Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = torsion balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 10462 KiB  
Article
Inter-Laboratory Characterisation of a Low-Power Channel-Less Hall-Effect Thruster: Performance Comparisons and Lessons Learnt
by Thomas F. Munro-O’Brien, Mohamed Ahmed, Andrea Lucca Fabris and Charles N. Ryan
Aerospace 2025, 12(7), 601; https://doi.org/10.3390/aerospace12070601 - 1 Jul 2025
Viewed by 371
Abstract
A collaborative inter-laboratory study was conducted to characterise the performance of the novel 250 W External Discharge Plasma Thruster (XPT) with a channel-less Hall effect-type thruster designed to address lifetime limitations and lower-power efficiency challenges in conventional Hall effect thrusters. This study aimed [...] Read more.
A collaborative inter-laboratory study was conducted to characterise the performance of the novel 250 W External Discharge Plasma Thruster (XPT) with a channel-less Hall effect-type thruster designed to address lifetime limitations and lower-power efficiency challenges in conventional Hall effect thrusters. This study aimed to validate performance measurements across different facilities and thrust stands, investigating potential facility effects on thrust characterisation. Performance testing was conducted both at the University of Surrey using a torsional thrust balance and at the University of Southampton with a double inverted pendulum thrust stand, providing independent verification of the thrust and efficiency metrics. The comparison highlighted the importance of cross-facility testing with differing background pressures, calibration methods, and thrust balance types. These differences provide valuable insights, ensuring more robust and reliable low-power thruster characterisation. The XPT thruster demonstrated consistent performance across both the University of Surrey and University of Southampton facilities, with thrust levels ranging from 1.60 mN to 11.8 mN, specific impulses from 327 s to 1067 s, and anode efficiencies up to 11%. Higher anode voltages and mass fluxes at Southampton enabled extended operational envelopes, revealing performance plateaus at elevated powers, particularly for flow rates above 8 sccm. Cross-facility testing highlighted facility-dependent influences, with Southampton achieving a higher thrust and specific impulse at lower flow rates (5–6 sccm) due to increased anode currents, while discrepancies between test sites of up to 25% were observed at higher flow rates (8–10 sccm) and powers above 200 W. Characterisation identified an optimal operating range at 200 W of anode power with a mass flux below 8 sccm. This work underscores the importance of inter-laboratory validation in electric propulsion testing and provides insights into the best practices for assessing next-generation Hall effect-type thrusters. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

11 pages, 2114 KiB  
Article
Kinematic Analysis of Free Vertical Split with 720° Turn in Elite Chinese Rhythmic Gymnastics
by Tao Liu, Liangsen Wang, Liquan Gao and Yuliang Sun
Sensors 2025, 25(9), 2667; https://doi.org/10.3390/s25092667 - 23 Apr 2025
Viewed by 626
Abstract
This study investigates the kinematic characteristics of the free vertical split with 720° turn (C 807). C 807 is the international designation in rhythmic gymnastics for a free vertical split with a 720° turn. This research holds significant importance in enhancing the technical [...] Read more.
This study investigates the kinematic characteristics of the free vertical split with 720° turn (C 807). C 807 is the international designation in rhythmic gymnastics for a free vertical split with a 720° turn. This research holds significant importance in enhancing the technical proficiency of gymnasts and reducing their risk of injury. Eight national-level female gymnasts (age = 20 ± 3 years) performed the C 807. Kinematic data were collected using a 3D motion capture system. The movement was divided into four phases, and Visual 3D (V6.0, CMotion, Germantown, MD, USA) software was used for data processing and analysis. The joint angles of the upper and lower limbs, as well as the torsion angles of the lower limb joints, were analyzed. Key findings included tibial torsion, knee hyperextension in the support leg, and changes in elbow flexion during each phase. The center of mass (COM) trajectory showed that, during the backward preparatory swing phase, COM height gradually decreased and slightly increased before the initiation phase. In the initiation phase, COM height initially decreased and then increased, while the rotation phase showed fluctuating but stable COM height. The results highlight the importance of joint angle control and COM fluctuations during movement. Training should focus on leg swing speed, lower limb strength, knee stability, and upper limb coordination to enhance balance, improve rotation speed, and prevent injuries. Full article
(This article belongs to the Special Issue Sensors Technology for Sports Biomechanics Applications)
Show Figures

