Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = topological semimetal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5463 KiB  
Article
First-Principles Study of Topological Nodal Line Semimetal I229-Ge48 via Cluster Assembly
by Liwei Liu, Xin Wang, Nan Wang, Yaru Chen, Shumin Wang, Caizhi Hua, Tielei Song, Zhifeng Liu and Xin Cui
Nanomaterials 2025, 15(14), 1109; https://doi.org/10.3390/nano15141109 - 17 Jul 2025
Viewed by 291
Abstract
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed [...] Read more.
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed via bottom-up cluster assembly that exhibits a unique porous spherical Fermi surface and strain-tunable topological robustness. First-principles calculations reveal that I229-Ge48 is a topological nodal line semimetal with exceptional mechanical anisotropy (Young’s modulus ratio: 2.27) and ductility (B/G = 2.21, ν = 0.30). Remarkably, the topological property persists under spin-orbit coupling (SOC) and tensile strain, while compressive strain induces a semiconductor transition (bandgap: 0.29 eV). Furthermore, I229-Ge48 demonstrates strong visible-light absorption (105 cm−1) and a strong strain-modulated infrared response, surpassing conventional Ge allotropes. These findings establish I229-Ge48 as a multifunctional platform for strain-engineered nanoelectronics and optoelectronic devices. Full article
Show Figures

Figure 1

25 pages, 30298 KiB  
Review
Topological Photonic Crystal Sensors: Fundamental Principles, Recent Advances, and Emerging Applications
by Israa Abood, Sayed El. Soliman, Wenlong He and Zhengbiao Ouyang
Sensors 2025, 25(5), 1455; https://doi.org/10.3390/s25051455 - 27 Feb 2025
Cited by 3 | Viewed by 2511
Abstract
Topological photonic sensors have emerged as a breakthrough in modern optical sensing by integrating topological protection and light confinement mechanisms such as topological states, quasi-bound states in the continuum (quasi-BICs), and Tamm plasmon polaritons (TPPs). These devices exhibit exceptional sensitivity and high-Q [...] Read more.
Topological photonic sensors have emerged as a breakthrough in modern optical sensing by integrating topological protection and light confinement mechanisms such as topological states, quasi-bound states in the continuum (quasi-BICs), and Tamm plasmon polaritons (TPPs). These devices exhibit exceptional sensitivity and high-Q resonances, making them ideal for high-precision environmental monitoring, biomedical diagnostics, and industrial sensing applications. This review explores the foundational physics and diverse sensor architectures, from refractive index sensors and biosensors to gas and thermal sensors, emphasizing their working principles and performance metrics. We further examine the challenges of achieving ultrahigh-Q operation in practical devices, limitations in multiparameter sensing, and design complexity. We propose physics-driven solutions to overcome these barriers, such as integrating Weyl semimetals, graphene-based heterostructures, and non-Hermitian photonic systems. This comparative study highlights the transformative impact of topological photonic sensors in achieving ultra-sensitive detection across multiple fields. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

19 pages, 4143 KiB  
Article
Anisotropic Elasticity, Spin–Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications
by Yasaman Fazeli, Zahra Nourbakhsh, Shahram Yalameha and Daryoosh Vashaee
Nanomaterials 2025, 15(2), 148; https://doi.org/10.3390/nano15020148 - 20 Jan 2025
Viewed by 1129
Abstract
The present work investigates the interfacial and atomic layer-dependent mechanical properties, SOC-entailing phonon band structure, and comprehensive electron-topological–elastic integration of ZrTe2 and NiTe2. The anisotropy of Young’s modulus, Poisson’s ratio, and shear modulus are analyzed using density functional theory with [...] Read more.
The present work investigates the interfacial and atomic layer-dependent mechanical properties, SOC-entailing phonon band structure, and comprehensive electron-topological–elastic integration of ZrTe2 and NiTe2. The anisotropy of Young’s modulus, Poisson’s ratio, and shear modulus are analyzed using density functional theory with the TB-mBJ approximation. NiTe2 has higher mechanical property values and greater anisotropy than ZrTe2. Phonon dispersion analysis with SOC effects predicts the dynamic stability of both compounds. Thus, the current research unifies electronic band structure analysis, topological characterization, and elastic property calculation to reveal how these transition metal dichalcogenides are influenced by their structural, electronic, and mechanical properties. The results obtained in this work can be used in the further development of spintronic and nanoelectronic devices. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

