Photonic Weyl Waveguide and Saddle-Chips-like Modes
Abstract
1. Introduction
2. Materials and Methods
2.1. Numerical Simulation
2.2. Fabrication of the Experimental Sample
2.3. Source and Probe
3. Results
3.1. Topological Waveguide Modes
3.2. Observation of Saddle-Chips-like Mode
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Li, D. Metallic Waveguides and Resonant Cavities. In Electromagnetic Theory for Microwaves and Optoelectronics; Zhang, K., Li, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 213–288. [Google Scholar]
- Collin, R.E.; Chang, H. Field Theory of Guided Waves; IEEE Press: Piscataway, NJ, USA, 1990. [Google Scholar]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef]
- Ozawa, T.; Price, H.M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M.C.; Schuster, D.; Simon, J.; Zilberberg, O.; et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006. [Google Scholar] [CrossRef]
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef]
- Yan, B.; Felser, C. Topological Materials: Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 2017, 8, 337–354. [Google Scholar] [CrossRef]
- Fang, C.; Lu, L.; Liu, J.; Fu, L. Topological semimetals with helicoid surface states. Nat. Phys. 2016, 12, 936–941. [Google Scholar] [CrossRef]
- Wang, H.-X.; Lin, Z.-K.; Jiang, B.; Guo, G.-Y.; Jiang, J.-H. Higher-Order Weyl Semimetals. Phys. Rev. Lett. 2020, 125, 146401. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, S.; Noh, J.; Cerjan, A.; Jörg, C.; von Freymann, G.; Rechtsman, M.C. Observation of a Charge-2 Photonic Weyl Point in the Infrared. Phys. Rev. Lett. 2020, 125, 253902. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bi, Y.; Peng, L.; Yang, B.; Ma, S.; Chan, H.-C.; Xiang, Y.; Zhang, S. Veselago lensing with Weyl metamaterials. Optica 2021, 8, 249–254. [Google Scholar] [CrossRef]
- Xie, B.; Liu, H.; Wang, H.; Cheng, H.; Tian, J.; Chen, S. A Review of Topological Semimetal Phases in Photonic Artificial Microstructures. Front. Phys. 2021, 9, 771481. [Google Scholar] [CrossRef]
- Li, R.; Lv, B.; Tao, H.; Shi, J.; Chong, Y.; Zhang, B.; Chen, H. Ideal type-II Weyl points in topological circuits. Natl. Sci. Rev. 2021, 8, nwaa192. [Google Scholar] [CrossRef]
- Lan, Z.; Chen, M.L.N.; Gao, F.; Zhang, S.; Sha, W.E.I. A brief review of topological photonics in one, two, and three dimensions. Rev. Phys. 2022, 9, 100076. [Google Scholar] [CrossRef]
- Cheng, H.; Gao, W.; Bi, Y.; Liu, W.; Li, Z.; Guo, Q.; Yang, Y.; You, O.; Feng, J.; Sun, H.; et al. Vortical Reflection and Spiraling Fermi Arcs with Weyl Metamaterials. Phys. Rev. Lett. 2020, 125, 093904. [Google Scholar] [CrossRef] [PubMed]
- Biao, Y.; Qinghua, G.; Tremain, B.; Rongjuan, L.; Barr, L.E.; Qinghui, Y.; Wenlong, G.; Hongchao, L.; Yuanjiang, X.; Jing, C.; et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science 2018, 359, 1013–1016. [Google Scholar]
- Breitkreiz, M.; Brouwer, P.W. Fermi-Arc Metals. Phys. Rev. Lett. 2023, 130, 196602. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Guo, Q.; Tremain, B.; Barr, L.E.; Gao, W.; Liu, H.; Béri, B.; Xiang, Y.; Fan, D.; Hibbins, A.P.; et al. Direct observation of topological surface-state arcs in photonic metamaterials. Nat. Commun. 2017, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Xu, S.-Y.; Hasan, M.Z. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater. 2016, 15, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Ilan, R.; Grushin, A.G.; Pikulin, D.I. Pseudo-electromagnetic fields in 3D topological semimetals. Nat. Rev. Phys. 2020, 2, 29–41. [Google Scholar] [CrossRef]
- Gao, W.; Yang, B.; Lawrence, M.; Fang, F.; Béri, B.; Zhang, S. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun. 2016, 7, 12435. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.Q.; Qian, T.; Ding, H. Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys. 2021, 93, 025002. [Google Scholar] [CrossRef]