Figure 1

20 pages, 5694 KiB  
Article
Mechanical Characterization of Porous Bone-like Scaffolds with Complex Microstructures for Bone Regeneration
by Brandon Coburn and Roozbeh Ross Salary
Bioengineering 2025, 12(4), 416; https://doi.org/10.3390/bioengineering12040416 - 14 Apr 2025
Cited by 2 | Viewed by 870
Abstract
The patient-specific treatment of bone fractures using porous osteoconductive scaffolds has faced significant clinical challenges due to insufficient mechanical strength and bioactivity. These properties are essential for osteogenesis, bone bridging, and bone regeneration. Therefore, it is crucial to develop and characterize biocompatible, biodegradable, [...] Read more.
The patient-specific treatment of bone fractures using porous osteoconductive scaffolds has faced significant clinical challenges due to insufficient mechanical strength and bioactivity. These properties are essential for osteogenesis, bone bridging, and bone regeneration. Therefore, it is crucial to develop and characterize biocompatible, biodegradable, and mechanically robust scaffolds for effective bone regeneration. The objective of this study is to systematically investigate the mechanical performance of SimuBone, a medical-grade biocompatible and biodegradable material, using 10 distinct triply periodic minimal surface (TPMS) designs with various internal structures. To assess the material’s tensile properties, tensile structures based on ASTM D638-14 (Design IV) were fabricated, while standard torsion structures were designed and fabricated to evaluate torsional properties. Additionally, this work examined the compressive properties of the 10 TPMS scaffold designs, parametrically designed in the Rhinoceros 3D environment and subsequently fabricated using fused deposition modeling (FDM) additive manufacturing. The FDM fabrication process utilized a microcapillary nozzle (heated to 240 °C) with a diameter of 400 µm and a print speed of 10 mm/s, depositing material on a heated surface maintained at 60 °C. It was observed that SimuBone had a shear modulus of 714.79 ± 11.97 MPa as well as an average yield strength of 44 ± 1.31 MPa. Scaffolds fabricated with horizontal material deposition exhibited the highest tensile modulus (5404.20 ± 192.30 MPa), making them ideal for load-bearing applications. Also, scaffolds with large voids required thicker walls to prevent collapse. The P.W. Hybrid scaffold design demonstrated high vertical stiffness but moderate horizontal stiffness, indicating anisotropic mechanical behavior. The Neovius scaffold design balanced mechanical stiffness and porosity, making it a promising candidate for bone tissue engineering. Overall, the outcomes of this study pave the way for the design and fabrication of scaffolds with optimal properties for the treatment of bone fractures. Full article
Show Figures

Figure 1

16 pages, 1118 KiB  
Article
Analysis of Torsional Response in Pneumatic Artificial Muscles
by Frank C. Cianciarulo, Eric Y. Kim and Norman M. Wereley
Biomimetics 2025, 10(3), 139; https://doi.org/10.3390/biomimetics10030139 - 25 Feb 2025
Viewed by 624
Abstract
Pneumatic artificial muscles (PAMs) consist of an elastomeric bladder wrapped in a helical braid. When inflated, PAMs expand radially and contract axially, producing large axial forces. PAMs are advantageous because of their high specific work and specific power, as well as their ability [...] Read more.
Pneumatic artificial muscles (PAMs) consist of an elastomeric bladder wrapped in a helical braid. When inflated, PAMs expand radially and contract axially, producing large axial forces. PAMs are advantageous because of their high specific work and specific power, as well as their ability to produce large axial displacements. The axial and radial behavior of PAMs have been well studied. The torsional response of PAMs have not been explored before. Accurate prediction of the torsional force was desired for use in a bio-inspired worm-like robot capable of using an auger mounted to a PAM to bore out tunnels. Thus, an understanding of torsional response was a key objective. Modeling of the torsional response was performed using a force balance approach, and multiple model variations were considered, such as St. Venant’s torsion, bladder buckling, and asymmetrical braid loading. Torsional testing was performed to validate the model using a custom torsional testing system. Data from the tests was compared to the predicted torsional response. Full article
(This article belongs to the Special Issue Bio-Inspired Robotics and Applications)
Show Figures