17 pages, 3322 KiB  
Article
Exploring the Interplay between Structure and Electronic Behavior across Pressure-Induced Isostructural and Structural Transitions in Weyl-Type Semimetal NbAs
by João E. F. S. Rodrigues, Emin Mijit, Angelika D. Rosa, Laura Silenzi, Nodoka Hara, Catalin Popescu, José A. Alonso, Tetsuo Irifune, Zhiwei Hu and Andrea Di Cicco
Crystals 2024, 14(7), 578; https://doi.org/10.3390/cryst14070578 - 21 Jun 2024
Viewed by 1537
Abstract
NbAs is a Weyl semimetal and belongs to the group of topological phases that exhibit distinct quantum and topological attributes. Topological phases have a fundamentally different response to external perturbations, such as magnetic fields. To obtain insights into the response of such phases [...] Read more.
NbAs is a Weyl semimetal and belongs to the group of topological phases that exhibit distinct quantum and topological attributes. Topological phases have a fundamentally different response to external perturbations, such as magnetic fields. To obtain insights into the response of such phases to pressure, we conducted a comprehensive study on the pressure-induced electronic and structural transitions in NbAs. We used micro-X-ray diffraction (XRD) and micro-X-ray spectroscopy (XAS) techniques to elucidate the changes at different atomic and electronic length scales (local, medium, and bulk) as combined with theoretical calculations. High-pressure XRD measurements revealed a rather common compression behavior up to ~12 GPa that could be fitted to an equation of state formalism with a bulk modulus of K0= 179.6 GPa. Complementary Nb K-edge XAS data unveiled anomalies at pressure intervals of ~12–15 and ~25–26 GPa in agreement with previous literature data from XRD studies. We attribute these anomalies to a previously reported topological Lifshitz transition and the tetragonal-to-hexagonal phase transition, respectively. Analysis of EXAFS results revealed slight changes in the mean next-nearest neighbor distance Nb–As(1) (~2.6 Å) at ~15 GPa, while the second nearest neighboring bond Nb–Nb(1) (~3.4 Å) shows a pronounced anomaly. This indicates that the electronic changes across the Lifshitz transition are accommodated first in the medium-range atomic structure and then at the local range and bulk. The variances of these bonds show anomalous but progressive evolutions close to the tetragonal-to-hexagonal transition at ~25 GPa, which allowed us to derive the evolution of vibration properties in this material. We suggest a prominent displacive character of the I41mdP6¯m2 transition facilitated by phonon modes. Full article
Show Figures

Figure 1

14 pages, 31777 KiB  
Article
Heteroepitaxial Growth of InBi(001)
by Thomas J. Rehaag and Gavin R. Bell
Molecules 2024, 29(12), 2825; https://doi.org/10.3390/molecules29122825 - 13 Jun 2024
Cited by 2 | Viewed by 1246
Abstract
InBi is a topological nodal line semimetal with strong spin–orbit coupling. It is epitaxially compatible with III–V semiconductors and, hence, an attractive material for topological spintronics. However, growth by molecular beam epitaxy (MBE) is challenging owing to the low melting point of InBi [...] Read more.
InBi is a topological nodal line semimetal with strong spin–orbit coupling. It is epitaxially compatible with III–V semiconductors and, hence, an attractive material for topological spintronics. However, growth by molecular beam epitaxy (MBE) is challenging owing to the low melting point of InBi and the tendency to form droplets. We investigate approaches for epitaxial growth of InBi films on InSb(001) substrates using MBE and periodic supply epitaxy (PSE). It was not possible to achieve planar, stoichiometric InBi heteroepitaxy using MBE growth over the parameter space explored. However, pseudomorphic growth of ultra-thin InBi(001) layers could be achieved by PSE on InSb(001). A remarkable change to the in-plane epitaxial orientation is observed. Full article
(This article belongs to the Special Issue Recent Advances in Epitaxial Growth: Materials and Methods)
Show Figures

