In space gravitational wave detection missions, a drag-free system is used to keep the test mass (TM) free-falling in an ultralow-noise environment. Ground verification experiments should be carried out to clarify the shielding and compensating capabilities of the system for multiple stray force [...] Read more.
In space gravitational wave detection missions, a drag-free system is used to keep the test mass (TM) free-falling in an ultralow-noise environment. Ground verification experiments should be carried out to clarify the shielding and compensating capabilities of the system for multiple stray force noises. A hybrid apparatus was designed and analyzed based on the traditional torsion pendulum, and a technique for enhancing the sensitivity of the torsion pendulum system by employing the differential wavefront sensing (DWS) optical readout was proposed. The readout resolution experiment was then carried out on an optical bench that was designed and established. The results indicate that the angular resolution of the DWS signal in optical readout mode can reach the level of 10 nrad/Hz1/2 over the full measurement band. Compared with the autocollimator, the sensitivity of the torsional pendulum is noticeably improved, and the background noise is expected to reach 4.5 × 10−15 Nm/Hz1/2@10 mHz. This method could also be applied to future upgrades of similar systems. Full article
(This article belongs to the Special Issue Recent Advance of Optical Measurement Based on Sensors)
Show Figures

Figure 1

18 pages, 5769 KiB  
Article
Research on the Measurement Technology of Rotational Inertia of Rigid Body Based on the Principles of Monocular Vision and Torsion Pendulum
by Yeqing Chen, Yi Zeng, Haoran Li, Jiye Zhang and Lieshan Zhang
Sensors 2023, 23(10), 4787; https://doi.org/10.3390/s23104787 - 16 May 2023
Cited by 4 | Viewed by 3519
Abstract
Damping is an important factor contributing to errors in the measurement of rotational inertia using the torsion pendulum method. Identifying the system damping allows for minimizing the measurement errors of rotational inertia, and accurate continuous sampling of torsional vibration angular displacement is the [...] Read more.
Damping is an important factor contributing to errors in the measurement of rotational inertia using the torsion pendulum method. Identifying the system damping allows for minimizing the measurement errors of rotational inertia, and accurate continuous sampling of torsional vibration angular displacement is the key to realizing system damping identification. To address this issue, this paper proposes a novel method for measuring the rotational inertia of rigid bodies based on monocular vision and the torsion pendulum method. In this study, a mathematical model of torsional oscillation under a linear damping condition is established, and an analytical relationship between the damping coefficient, torsional period, and measured rotational inertia is obtained. A high-speed industrial camera is used to continuously photograph the markers on a torsion vibration motion test bench. After several data processing steps, including image preprocessing, edge detection, and feature extraction, with the aid of a geometric model of the imaging system, the angular displacement of each frame of the image corresponding to the torsion vibration motion is calculated. From the characteristic points on the angular displacement curve, the period and amplitude modulation parameters of the torsion vibration motion can be obtained, and finally the rotational inertia of the load can be derived. The experimental results demonstrate that the proposed method and system described in this paper can achieve accurate measurements of the rotational inertia of objects. Within the range of 0–100 × 10−3 kg·m2, the standard deviation of the measurements is better than 0.90 × 10−4 kg·m2, and the absolute value of the measurement error is less than 2.00 × 10−4 kg·m2. Compared to conventional torsion pendulum methods, the proposed method effectively identifies damping using machine vision, thereby significantly reducing measurement errors caused by damping. The system has a simple structure, low cost, and promising prospects for practical applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 12578 KiB  
Article
Dynamics Modeling and Load-Sharing Performance Optimization of Concentric Face Gear Split-Torque Transmission Systems
by Fei Gong, Rupeng Zhu and Qibo Wang
Appl. Sci. 2023, 13(7), 4352; https://doi.org/10.3390/app13074352 - 29 Mar 2023
Cited by 1 | Viewed by 2685
Abstract
The concentric face gear split-torque transmission system (CFGSTTS) has the advantages of a large reduction ratio and high power density. The CFGSTTS has considerable potential to be applied in helicopter main reducers. As such, in this study, we analyzed the load distribution characteristics [...] Read more.
The concentric face gear split-torque transmission system (CFGSTTS) has the advantages of a large reduction ratio and high power density. The CFGSTTS has considerable potential to be applied in helicopter main reducers. As such, in this study, we analyzed the load distribution characteristics of a dual input–dual output concentric face gear split-torque transmission system. A load-dependent time-varying meshing stiffness surrogate model was designed based on a feedforward neural network. The difference in the meshing stiffness between the pinion driving and face gear driving was analyzed. The coupled lumped parameter dynamic model of the bending–torsion–axis–pendulum was developed through Newton’s second law, and the influences of the time-varying meshing stiffness, backlash, comprehensive transmission error, support stiffness, and damping were considered. Finally, the impact of the support stiffness on the load-sharing coefficient was analyzed. An optimization model was constructed with the objective function of minimizing the sum of the load-sharing coefficients and was solved by the marine predator algorithm. In addition, the validity of the optimization results was verified with a finite element model. The results indicate that (1) smaller support stiffnesses of input gears benefit the corresponding load balance; (2) the support stiffnesses of the face gears have different laws of influence on the load-sharing coefficient at the input gear and idler, and the support stiffnesses of the other gears need to be comprehensively considered; (3) the larger supporting stiffnesses of the idler gears and tail gear are beneficial for decreasing the load-sharing coefficient at the input gear; and (4) the optimized load-sharing coefficients at Input Gears 1 and 2 and the idler gear decrease by 23.7%, 24.2%, and 4.6%, respectively. Full article
(This article belongs to the Special Issue Advances in Nonlinear Dynamics and Mechanical Vibrations)
Show Figures

Figure 1

10 pages, 3840 KiB  
Article
On Glass Forming Ability of Bulk Metallic Glasses by Relating the Internal Friction Peak Value
by Xianfeng Zhang, Xiao Cui, Zhuotong Du, Fangqiu Zu, Jinjing Li, Bingchuan Bian, Kuilong Xu and Xinyao Zhang
Metals 2020, 10(6), 767; https://doi.org/10.3390/met10060767 - 9 Jun 2020
Cited by 1 | Viewed by 2409
Abstract
The internal friction (IF) behaviors of a series of LaCe-, Zr-, and La-based bulk metallic glasses (BMGs) were studied by a computer-controlled, conventional inverted torsion pendulum. The results indicate that with an increasing temperature, the IF also increases gradually in the supercooled liquid [...] Read more.
The internal friction (IF) behaviors of a series of LaCe-, Zr-, and La-based bulk metallic glasses (BMGs) were studied by a computer-controlled, conventional inverted torsion pendulum. The results indicate that with an increasing temperature, the IF also increases gradually in the supercooled liquid region, followed by a decrease caused by crystallization. BMGs with a good glass forming ability (GFA) usually possess a high IF peak value for an alloy system with the same constituent elements. Furthermore, the magnitude of the IF value (Qi−1) of the inflection point is an efficient criterion of GFA. The Qi−1 value is a valid criterion under the conditions of identical constituent elements and different element contents. However, Qi−1 and GFA have no relationship among different alloy systems. Full article
Show Figures