Figure 1

19 pages, 4941 KiB  
Article
Sensitivity Analysis of Unmanned Aerial Vehicle Composite Wing Structural Model Regarding Material Properties and Laminate Configuration
by Artur Kierzkowski, Jakub Wróbel, Maciej Milewski and Angelos Filippatos
Drones 2025, 9(2), 99; https://doi.org/10.3390/drones9020099 - 28 Jan 2025
Cited by 1 | Viewed by 1532
Abstract
This study optimizes the structural design of a composite wing shell by minimizing mass and maximizing the first natural frequency. The analysis focuses on the effects of polyvinyl chloride (PVC) foam thickness and the fiber orientation angle of the inner carbon layers, with [...] Read more.
This study optimizes the structural design of a composite wing shell by minimizing mass and maximizing the first natural frequency. The analysis focuses on the effects of polyvinyl chloride (PVC) foam thickness and the fiber orientation angle of the inner carbon layers, with the outer layers fixed at ±45° for torsional rigidity. A Multi-Objective Genetic Algorithm (MOGA), well suited for complex engineering problems, was employed alongside Design of Experiments to develop a precise response surface model, achieving predictive errors of 0% for mass and 2.99% for frequency. The optimal configuration—90° and 0° fiber orientations for the upper and lower layers and a foam thickness of 1.05 mm—yielded a mass of 412 g and a frequency of 122.95 Hz. These findings demonstrate the efficacy of MOGA in achieving innovative lightweight aerospace designs, striking a balance between material efficiency and structural performance. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

16 pages, 11083 KiB  
Article
Effects of Short-Term Annealing on the Thermal Stability and Microstructural Evolution of Oxygen-Free Copper Processed by High-Pressure Torsion
by Meshal Y. Alawadhi, Abdulkareem S. Aloraier, Ayman M. Alaskari, Abdullah A. Alazemi and Yi Huang
Materials 2024, 17(23), 5886; https://doi.org/10.3390/ma17235886 - 1 Dec 2024
Cited by 1 | Viewed by 1016
Abstract
This study explores the impact of short-term annealing on the thermal stability and mechanical properties of oxygen-free copper subjected to high-pressure torsion (HPT). Copper samples were deformed through HPT with varying numbers of turns at room temperature and subsequently subjected to short-term annealing [...] Read more.
This study explores the impact of short-term annealing on the thermal stability and mechanical properties of oxygen-free copper subjected to high-pressure torsion (HPT). Copper samples were deformed through HPT with varying numbers of turns at room temperature and subsequently subjected to short-term annealing at temperatures of 398 K and 423 K. Microstructural analysis revealed that annealing led to grain growth and a reduction in dislocation density, with samples processed with fewer HPT turns exhibiting more significant grain coarsening. The microhardness measurements indicated a reduction in hardness after annealing, particularly at the edges of the discs, suggesting recrystallization. Samples processed with 10 HPT turns demonstrated higher thermal stability and less grain growth compared to 1/2-turn samples. The findings suggest that post-HPT short-term annealing can be used to tailor the balance between strength and ductility in oxygen-free copper, enhancing its suitability for industrial applications. Full article
Show Figures

Figure 1

12 pages, 13526 KiB  
Article
Constraint of d = 8 Lorentz Invariance Violation with New Experimental Design
by Tao Jin, Jia-Rui Li, Yu-Jie Tan, Pan-Pan Wang, Cheng-Gang Qin and Cheng-Gang Shao
Symmetry 2024, 16(11), 1432; https://doi.org/10.3390/sym16111432 - 28 Oct 2024
Viewed by 1322
Abstract
Short-range gravity experiments are more suitable for the testing of high-order Lorentz symmetry breaking effects. In our previous work, we proposed a new experimental design based on precision torsion balance technology to test the Lorentz violation force effect that varies inversely with the [...] Read more.
Short-range gravity experiments are more suitable for the testing of high-order Lorentz symmetry breaking effects. In our previous work, we proposed a new experimental design based on precision torsion balance technology to test the Lorentz violation force effect that varies inversely with the fourth power of distance (corresponding to mass dimension d = 6 term), and the corresponding experiment is currently underway. In this paper, we focus on analyzing the potential of this experimental scheme to test the Lorentz violation force that varies inversely with the sixth power of distance (corresponding to mass dimension d = 8 term). The results show that, compared with the current best limit, the new experimental scheme can improve the constraints on the Lorentz violation coefficients with d = 8 by at least one order of magnitude. Full article
(This article belongs to the Special Issue Lorentz Symmetry and General Relativity)
Show Figures