Figure 1

10 pages, 4047 KiB  
Article
Photonic Weyl Waveguide and Saddle-Chips-like Modes
by Hanyu Wang, Wei Xu, Zhihong Zhu and Biao Yang
Nanomaterials 2024, 14(7), 620; https://doi.org/10.3390/nano14070620 - 1 Apr 2024
Viewed by 1709
Abstract
Topological Weyl semimetals are characterized by open Fermi arcs on their terminal surfaces, these materials not only changed accepted concepts of the Fermi loop but also enabled many exotic phenomena, such as one-way propagation. The key prerequisite is that the two terminal surfaces [...] Read more.
Topological Weyl semimetals are characterized by open Fermi arcs on their terminal surfaces, these materials not only changed accepted concepts of the Fermi loop but also enabled many exotic phenomena, such as one-way propagation. The key prerequisite is that the two terminal surfaces have to be well separated, i.e., the Fermi arcs are not allowed to couple with each other. Thus, their interaction was overlooked before. Here, we consider coupled Fermi arcs and propose a Weyl planar waveguide, wherein we found a saddle-chips-like hybridized guiding mode. The hybridized modes consist of three components: surface waves from the top and bottom surfaces and bulk modes inside the Weyl semimetal. The contribution of these three components to the hybridized mode appears to be z-position-dependent rather than uniform. Beyond the conventional waveguide framework, those non-trivial surface states, with their arc-type band structures, exhibit strong selectivity in propagation direction, providing an excellent platform for waveguides. Compared with the conventional waveguide, the propagation direction of hybridized modes exhibits high z-position-dependency. For example, when the probe plane shifts from the top interface to the bottom interface, the component propagating horizontally becomes dimmer, while the component propagating vertically becomes brighter. Experimentally, we drilled periodic holes in metal plates to sandwich an ideal Weyl meta-crystal and characterize the topological guiding mode. Our study shows the intriguing behaviors of topological photonic waveguides, which could lead to beam manipulation, position sensing, and even 3D information processing on photonic chip. The Weyl waveguide also provides a platform for studying the coupling and the interaction between surface and bulk states. Full article
(This article belongs to the Special Issue 2D Materials and Metamaterials in Photonics and Optoelectronics)
Show Figures

Figure 1

14 pages, 5105 KiB  
Article
Analysis of Near-Field Magnetic Responses on ZrTe5 through Cryogenic Magneto-THz Nano-Imaging
by Samuel Haeuser, Richard H. J. Kim, Joong-Mok Park, Randall K. Chan, Muhammad Imran, Thomas Koschny and Jigang Wang
Instruments 2024, 8(1), 21; https://doi.org/10.3390/instruments8010021 - 5 Mar 2024
Viewed by 2453
Abstract
One manifestation of light-Weyl fermion interaction is the emergence of chiral magnetic effects under magnetic fields. Probing real space magnetic responses at terahertz (THz) scales is challenging but highly desired, as the local responses are less affected by the topologically trivial inhomogeneity that [...] Read more.
One manifestation of light-Weyl fermion interaction is the emergence of chiral magnetic effects under magnetic fields. Probing real space magnetic responses at terahertz (THz) scales is challenging but highly desired, as the local responses are less affected by the topologically trivial inhomogeneity that is ubiquitous in spatially averaged measurements. Here, we implement a cryogenic THz microscopy instrument under a magnetic field environment—a task only recently achieved. We explore the technical approach of this system and characterize the magnetic field’s influence on our AFM operation by statistical noise analysis. We find evidence for local near-field spatial variations in the topological semimetal ZrTe5 up to a 5-Tesla magnetic field and obtain near-field THz spectra to discuss their implications for future studies on the chiral magnetic effect. Full article
Show Figures