Figure 1

16 pages, 5445 KiB  
Article
A Space Inertial Sensor Ground Evaluation System for Non-Sensitive Axis Based on Torsion Pendulum
by Shaoxin Wang, Liheng Chen, Yukun Wang, Zhenping Zhou, Keqi Qi and Zhi Wang
Appl. Sci. 2020, 10(9), 3090; https://doi.org/10.3390/app10093090 - 29 Apr 2020
Cited by 7 | Viewed by 3412
Abstract
The inertial sensor is the key measurement payload of the technology verification satellite of China’s space gravitational wave detection mission-Taiji Project, which uses capacitive sensors to sense the acceleration disturbance of the test mass under the influence of non-conservative forces in the frequency [...] Read more.
The inertial sensor is the key measurement payload of the technology verification satellite of China’s space gravitational wave detection mission-Taiji Project, which uses capacitive sensors to sense the acceleration disturbance of the test mass under the influence of non-conservative forces in the frequency range of 10 mHz~1 Hz. It is necessary to perform a ground performance evaluation and estimate the working state of the payload in orbit. However, due to the influence of the earth’s gravity and seismic noise, it is impossible to directly evaluate the resolution level of the non-sensitive axis when testing with high-voltage levitation, which leads to incomplete evaluation of the performance of the inertial sensor. In order to implement this part of the test, the sensitive structure is designed and a torsion pendulum facility for performance testing is developed. The experimental results show that the measurement resolution of the non-sensitive axis of the inertial sensor can reach 9.5 × 10−7 m/s2/Hz1/2 under the existing ground environmental conditions and is mainly influenced by the seismic noise during the system measurement. If the inertial sensor enters orbit, the measurement resolution can achieve 3.96 × 10−9 m/s2/Hz1/2, which meets the requirements of the technology verification satellite for a non-sensitive axis. This proposed system also provides a reasonable method for the comprehensive evaluation of inertial sensors in the future. Full article
(This article belongs to the Special Issue Experimental Mechanics, Instrumentation and Metrology)
Show Figures

Figure 1

9 pages, 425 KiB  
Article
A Robust Asynchronous Sampled-Data Control Design for Nonlinear Systems with Actuator Failures
by Leonardo Acho and Pablo Buenestado
Appl. Sci. 2017, 7(9), 875; https://doi.org/10.3390/app7090875 - 26 Aug 2017
Cited by 2 | Viewed by 3321
Abstract
This paper presents a recent self-sampled-data control algorithm applied to nonlinear systems with actuator failures. Our approach uses the linear model of a given nonlinear system, and based on a granted actuator fault observer method, an asynchronous sampled-data fault compensator controller is then [...] Read more.
This paper presents a recent self-sampled-data control algorithm applied to nonlinear systems with actuator failures. Our approach uses the linear model of a given nonlinear system, and based on a granted actuator fault observer method, an asynchronous sampled-data fault compensator controller is then formulated. The proposed sampling rule is realized by using an event-detector monitoring signal invention. On this way, the sampled rate is self governed and asynchronous by nature. Hence, our contribution is twofold. Fist, a new auto-generated non-uniform sampled-data mechanism is stated. Second, we grant an event-triggered control law with actuator failure observation and compensation. Our findings are completely supported by employing Lyapunov’s theory. Finally, according to our numerical experiments applied to an undamped torsional pendulum, our design is able to detect a failure in the actuator device and it can stabilize the undamped torsional pendulum system presenting better performance in comparison to its open-loop deployment. Full article
Show Figures

Figure 1

51 pages, 1973 KiB  
Review
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
by Francesco Cordero
Materials 2015, 8(12), 8195-8245; https://doi.org/10.3390/ma8125452 - 2 Dec 2015
Cited by 60 | Viewed by 12336
Abstract
The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal [...] Read more.
The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x) boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. Full article
(This article belongs to the Special Issue Piezoelectric Materials)
Show Figures

Figure 1

17 pages, 2043 KiB  
Article
A Novel Permanent Magnetic Angular Acceleration Sensor
by Hao Zhao and Hao Feng
Sensors 2015, 15(7), 16136-16152; https://doi.org/10.3390/s150716136 - 3 Jul 2015
Cited by 16 | Viewed by 8538
Abstract
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. [...] Read more.
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. Full article
(This article belongs to the Special Issue Magnetic Sensor Device-Part 1)
Show Figures

Figure 1

Back to TopTop