Figure 1

20 pages, 8952 KiB  
Article
Research on High-Frequency Torsional Oscillation Identification Using TSWOA-SVM Based on Downhole Parameters
by Tao Zhang, Wenjie Zhang, Zhuoran Meng, Jun Li and Miaorui Wang
Processes 2024, 12(10), 2153; https://doi.org/10.3390/pr12102153 - 2 Oct 2024
Viewed by 1730
Abstract
The occurrence of downhole high-frequency torsional oscillations (HFTO) can lead to the significant damage of drilling tools and can adversely affect drilling efficiency. Therefore, establishing a reliable HFTO identification model is crucial. This paper proposes an improved whale algorithm optimization support vector machine [...] Read more.
The occurrence of downhole high-frequency torsional oscillations (HFTO) can lead to the significant damage of drilling tools and can adversely affect drilling efficiency. Therefore, establishing a reliable HFTO identification model is crucial. This paper proposes an improved whale algorithm optimization support vector machine (TSWOA-SVM) for accurate HFTO identification. Initially, the population is initialized using Fuch chaotic mapping and a reverse learning strategy to enhance population quality and accelerate the whale optimization algorithm (WOA) convergence. Subsequently, the hyperbolic tangent function is introduced to dynamically adjust the inertia weight coefficient, balancing the global search and local exploration capabilities of WOA. A simulated annealing strategy is incorporated to guide the population in accepting suboptimal solutions with a certain probability, based on the Metropolis criterion and temperature, ensuring the algorithm can escape local optima. Finally, the optimized whale optimization algorithm is applied to enhance the support vector machine, leading to the establishment of the HFTO identification model. Experimental results demonstrate that the TSWOA-SVM model significantly outperforms the genetic algorithm-SVM (GA-SVM), gray wolf algorithm-SVM (GWO-SVM), and whale optimization algorithm-SVM (WOA-SVM) models in HFTO identification, achieving a classification accuracy exceeding 97%. And the 5-fold crossover experiment showed that the TSWOA-SVM model had the highest average accuracy and the smallest accuracy variance. Overall, the non-parametric TSWOA-SVM algorithm effectively mitigates uncertainties introduced by modeling errors and enhances the accuracy and speed of HFTO identification. By integrating advanced optimization techniques, this method minimizes the influence of initial parameter values and balances global exploration with local exploitation. The findings of this study can serve as a practical guide for managing near-bit states and optimizing drilling parameters. Full article
(This article belongs to the Special Issue Condition Monitoring and the Safety of Industrial Processes)
Show Figures

Figure 1

15 pages, 6890 KiB  
Article
c-Jun N-terminal Kinase Supports Autophagy in Testicular Ischemia but Triggers Apoptosis in Ischemia-Reperfusion Injury
by Sarah R. Alotaibi, Waleed M. Renno and May Al-Maghrebi
Int. J. Mol. Sci. 2024, 25(19), 10446; https://doi.org/10.3390/ijms251910446 - 27 Sep 2024
Viewed by 1194
Abstract
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of [...] Read more.
Oxidative stress triggered by testicular torsion and detorsion in young males could negatively impact future fertility. Using a rat animal model for testicular IRI (tIRI), we aim to study the induction of autophagy (ATG) during testicular ischemia and tIRI and the role of oxidative-stress-induced c-Jun N-terminal Kinase (JNK) as a cytoprotective mechanism. Sixty male Sprague-Dawley rats were divided into five groups: sham, ischemia only, ischemia+SP600125 (a JNK inhibitor), tIRI only, and tIRI+SP600125. The tIRI rats underwent an ischemic injury for 1 h followed by 4 h of reperfusion, while ischemic rats were subjected to 1 h of ischemia only without reperfusion. Testicular-ischemia-induced Beclin 1 and LC3B expression was associated with decreased p62/SQSTM1 expression, increased ATP and alkaline phosphatase (AP) activity, and slightly impaired spermatogenesis. SP600125 treatment improved p62 expression and reduced the levels of Beclin 1 and LC3B but did not affect ATP or AP levels. The tIRI-induced apoptosis lowered the expression of the three ATG proteins and AP activity, activated caspase 3, and caused spermatogenic arrest. SP600125-inhibited JNK during tIRI restored sham levels to all investigated parameters. This study emphasizes the regulatory role of JNK in balancing autophagy and apoptosis during testicular oxidative injuries. Full article
Show Figures