- Giwa, R.; Hosur, P. Fermi Arc Criterion for Surface Majorana Modes in Superconducting Time-Reversal Symmetric Weyl Semimetals. Phys. Rev. Lett. 2021, 127, 187002. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.M.; Devescovi, C.; Nguyen, D.X.; Nguyen, H.S.; Bercioux, D. Fermi Arc Reconstruction in Synthetic Photonic Lattice. Phys. Rev. Lett. 2023, 131, 053602. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.; Koepernik, K.; van den Brink, J.; Ortix, C. Generic Coexistence of Fermi Arcs and Dirac Cones on the Surface of Time-Reversal Invariant Weyl Semimetals. Phys. Rev. Lett. 2017, 119, 076801. [Google Scholar] [CrossRef] [PubMed]
- Murthy, G.; Fertig, H.A.; Shimshoni, E. Surface states and arcless angles in twisted Weyl semimetals. Phys. Rev. Res. 2020, 2, 013367. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, W.; Xing, D.Y. Andreev reflection in Fermi-arc surface states of Weyl semimetals. Phys. Rev. B 2021, 104, 075420. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Lu, H.-Z.; Xie, X.C.; Xiu, F. Cycling Fermi arc electrons with Weyl orbits. Nat. Rev. Phys. 2021, 3, 660–670. [Google Scholar] [CrossRef]
- Yang, H.F.; Yang, L.X.; Liu, Z.K.; Sun, Y.; Chen, C.; Peng, H.; Schmidt, M.; Prabhakaran, D.; Bernevig, B.A.; Felser, C.; et al. Topological Lifshitz transitions and Fermi arc manipulation in Weyl semimetal NbAs. Nat. Commun. 2019, 10, 3478. [Google Scholar] [CrossRef] [PubMed]
- Ekahana, S.A.; Li, Y.W.; Sun, Y.; Namiki, H.; Yang, H.F.; Jiang, J.; Yang, L.X.; Shi, W.J.; Zhang, C.F.; Pei, D.; et al. Topological Lifshitz transition of the intersurface Fermi-arc loop in NbIrTe4. Phys. Rev. B 2020, 102, 085126. [Google Scholar] [CrossRef]
- Xia, L.; Gao, W.; Yang, B.; Guo, Q.; Liu, H.; Han, J.; Zhang, W.; Zhang, S. Stretchable Photonic ‘Fermi Arcs’ in Twisted Magnetized Plasma. Laser Photonics Rev. 2017, 12, 1700226. [Google Scholar] [CrossRef]
- Abdulla, F.; Rao, S.; Murthy, G. Fermi arc reconstruction at the interface of twisted Weyl semimetals. Phys. Rev. B 2021, 103, 235308. [Google Scholar] [CrossRef]
- Buccheri, F.; Egger, R.; De Martino, A. Transport, refraction, and interface arcs in junctions of Weyl semimetals. Phys. Rev. B 2022, 106, 045413. [Google Scholar] [CrossRef]
- Goutte, L.; Pereg-Barnea, T. Coupling between a Weyl semimetal and a nontopological metal. Phys. Rev. B 2023, 108, 035118. [Google Scholar] [CrossRef]
- Dwivedi, V. Fermi arc reconstruction at junctions between Weyl semimetals. Phys. Rev. B 2018, 97, 064201. [Google Scholar] [CrossRef]
- Slager, R.-J.; Juričić, V.; Roy, B. Dissolution of topological Fermi arcs in a dirty Weyl semimetal. Phys. Rev. B 2017, 96, 201401. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, R.; Gao, W.; Guo, Q.; Yang, B.; Hu, J.; Bi, Y.; Xiang, Y.; Liu, C.; Zhang, S. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science 2019, 363, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Chen, F.; Li, M.; Zhao, R.; Li, W.; Chen, Q.; Zhang, L.; Pan, Y.; Ma, J.; Yu, Z.-M.; et al. Boundary-induced topological chiral extended states in Weyl metamaterial waveguides. arXiv 2024, arXiv:2401.11780. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xu, W.; Zhu, Z.; Yang, B. Photonic Weyl Waveguide and Saddle-Chips-like Modes. Nanomaterials 2024, 14, 620. https://doi.org/10.3390/nano14070620
Wang H, Xu W, Zhu Z, Yang B. Photonic Weyl Waveguide and Saddle-Chips-like Modes. Nanomaterials. 2024; 14(7):620. https://doi.org/10.3390/nano14070620
Chicago/Turabian StyleWang, Hanyu, Wei Xu, Zhihong Zhu, and Biao Yang. 2024. "Photonic Weyl Waveguide and Saddle-Chips-like Modes" Nanomaterials 14, no. 7: 620. https://doi.org/10.3390/nano14070620
APA StyleWang, H., Xu, W., Zhu, Z., & Yang, B. (2024). Photonic Weyl Waveguide and Saddle-Chips-like Modes. Nanomaterials, 14(7), 620. https://doi.org/10.3390/nano14070620