Figure 1

12 pages, 2857 KiB  
Article
LaZn1−xBi2 as a Candidate for Dirac Nodal-Line Intermetallic Systems
by Piotr Ruszała, Maciej J. Winiarski and Małgorzata Samsel-Czekała
Crystals 2024, 14(3), 209; https://doi.org/10.3390/cryst14030209 - 22 Feb 2024
Viewed by 1335
Abstract
The complex theoretical analysis of the density of states, band structures, and Fermi surfaces, based on predictions of the density functional theory methods, unveils the unique electronic properties of the LaZn1−xBi2 system. In this paper, the Zn vacancies (for [...] Read more.
The complex theoretical analysis of the density of states, band structures, and Fermi surfaces, based on predictions of the density functional theory methods, unveils the unique electronic properties of the LaZn1−xBi2 system. In this paper, the Zn vacancies (for x=0.5) were modeled using a modified unit cell of lower symmetry than that for a fully stoichiometric one (for x=0). The existence of several Dirac-like features in the electronic band structures was found. Some of them were found to be intimately associated with the nonsymmorphic symmetry of the system, and these were investigated in detail. The calculated Fermi surface shapes, as well as the Fermi velocity values (up to ∼1.2 ×106 m/s), are in good agreement with other analogous square-net Dirac semimetals. The combination of charge-carrier uncompensation, relatively small band splitting, and the tolerance factor for square-net semimetals t0.95 for LaZn0.5Bi2, constitutes a very promising indicator of the topological features of this system, warranting further experimental studies. Full article
Show Figures

Figure 1

24 pages, 4200 KiB  
Review
High-Mobility Topological Semimetals as Novel Materials for Huge Magnetoresistance Effect and New Type of Quantum Hall Effect
by Roberto Zivieri, Stefano Lumetti and Jérémy Létang
Materials 2023, 16(24), 7579; https://doi.org/10.3390/ma16247579 - 9 Dec 2023
Cited by 2 | Viewed by 2501
Abstract
The quantitative description of electrical and magnetotransport properties of solid-state materials has been a remarkable challenge in materials science over recent decades. Recently, the discovery of a novel class of materials—the topological semimetals—has led to a growing interest in the full understanding of [...] Read more.
The quantitative description of electrical and magnetotransport properties of solid-state materials has been a remarkable challenge in materials science over recent decades. Recently, the discovery of a novel class of materials—the topological semimetals—has led to a growing interest in the full understanding of their magnetotransport properties. In this review, the strong interplay among topology, band structure, and carrier mobility in recently discovered high carrier mobility topological semimetals is discussed and their effect on their magnetotransport properties is outlined. Their large magnetoresistance effect, especially in the Hall transverse configuration, and a new version of a three-dimensional quantum Hall effect observed in high-mobility Weyl and Dirac semimetals are reviewed. The possibility of designing novel quantum sensors and devices based on solid-state semimetals is also examined. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

11 pages, 2743 KiB  
Article
Magnetic Field-Induced Resistivity Upturn and Non-Topological Origin in the Quasi-One-Dimensional Semimetals
by Yalei Huang, Rongli Ye, Weihao Shen, Xinyu Yao and Guixin Cao
Symmetry 2023, 15(10), 1882; https://doi.org/10.3390/sym15101882 - 7 Oct 2023
Viewed by 2066
Abstract
As a layered topological nodal line semimetals hosting a quasi-one-dimensional (quasi-1D) crystalline structure, TaNiTe5 has attracted intensive attention. In this research, we analyze the low temperature (low-T) transport properties in single crystals of TaNiTe5. The high anisotropic transport [...] Read more.
As a layered topological nodal line semimetals hosting a quasi-one-dimensional (quasi-1D) crystalline structure, TaNiTe5 has attracted intensive attention. In this research, we analyze the low temperature (low-T) transport properties in single crystals of TaNiTe5. The high anisotropic transport behaviors confirm the anisotropic electronic structure in quasi-1D TaNiTe5. The resistivity shows a magnetic field-induced resistivity upturn followed by a plateau at low temperatures when current is parallel to the c axis and magnetic field is parallel to the b axis. An extremely large magnetoresistance of 1000% has been observed at 2 K and 13 T. Such a magnetic field-induced phenomenon can be generally explained using the topological theory, but we find that the behaviors are well accounted with the classical Kohler’s rule. The analysis of the Hall resistivity points to carrier compensation in TaNiTe5, fully justifying Kohler’s rule. Our findings imply that analogous magnetic field-induced low-T properties in nodal line semimetals TaNiTe5 can be understood in the framework of classical magnetoresistance theories that do not require to invoke the topological surface states. Full article
(This article belongs to the Special Issue Topological Quantum Materials and Applications)
Show Figures

Figure 1

20 pages, 3944 KiB  
Review
Magnetic States and Electronic Properties of Manganese-Based Intermetallic Compounds Mn2YAl and Mn3Z (Y = V, Cr, Fe, Co, Ni; Z = Al, Ge, Sn, Si, Pt)
by Vyacheslav V. Marchenkov and Valentin Yu. Irkhin
Materials 2023, 16(19), 6351; https://doi.org/10.3390/ma16196351 - 22 Sep 2023
Cited by 6 | Viewed by 3682
Abstract
We present a brief review of experimental and theoretical papers on studies of electron transport and magnetic properties in manganese-based compounds Mn2YZ and Mn3Z (Y = V, Cr, Fe, Co, Ni, etc.; Z = Al, Ge, Sn, Si, [...] Read more.
We present a brief review of experimental and theoretical papers on studies of electron transport and magnetic properties in manganese-based compounds Mn2YZ and Mn3Z (Y = V, Cr, Fe, Co, Ni, etc.; Z = Al, Ge, Sn, Si, Pt, etc.). It has been shown that in the electronic subsystem of Mn2YZ compounds, the states of a half-metallic ferromagnet and a spin gapless semiconductor can arise with the realization of various magnetic states, such as a ferromagnet, a compensated ferrimagnet, and a frustrated antiferromagnet. Binary compounds of Mn3Z have the properties of a half-metallic ferromagnet and a topological semimetal with a large anomalous Hall effect, spin Hall effect, spin Nernst effect, and thermal Hall effect. Their magnetic states are also very diverse: from a ferrimagnet and an antiferromagnet to a compensated ferrimagnet and a frustrated antiferromagnet, as well as an antiferromagnet with a kagome-type lattice. It has been demonstrated that the electronic and magnetic properties of such materials are very sensitive to external influences (temperature, magnetic field, external pressure), as well as the processing method (cast, rapidly quenched, nanostructured, etc.). Knowledge of the regularities in the behavior of the electronic and magnetic characteristics of Mn2YAl and Mn3Z compounds can be used for applications in micro- and nanoelectronics and spintronics. Full article
(This article belongs to the Special Issue Phase Transformation and Properties of Metals and Alloys)
Show Figures

Figure 1

31 pages, 9853 KiB  
Review
Research Progress of Topological Quantum Materials: From First-Order to Higher-Order
by Bing Liu and Wenjun Zhang
Symmetry 2023, 15(9), 1651; https://doi.org/10.3390/sym15091651 - 26 Aug 2023
Cited by 1 | Viewed by 7211
Abstract
The exploration of topologically nontrivial states in condensed matter systems, along with their novel transport properties, has garnered significant research interest. This review aims to provide a comprehensive overview of representative topological phases, starting from the initial proposal of the quantum Hall insulator. [...] Read more.
The exploration of topologically nontrivial states in condensed matter systems, along with their novel transport properties, has garnered significant research interest. This review aims to provide a comprehensive overview of representative topological phases, starting from the initial proposal of the quantum Hall insulator. We begin with a concise introduction, followed by a detailed examination of first-order topological quantum phases, including gapped and gapless systems, encompassing relevant materials and associated phenomena in experiment. Subsequently, we delve into the realm of exotic higher-order topological quantum phases, examining both theoretical propositions and experimental findings. Moreover, we discuss the mechanisms underlying the emergence of higher-order topology, as well as the challenges involved in experimentally verifying materials exhibiting such properties. Finally, we outline future research directions. This review not only systematically surveys various types of topological quantum states, spanning from first-order to higher-order, but also proposes potential approaches for realizing higher-order topological phases, thereby offering guidance for the detection of related quantum phenomena in experiments. Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Review Papers)
Show Figures

Figure 1

15 pages, 3250 KiB  
Article
Quantum Spin Hall Effect in Two-Monolayer-Thick InN/InGaN Coupled Multiple Quantum Wells
by Sławomir P. Łepkowski
Nanomaterials 2023, 13(15), 2212; https://doi.org/10.3390/nano13152212 - 30 Jul 2023
Cited by 1 | Viewed by 1823
Abstract
In this study, we present a theoretical study of the quantum spin Hall effect in InN/InGaN coupled multiple quantum wells with the individual well widths equal to two atomic monolayers. We consider triple and quadruple quantum wells in which the In content in [...] Read more.
In this study, we present a theoretical study of the quantum spin Hall effect in InN/InGaN coupled multiple quantum wells with the individual well widths equal to two atomic monolayers. We consider triple and quadruple quantum wells in which the In content in the interwell barriers is greater than or equal to the In content in the external barriers. To calculate the electronic subbands in these nanostructures, we use the eight-band k∙p Hamiltonian, assuming that the effective spin–orbit interaction in InN is negative, which represents the worst-case scenario for achieving a two-dimensional topological insulator. For triple quantum wells, we find that when the In contents of the external and interwell barriers are the same and the widths of the internal barriers are equal to two monolayers, a topological insulator with a bulk energy gap of 0.25 meV can appear. Increasing the In content in the interwell barriers leads to a significant increase in the bulk energy gap of the topological insulator, reaching about 0.8 meV. In these structures, the topological insulator can be achieved when the In content in the external barriers is about 0.64, causing relatively low strain in quantum wells and making the epitaxial growth of these structures within the range of current technology. Using the effective 2D Hamiltonian, we study the edge states in strip structures containing topological triple quantum wells. We demonstrate that the opening of the gap in the spectrum of the edge states caused by decreasing the width of the strip has an oscillatory character regardless of whether the pseudospin-mixing elements of the effective Hamiltonian are omitted or taken into account. The strength of the finite size effect in these structures is several times smaller than that in HgTe/HgCdTe and InAs/GaSb/AlSb topological insulators. Therefore, its influence on the quantum spin Hall effect is negligible in strips with a width larger than 150 nm, unless the temperature at which electron transport is measured is less than 1 mK. In the case of quadruple quantum wells, we find the topological insulator phase only when the In content in the interwell barriers is larger than in the external barriers. We show that in these structures, a topological insulator with a bulk energy gap of 0.038 meV can be achieved when the In content in the external barriers is about 0.75. Since this value of the bulk energy gap is very small, quadruple quantum wells are less useful for realizing a measurable quantum spin Hall system, but they are still attractive for achieving a topological phase transition and a nonlocal topological semimetal phase. Full article
Show Figures

Figure 1

27 pages, 3455 KiB  
Review
Next-Generation Quantum Materials for Thermoelectric Energy Conversion
by Shiva Kumar Singh, Julian Munevar, Letície Mendonça-Ferreira and Marcos A. Avila
Crystals 2023, 13(7), 1139; https://doi.org/10.3390/cryst13071139 - 21 Jul 2023
Cited by 3 | Viewed by 4986
Abstract
This review presents the recent advances in the search for thermoelectric (TE) materials, mostly among intermetallic compounds and in the enhancement of their TE performance. Herein, contemporary approaches towards improving the efficiency of heat–electricity conversion (e.g., energy harvesting and heat pumping) are discussed [...] Read more.
This review presents the recent advances in the search for thermoelectric (TE) materials, mostly among intermetallic compounds and in the enhancement of their TE performance. Herein, contemporary approaches towards improving the efficiency of heat–electricity conversion (e.g., energy harvesting and heat pumping) are discussed through the understanding of various emergent physical mechanisms. The strategies for decoupling the individual TE parameters, as well as the simultaneous enhancement of the TE power factor and the suppression of heat conduction, are described for nanoparticle-doped materials, high entropy alloys, and nanowires. The achievement of a superior TE performance due to emergent quantum phenomena is discussed for intermetallic chalcogenides and related systems (e.g., strong and weak topological insulators, Weyl and Dirac semimetals), and some of the most promising compounds within these classes are highlighted. It was concluded that high-entropy alloying provides a methodological breakthrough for employing band engineering methods along with various phonon scattering mechanisms towards significant TE efficiency improvement in conventional TE materials. Finally, topological semimetals and magnetic semimetals with several intriguing features, such as a violation of the Wiedemann–Franz law and outstanding perpendicular Nernst signals, are presented as strong candidates for becoming next-generation TE quantum materials. Full article
(This article belongs to the Special Issue Advances in Intermetallic and Metal-Like Compounds)
Show Figures

Figure 1

16 pages, 5286 KiB  
Article
Semimetallic, Half-Metallic, Semiconducting, and Metallic States in Gd-Sb Compounds
by Semyon T. Baidak and Alexey V. Lukoyanov
Int. J. Mol. Sci. 2023, 24(10), 8778; https://doi.org/10.3390/ijms24108778 - 15 May 2023
Cited by 10 | Viewed by 2935
Abstract
The electronic and band structures of the Gd- and Sb-based intermetallic materials have been explored using the theoretical ab initio approach, accounting for strong electron correlations of the Gd-4f electrons. Some of these compounds are being actively investigated because of topological features in [...] Read more.
The electronic and band structures of the Gd- and Sb-based intermetallic materials have been explored using the theoretical ab initio approach, accounting for strong electron correlations of the Gd-4f electrons. Some of these compounds are being actively investigated because of topological features in these quantum materials. Five compounds were investigated theoretically in this work to demonstrate the variety of electronic properties in the Gd-Sb-based family: GdSb, GdNiSb, Gd4Sb3, GdSbS2O, and GdSb2. The GdSb compound is a semimetal with the topological nonsymmetric electron pocket along the high-symmetry points Γ–X–W, and hole pockets along the L–Γ–X path. Our calculations show that the addition of nickel to the system results in the energy gap, and we obtained a semiconductor with indirect gap of 0.38 eV for the GdNiSb intermetallic compound. However, a quite different electronic structure has been found in the chemical composition Gd4Sb3; this compound is a half-metal with the energy gap of 0.67 eV only in the minority spin projection. The molecular GdSbS2O compound with S and O in it is found to be a semiconductor with a small indirect gap. The GdSb2 intermetallic compound is found to have a metallic state in the electronic structure; remarkably, the band structure of GdSb2 has a Dirac-cone-like feature near the Fermi energy between high-symmetry points Г and S, and these two Dirac cones are split by spin-orbit coupling. Thus, studying the electronic and band structure of several reported and new Gd-Sb compounds revealed a variety of the semimetallic, half-metallic, semiconducting, or metallic states, as well topological features in some of them. The latter can lead to outstanding transport and magnetic properties, such as a large magnetoresistance, which makes Gd-Sb-based materials very promising for applications. Full article
(This article belongs to the Special Issue Magnetism and Electronic Structure of Intermetallic Compounds)
Show Figures

Figure 1

Back to TopTop