Figure 1

38 pages, 465 KiB  
Article
Quantum Effects on Cosmic Scales as an Alternative to Dark Matter and Dark Energy
by Da-Ming Chen and Lin Wang
Universe 2024, 10(8), 333; https://doi.org/10.3390/universe10080333 - 19 Aug 2024
Cited by 3 | Viewed by 1314
Abstract
The spin-torsion theory is a gauge theory approach to gravity that expands upon Einstein’s general relativity (GR) by incorporating the spin of microparticles. In this study, we further develop the spin-torsion theory to examine spherically symmetric and static gravitational systems that involve free-falling [...] Read more.
The spin-torsion theory is a gauge theory approach to gravity that expands upon Einstein’s general relativity (GR) by incorporating the spin of microparticles. In this study, we further develop the spin-torsion theory to examine spherically symmetric and static gravitational systems that involve free-falling macroscopic particles. We posit that the quantum spin of macroscopic matter becomes noteworthy at cosmic scales. We further assume that the Dirac spinor and Dirac equation adequately capture all essential physical characteristics of the particles and their associated processes. A crucial aspect of our approach involves substituting the constant mass in the Dirac equation with a scale function, allowing us to establish a connection between quantum effects and the scale of gravitational systems. This mechanism ensures that the quantum effect of macroscopic matter is scale-dependent and diminishes locally, a phenomenon not observed in microparticles. For any given matter density distribution, our theory predicts an additional quantum term, the quantum potential energy (QPE), within the mass expression. The QPE induces time dilation and distance contraction, and thus mimics a gravitational well. When applied to cosmology, our theory yields a static cosmological model. The QPE serves as a counterpart to the cosmological constant introduced by Einstein to balance gravity in his static cosmological model. The QPE also offers a plausible explanation for the origin of Hubble redshift (traditionally attributed to the universe’s expansion). The predicted luminosity distance–redshift relation aligns remarkably well with SNe Ia data from the cosmological sample of SNe Ia. In the context of galaxies, the QPE functions as the equivalent of dark matter. The predicted circular velocities align well with rotation curve data from the SPARC (Spitzer Photometry and Accurate Rotation Curves database) sample. Importantly, our conclusions in this paper are reached through a conventional approach, with the sole assumption of the quantum effects of macroscopic matter at large scales, without the need for additional modifications or assumptions. Full article
Show Figures

Figure 1

23 pages, 5734 KiB  
Article
Nonlinear Slippage of Tensile Armor Layers of Unbonded Flexible Riser Subjected to Irregular Loads
by Qingsheng Liu, Zhongyuan Qu, Xiaoya Liu, Jiawei He, Gang Wang, Sicong Wang and Feng Chen
J. Mar. Sci. Eng. 2024, 12(5), 818; https://doi.org/10.3390/jmse12050818 - 14 May 2024
Cited by 1 | Viewed by 1232
Abstract
The unbonded flexible riser has been increasingly applied in the ocean engineering industry to transport oil and gas resources from the seabed to offshore platforms. The slippage of helical layers, especially the tensile armor layers of unbonded flexible risers, contribute to the nonlinear [...] Read more.
The unbonded flexible riser has been increasingly applied in the ocean engineering industry to transport oil and gas resources from the seabed to offshore platforms. The slippage of helical layers, especially the tensile armor layers of unbonded flexible risers, contribute to the nonlinear hysteresis phenomenon, which is a research hotspot and difficulty. In this paper, on the basis of a typical eight-layer unbonded flexible riser model, the nonlinear slippage of a tensile armor layer and the corresponding nonlinear behavior of an unbonded flexible riser subjected to irregular external loads are studied by numerical modeling with detailed cross-sectional properties of the helical layers, and are verified through a theoretical method considering the coupled effect of the external loads on the unbonded flexible riser. Firstly, the balance equation of each layer considering the effect of external loads is established based on functional principles, and the overall theoretical model of the unbonded flexible riser is set up in consideration of the contact between adjacent layers. Secondly, the numerical modeling of each separate layer within the unbonded flexible riser, including the actual geometry of the carcass and pressure armor layer, is established, and solid elements are applied to all the interlayers, thus simulating the nonlinear contact and friction between and within interlayers. Finally, after verification through test data, the behavior of the unbonded flexible riser under the cyclic axial force, torsion, bending moment, and irregular external and internal pressure is studied. The results show that the tensile armor layer can slip under irregular loads. Additionally, some suggestions related to the analysis of unbonded flexible risers under irregular loads are drawn in the end. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 8723 KiB  
Article
Experimental Investigation and Control of Driveline Torsional Vibrations during Clutch-to-Clutch Shifts of Electrified Vehicles
by Sooyoung Kim
Machines 2024, 12(4), 239; https://doi.org/10.3390/machines12040239 - 5 Apr 2024
Viewed by 1547
Abstract
An electrified vehicle equipped with a stepped-ratio transmission and clutch(es) requires precise control of the clutch actuator(s) and power sources to achieve optimal gear shift performance, which is characterized by smooth and swift gear shifts. Owing to the absence of the smoothing effect [...] Read more.
An electrified vehicle equipped with a stepped-ratio transmission and clutch(es) requires precise control of the clutch actuator(s) and power sources to achieve optimal gear shift performance, which is characterized by smooth and swift gear shifts. Owing to the absence of the smoothing effect of torque converters, dual-clutch transmission (DCT) powertrains are prone to inducing abrupt shift shocks—particularly during rapid clutch-to-clutch shifts. Balancing the smoothness and speed of shifts is a significant challenge and was the key focus of this study. Multiple experiments and model-based analyses were conducted to investigate the tradeoff between smoothness and shift time during the clutch-to-clutch shifts of a parallel-type hybrid electric vehicle with a dry DCT. Additionally, the adverse effects of inaccurate power-source control on shift quality were experimentally investigated. The results revealed the primary physical factors in terms of control causing torsional driveline oscillations in clutch-to-clutch shifts. According to these observations, a detailed quantitative guide including how to generate reference trajectories for shift control is proposed, with the aim of reducing the driveline torsional vibrations without compromising the shift time. The effectiveness of the proposed control strategy was demonstrated through real-time experiments on an electrified powertrain with a DCT using a dedicated test bench. This study provides valuable insights for optimizing the shift performance of electrified vehicles—particularly for managing torsional vibrations during clutch-to-clutch shifts. Full article
(This article belongs to the Special Issue Advances in Vehicle Brake and Clutch Systems)
Show Figures

Figure 1

17 pages, 2920 KiB  
Article
The Rhodamine–Perylene Compact Electron Donor–Acceptor Dyad: Spin-Orbit Charge-Transfer Intersystem Crossing and the Energy Balance of the Triplet Excited States
by Muhammad Imran, Dongyi Liu, Kaiyue Ye, Xue Zhang and Jianzhang Zhao
Photochem 2024, 4(1), 40-56; https://doi.org/10.3390/photochem4010004 - 29 Jan 2024
Cited by 2 | Viewed by 2157
Abstract
We prepared a rhodamine (RB)–perylene (Pery) compact electron donor/acceptor dyad (RB–Pery) to study the spin-orbit charge-transfer intersystem crossing (SOCT–ISC). The UV–vis absorption spectrum indicates a negligible electronic interaction between the donor and acceptor at ground state. However, the fluorescence of both [...] Read more.
We prepared a rhodamine (RB)–perylene (Pery) compact electron donor/acceptor dyad (RB–Pery) to study the spin-orbit charge-transfer intersystem crossing (SOCT–ISC). The UV–vis absorption spectrum indicates a negligible electronic interaction between the donor and acceptor at ground state. However, the fluorescence of both the RB and Pery units are quenched in the dyad, which is attributed to the photoinduced electron transfer, supported by the electrochemical studies. Nanosecond transient absorption (ns-TA) spectra show delocalized triplet states, i.e., there is an excited-state equilibrium between Pery and the RB triplet states. The triplet state lifetime was determined as 109.8 μs. With intermolecular triplet–triplet energy transfer, monitored using ns-TA spectra, the triplet-state energy balance between RB and Pery in RB–Pery was confirmed. The proposed cascade photophysical processes of the dyad are 1RB*-Pery→RB–Pery+•→[3RB*-Pery↔RB-3Pery*]. Moreover, long-lived rhodamine radical cation (in milliseconds) was detected in both deaerated/aerated non-polar or low-polarity solvents (i.e., p-xylene, toluene). The potential energy curve of the dyad against the variation in the dihedral angle between the two units indicates large torsional freedom (53°~128°) in RB–Pery, which leads to inefficient SOCT–ISC; consequently, low singlet-oxygen quantum yields (ΦΔ = 2~8%) were observed. Full article
Show Figures

Graphical abstract

14 pages, 3486 KiB  
Article
A Triplet/Singlet Ground-State Switch via the Steric Inhibition of Conjugation in 4,6-Bis(trifluoromethyl)-1,3-phenylene Bisnitroxide
by Nagito Haga and Takayuki Ishida
Molecules 2024, 29(1), 70; https://doi.org/10.3390/molecules29010070 - 21 Dec 2023
Cited by 3 | Viewed by 1759
Abstract
Ground triplet 4,6-bis(trifluoromethyl)-1,3-phenylene bis(tert-butyl nitroxide) (TF2PBN) reacted with [Y(hfac)3(H2O)2] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), affording a doubly hydrogen-bonded adduct [Y(hfac)3(H2O)2(TF2PBN)]. The biradical was recovered from the adduct through recrystallization. Crystallographic analysis [...] Read more.
Ground triplet 4,6-bis(trifluoromethyl)-1,3-phenylene bis(tert-butyl nitroxide) (TF2PBN) reacted with [Y(hfac)3(H2O)2] (hfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), affording a doubly hydrogen-bonded adduct [Y(hfac)3(H2O)2(TF2PBN)]. The biradical was recovered from the adduct through recrystallization. Crystallographic analysis indicates that the torsion angles (|θ| ≤ 90°) between the benzene ring and nitroxide groups were 74.9 and 84.8° in the adduct, which are larger than those of the starting material TF2PBN. Steric congestion due to o-trifluoromethyl groups gives rise to the reduction of π-conjugation. Two hydrogen bonds enhance this deformation. Susceptometry of the adduct indicates a ground singlet with 2J/kB = −128(2) K, where 2J corresponds to the singlet–triplet gap. The observed magneto-structure relation is qualitatively consistent with Rajca’s pioneering work. A density functional theory calculation at the UB3LYP/6-311+G(2d,p) level using the atomic coordinates determined provided a result of 2J/kB = −162.3 K for the adduct, whilst the corresponding calculation on intact TF2PBN provided +87.2 K. After a comparison among a few known compounds, the 2J vs. |θ| plot shows a negative slope with a critical torsion of 65(3)°. The ferro- and antiferromagnetic coupling contributions are balanced in TF2PBN, being responsible for ground-state interconversion by means of small structural perturbation like hydrogen bonds. Full article
(This article belongs to the Special Issue Computational Studies of Novel Function Materials)
Show Figures

Graphical abstract

17 pages, 8071 KiB  
Article
Research on Nonlinear Vibration Characteristics of Internal Beveloid Gear Transmission System
by Jianmin Wen, Chenqi Fu, Hong Zhang and Bindi You
Appl. Sci. 2023, 13(22), 12463; https://doi.org/10.3390/app132212463 - 17 Nov 2023
Cited by 1 | Viewed by 1172
Abstract
The internal beveloid gear has good scientific research value and a broad application field. However, there is a lack of research on the nonlinear vibration characteristics of internal beveloid gears. The present study establishes a nonlinear vibration model that takes into account axial [...] Read more.
The internal beveloid gear has good scientific research value and a broad application field. However, there is a lack of research on the nonlinear vibration characteristics of internal beveloid gears. The present study establishes a nonlinear vibration model that takes into account axial vibration, gear torsional vibration, and radial support vibration. The effects of various excitation parameters on the vibration characteristics of the gear transmission system are analyzed and computed using the Runge–Kutta method. After analyzing the dynamic model of the gear pair using numerical methods, the harmonic balance method is employed to obtain the theoretical analytical solution for a single−stage gear. The obtained results are compared with the velocity and acceleration time−domain response curves obtained from the numerical method, and they show excellent agreement. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop