Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = topographical evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2236 KB  
Article
Assessing the Land Use-Carbon Storage Nexus Along G318: A Coupled SD-PLUS-InVEST Model Approach for Spatiotemporal Coordination Optimization
by Xiaotian Xing, Qi Wang, Fei Meng, Pudong Liu, Li Huang and Wei Zhuo
Land 2025, 14(10), 2067; https://doi.org/10.3390/land14102067 - 16 Oct 2025
Abstract
Revealing the coordination relationship between land use/land cover (LULC) and carbon storage (CS) under diverse climate scenarios is crucial for climate change adaptation in topographically complex regions. This study developed an integrated framework combining the System Dynamics (SD) model, Patch-generating Land Use Simulation [...] Read more.
Revealing the coordination relationship between land use/land cover (LULC) and carbon storage (CS) under diverse climate scenarios is crucial for climate change adaptation in topographically complex regions. This study developed an integrated framework combining the System Dynamics (SD) model, Patch-generating Land Use Simulation (PLUS) model, and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, enabling a closed-loop analysis of driving forces, spatial simulation, and ecological feedback. This study systematically assessed LULC evolution and ecosystem CS along China’s National Highway 318 (G318) from 2000 to 2020, and projected LULC and CS under three SSP-RCP scenarios (SSP1-1.9, SSP2-4.5, SSP5-8.5) for 2030. Results show the following: (1) Historical LULC change was dominated by rapid urban expansion, cropland loss, and nonlinear grassland fluctuation, exerting strong impacts on ecosystem dynamics. Future scenario simulations revealed distinct thresholds of ecological pressure. (2) Regional CS exhibited a decline–recovery pattern during 2000–2020, with all 2030 scenarios projecting CS reduction, although ecological-priority pathways could mitigate losses. (3) Coordination between land-use intensity and CS improved gradually, with SSP2-4.5 emerging as the optimal strategy for balancing development and ecological sustainability. Overall, the coupled SD-PLUS-InVEST framework provides a practical tool for policymakers to optimize land use patterns and enhance CS in complex terrains. Full article
16 pages, 4175 KB  
Article
Interannual Variations in Headland-Bay Beach Profiles and Sediment Under Artificial Island Influence: A Case Study of Puqian Bay, Hainan Island, China
by Xuan Wang, Zhiqiang Li, Yan Sun, Xiaodong Bian and Daoheng Zhu
J. Mar. Sci. Eng. 2025, 13(10), 1930; https://doi.org/10.3390/jmse13101930 - 9 Oct 2025
Viewed by 130
Abstract
Beaches are important geomorphic units shaped by land–sea interactions. Changes in their profiles and surface sediments are directly influenced by both natural processes and human activities. This study is based on continuous topographic and sediment monitoring from 2021 to 2023 on the open [...] Read more.
Beaches are important geomorphic units shaped by land–sea interactions. Changes in their profiles and surface sediments are directly influenced by both natural processes and human activities. This study is based on continuous topographic and sediment monitoring from 2021 to 2023 on the open and sheltered beaches of Puqian Bay, Hainan Island. It investigates the interannual profile evolution and the spatiotemporal response of sediment grain size under the influence of an artificial island. The results show that the Guilinyang Beach profile is mainly characterized by seasonal erosion–accretion cycles and the seaward migration of sandbars, while the Hilton Beach profile has undergone long-term erosion. At Hilton, sediment grain size changes are strongly coupled with profile erosion and accretion. Seasonal waves drive spatial differences in both profile and grain-size variation across Puqian Bay. The artificial island has reshaped local alongshore sediment transport and wave energy distribution. This has led to continuous erosion and coarsening in the open sector, while the sheltered sector remains morphologically stable. These findings reveal the spatiotemporal response patterns of headland-bay beaches under both natural and anthropogenic forcing, and provide scientific evidence for understanding coastal sediment dynamics and the impacts of artificial structures. Full article
Show Figures

Figure 1

27 pages, 10093 KB  
Article
Estimating Gully Erosion Induced by Heavy Rainfall Events Using Stereoscopic Imagery and UAV LiDAR
by Lu Wang, Yuan Qi, Wenwei Xie, Rui Yang, Xijun Wang, Shengming Zhou, Yanqing Dong and Xihong Lian
Remote Sens. 2025, 17(19), 3363; https://doi.org/10.3390/rs17193363 - 4 Oct 2025
Viewed by 390
Abstract
Gully erosion, driven by the interplay of natural processes and human activities, results in severe soil degradation and landscape alteration, yet approaches for accurately quantifying erosion triggered by extreme precipitation using multi-source high-resolution remote sensing remain limited. This study first extracted digital surface [...] Read more.
Gully erosion, driven by the interplay of natural processes and human activities, results in severe soil degradation and landscape alteration, yet approaches for accurately quantifying erosion triggered by extreme precipitation using multi-source high-resolution remote sensing remain limited. This study first extracted digital surface models (DSM) for the years 2014 and 2024 using Ziyuan-3 and GaoFen-7 satellite stereo imagery, respectively. Subsequently, the DSM was calibrated using high-resolution unmanned aerial vehicle photogrammetry data to enhance elevation accuracy. Based on the corrected DSMs, gully erosion depths from 2014 to 2024 were quantified. Erosion patches were identified through a deep learning framework applied to GaoFen-1 and GaoFen-2 imagery. The analysis further explored the influences of natural processes and anthropogenic activities on elevation changes within the gully erosion watershed. Topographic monitoring in the Sandu River watershed revealed a net elevation loss of 2.6 m over 2014–2024, with erosion depths up to 8 m in some sub-watersheds. Elevation changes are primarily driven by extreme precipitation-induced erosion alongside human activities, resulting in substantial spatial variability in surface lowering across the watershed. This approach provides a refined assessment of the spatial and temporal evolution of gully erosion, offering valuable insights for soil conservation and sustainable land management strategies in the Loess Plateau region. Full article
Show Figures

Figure 1

23 pages, 7845 KB  
Article
Projected Runoff Changes and Their Effects on Water Levels in the Lake Qinghai Basin Under Climate Change Scenarios
by Pengfei Hou, Jun Du, Shike Qiu, Jingxu Wang, Chao Wang, Zheng Wang, Xiang Jia and Hucai Zhang
Hydrology 2025, 12(10), 259; https://doi.org/10.3390/hydrology12100259 - 2 Oct 2025
Viewed by 348
Abstract
Lake Qinghai, the largest closed-basin lake on the Qinghai–Tibet Plateau, plays a crucial role in maintaining regional ecological stability through its hydrological functions. In recent decades, the lake has exhibited a continuous rise in water level and lake area expansion, sparking growing interest [...] Read more.
Lake Qinghai, the largest closed-basin lake on the Qinghai–Tibet Plateau, plays a crucial role in maintaining regional ecological stability through its hydrological functions. In recent decades, the lake has exhibited a continuous rise in water level and lake area expansion, sparking growing interest in the mechanisms driving these changes and their future evolution. This study integrates the Soil and Water Assessment Tool (SWAT), simulations under future Shared Socioeconomic Pathways (SSPs) and statistical analysis methods, to assess runoff dynamics and lake level responses in the Lake Qinghai Basin over the next 30 years. The model was developed using a combination of meteorological, hydrological, topographic, land use, soil, and socio-economic datasets, and was calibrated with the sequential uncertainty fitting Ver-2 (SUFI-2) algorithm within the SWAT calibration and uncertainty procedure (SWAT–CUP) platform. Sensitivity and uncertainty analyses confirmed robust model performance, with monthly R2 values of 0.78 and 0.79. Correlation analysis revealed that runoff variability is more closely associated with precipitation than temperature in the basin. Under SSP 1-2.6, SSP 3-7.0, and SSP 5-8.5 scenarios, projected annual precipitation increases by 14.4%, 18.9%, and 11.1%, respectively, accompanied by temperature rises varying with emissions scenario. Model simulations indicate a significant increase in runoff in the Buha River Basin, peaking around 2047. These findings provide scientific insight into the hydrological response of plateau lakes to future climate change and offer a valuable reference for regional water resource management and ecological conservation strategies. Full article
(This article belongs to the Special Issue Runoff Modelling under Climate Change)
Show Figures

Figure 1

24 pages, 11789 KB  
Article
Mechanical Performance Degradation and Microstructural Evolution of Grout-Reinforced Fractured Diorite Under High Temperature and Acidic Corrosion Coupling
by Yuxue Cui, Henggen Zhang, Tao Liu, Zhongnian Yang, Yingying Zhang and Xianzhang Ling
Buildings 2025, 15(19), 3547; https://doi.org/10.3390/buildings15193547 - 2 Oct 2025
Viewed by 290
Abstract
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and [...] Read more.
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and their mechanical degradation and microstructural evolution mechanisms were investigated under coupled high-temperature (25–1000 °C) and acidic corrosion (pH = 2) conditions. Multi-scale characterization techniques, including uniaxial compression strength (UCS) tests, X-ray computed tomography (CT), scanning electron microscopy (SEM), three-dimensional (3D) topographic scanning, and X-ray diffraction (XRD), were employed systematically. The results indicated that the synergistic thermo-acid interaction accelerated mineral dissolution and induced structural reorganization, resulting in surface whitening of specimens and decomposition of HSFAA hydration products. Increasing the prefabricated fracture angles (0–60°) amplified stress concentration at the grout–rock interface, resulting in a reduction of up to 69.46% in the peak strength of the specimens subjected to acid corrosion at 1000 °C. Acidic corrosion suppressed brittle disintegration observed in the uncorroded specimens at lower temperature (25–600 °C) by promoting energy dissipation through non-uniform notch formation, thereby shifting the failure modes from shear-dominated to tensile-shear hybrid modes. Quantitative CT analysis revealed a 34.64% reduction in crack volume (Vca) for 1000 °C acid-corroded specimens compared to the control specimens at 25 °C. This reduction was attributed to high-temperature-induced ductility, which transformed macroscale crack propagation into microscale coalescence. These findings provide critical insights for assessing the durability of grouting reinforcement in post-fire tunnel rehabilitation and predicting the long-term stability of underground structures in chemically aggressive environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 4750 KB  
Article
Dynamics and Drivers of Ecosystem Service Values in the Qionglai–Daxiangling Region of China’s Giant Panda National Park (1990–2020)
by Yang Chen, Ruizhi Zhang, Laleh Dehghanifarsani and Majid Amani-Beni
Systems 2025, 13(9), 807; https://doi.org/10.3390/systems13090807 - 15 Sep 2025
Viewed by 440
Abstract
Understanding the spatiotemporal dynamics and driving forces of ecosystem service values (ESVs) is essential for managing complex socioecological systems, particularly in biodiversity-rich mountainous protected areas. This study investigates the evolution and interactions of ESVs in the Qionglai–Daxiangling region (QDR) of China’s Giant Panda [...] Read more.
Understanding the spatiotemporal dynamics and driving forces of ecosystem service values (ESVs) is essential for managing complex socioecological systems, particularly in biodiversity-rich mountainous protected areas. This study investigates the evolution and interactions of ESVs in the Qionglai–Daxiangling region (QDR) of China’s Giant Panda National Park (GPNP) from 1990 to 2020. Based on a revised equivalent factor method, we quantified ESV changes and analyzed trade-offs and synergies among provisioning, regulating, supporting, and cultural services. A Random Forest (RF) model integrated with SHapley Additive exPlanations (SHAP) was employed to assess the relative importance and interpretability of climatic, topographic, and socioeconomic drivers. The results show that elevation, wind speed, and sunshine duration are the most influential variables affecting ESVs. Notably, synergistic relationships among ecosystem services have increased over the past three decades, reflecting the impacts of national ecological restoration initiatives such as the Returning Farmland to Forest Program (RFFP). The SHAP-based analysis further revealed the complex, nonlinear contributions of both environmental and anthropogenic factors. This study provides an interpretable modeling framework for diagnosing ESV dynamics in protected mountainous landscapes. The findings offer practical insights for adaptive management and evidence-based policymaking in national parks under changing environmental and socioeconomic conditions. To better capture the anthropogenic influences on ecosystem functionality in mountainous regions, future studies should incorporate fine-scale land use data and broaden the socioeconomic indicator set to include variables such as ecological compensation and conservation enforcement levels. Full article
(This article belongs to the Special Issue Applying Systems Thinking to Enhance Ecosystem Services)
Show Figures

Figure 1

13 pages, 556 KB  
Article
Fractal Complexity and Symmetry in Lava Flow Emplacement
by Antonio F. Miguel
Symmetry 2025, 17(9), 1502; https://doi.org/10.3390/sym17091502 - 10 Sep 2025
Viewed by 299
Abstract
This study presents a cohesive physical model that predicts lava flow morphology by establishing a quantitative link between a lava’s yield strength and its geometric complexity, measured by a prefractal dimension. The model is founded on the principle of symmetry, where the potential [...] Read more.
This study presents a cohesive physical model that predicts lava flow morphology by establishing a quantitative link between a lava’s yield strength and its geometric complexity, measured by a prefractal dimension. The model is founded on the principle of symmetry, where the potential for fracturing and complexity peaks at an intermediate yield strength. This peak in complexity, observed with a predicted prefractal dimension (Dpf) of 1.15 for terrestrial ‘a’ā-like lava, arises from a critical state where a balance between gravitational driving forces and internal resistance allows for the formation of intricate margins. The model demonstrates that as lavas deviate from this optimal strength, becoming either too fluid (pāhoehoe, Dpf = 1.05) or too rigid (rhyolite, Dpf = 1.07), their morphology becomes progressively simpler, representing a symmetrical decline in complexity. Our approach also incorporates the overriding influence of topographic confinement and the temporal evolution of complexity as the lava cools. Validated against terrestrial lavas and successfully applied to lower-gravity environments, the model predicts a reduction in complexity for similar flows on Mars (Dpf = 1.13) and the Moon (Dpf = 1.09), providing a tool for interpreting volcanic processes grounded in the fundamental principles of symmetry and complexity. Full article
(This article belongs to the Special Issue Mathematics: Feature Papers 2025)
Show Figures

Figure 1

27 pages, 15887 KB  
Article
Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications
by Yang Chen, Majid Amani-Beni and Laleh Dehghanifarsani
Land 2025, 14(9), 1787; https://doi.org/10.3390/land14091787 - 2 Sep 2025
Viewed by 451
Abstract
Rapid urbanization within ecologically fragile mountainous regions exacerbates tensions between development needs and land use sustainability, yet few studies have systematically quantified long-term land use/land cover (LULC) dynamics in large-scale mountainous urban agglomerations. Focusing on the Chengdu–Chongqing Urban Agglomeration (CCUA) in Southwest China—an [...] Read more.
Rapid urbanization within ecologically fragile mountainous regions exacerbates tensions between development needs and land use sustainability, yet few studies have systematically quantified long-term land use/land cover (LULC) dynamics in large-scale mountainous urban agglomerations. Focusing on the Chengdu–Chongqing Urban Agglomeration (CCUA) in Southwest China—an archetypal mountainous megaregion undergoing accelerated development—this study analyzed LULC evolution from 1985 to 2019 using multi-period data, identified dominant driving factors through logistic regression, and projected future LULC patterns under various scenarios via the Future Land Use Simulation (FLUS) model. The outcomes indicate that (1) over the past decades, construction land expanded by over 4000 km2, an increase of about 318%, while cultivated land decreased by nearly 8600 km2, a reduction of 6.86%; (2) the dominant transformation type was the conversion of cultivated land to forest, followed by its conversion to construction land; (3) elevation, slope, and average annual temperature emerged as significant predictors of LULC change, highlighting the critical influence of topographical and climatic conditions; and (4) natural development scenarios (NDS) and ecology and cultivated protection scenarios (ECPS) represent suitable development pathways. These findings contribute to evidence-based spatial governance and provide policy guidance for ecological protection in the CCUA and other similarly vulnerable areas. Full article
Show Figures

Figure 1

47 pages, 13862 KB  
Review
Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Qingqing Dai, Huanhuan Lu, Ya Li and Youyan Huang
Appl. Sci. 2025, 15(17), 9641; https://doi.org/10.3390/app15179641 - 2 Sep 2025
Viewed by 671
Abstract
Land use/land cover (LULC) data serve as a critical information source for understanding the complex interactions between human activities and global environmental change. The subtropical karst region, characterized by fragmented terrain, spectral confusion, topographic shadowing, and frequent cloud cover, represents one of the [...] Read more.
Land use/land cover (LULC) data serve as a critical information source for understanding the complex interactions between human activities and global environmental change. The subtropical karst region, characterized by fragmented terrain, spectral confusion, topographic shadowing, and frequent cloud cover, represents one of the most challenging natural scenes for remote sensing classification. This study reviews the evolution of multi-source data acquisition (optical, SAR, LiDAR, UAV) and preprocessing strategies tailored for subtropical regions. It evaluates the applicability and limitations of various methodological frameworks, ranging from traditional approaches and GEOBIA to machine learning and deep learning. The importance of uncertainty modeling and robust accuracy assessment systems is emphasized. The study identifies four major bottlenecks: scarcity of high-quality samples, lack of scale awareness, poor model generalization, and insufficient integration of geoscientific knowledge. It suggests that future breakthroughs lie in developing remote sensing intelligent models that are driven by few samples, integrate multi-modal data, and possess strong geoscientific interpretability. The findings provide a theoretical reference for LULC information extraction and ecological monitoring in heterogeneous geomorphic regions. Full article
Show Figures

Figure 1

14 pages, 13739 KB  
Article
Reconstruction of the Cretaceous Palaeogeographic Position of Hainan Island and Its Tectonic Significance
by Mingming Wang, Yang Zhou, Yongjian Yao, Weijie Zhang, Huaiyang Zhou and Qingsong Liu
J. Mar. Sci. Eng. 2025, 13(9), 1681; https://doi.org/10.3390/jmse13091681 - 1 Sep 2025
Viewed by 622
Abstract
Reconstruction of the palaeogeographical location of Hainan Island is important for understanding the interaction between Indochina and South China. In this study, we integrate topographic relief, gravity anomalies, and magnetic anomalies, along with geological constraints, to determine the Cretaceous location of Hainan Island. [...] Read more.
Reconstruction of the palaeogeographical location of Hainan Island is important for understanding the interaction between Indochina and South China. In this study, we integrate topographic relief, gravity anomalies, and magnetic anomalies, along with geological constraints, to determine the Cretaceous location of Hainan Island. The results show that Hainan Island was connected with South China in the Cretaceous and located in the Beibu Gulf Basin, and then rifted from South China with about 230 km displacement along the southeast direction during the Cenozoic. Further geological evidence suggests that Hainan Island and South China have co-evolved since at least the Permian. Hainan Island was rifted from South China from the Palaeocene to the Oligocene due to escape tectonics caused by the India–Asia collision. These new findings provide important clues for investigating the impact of the India–Asia collision and the continental margin evolution of South China. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

32 pages, 4487 KB  
Article
Urban Pluvial Flood Resilience Evolution and Dynamic Assessment Based on the DPSIR Model: A Case Study of Kunming City, Southwest China
by Meimei Yuan, Wanfu Li, Tao Li and Jun Zhang
Water 2025, 17(17), 2581; https://doi.org/10.3390/w17172581 - 1 Sep 2025
Viewed by 1145
Abstract
The increasing frequency of extreme weather events and rapid urbanization has exacerbated pluvial flood risks, underscoring the urgent need to strengthen the assessment of pluvial flood resilience in China’s southwestern mountainous regions. Kunming—a plateau basin city—was selected as a case study, and an [...] Read more.
The increasing frequency of extreme weather events and rapid urbanization has exacerbated pluvial flood risks, underscoring the urgent need to strengthen the assessment of pluvial flood resilience in China’s southwestern mountainous regions. Kunming—a plateau basin city—was selected as a case study, and an urban pluvial flood resilience assessment system was developed based on the DPSIR model. The analytic hierarchy process (AHP), entropy method, and game theory-informed combination weighting were applied to determine indicator weights, while the extension cloud model was utilized to quantitatively assess resilience evolution from 2013 to 2022. The results reveal that: (1) Kunming’s pluvial flood resilience experienced a clear three-stage evolution—initial construction (Level II), resilience enhancement (Level III), and resilience reinforcement (Level IV)—reflecting a transition from rudimentary resilience to advanced adaptive capacity; (2) the ranking of primary indicator weights is as follows: Driving Forces > Pressure > State > Response > Impact, with Flood Disaster Risk (P6), Flood Disaster Early Warning Capability (R1), and Topographic and Geomorphological Characteristics (P7) identified as key influencing factors; (3) marked disparities exist across the five dimensions: the Driving Forces dimension demonstrates increasing economic support; the Pressure dimension reflects structural vulnerabilities and climate variability; the State and Impact dimensions advance incrementally through policy implementation; and the Response dimension has substantially improved due to smart city technologies, although persistent gaps in inter-agency emergency coordination remain. This research offers a scientific basis for enhancing pluvial flood resilience in southwestern mountainous cities. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

24 pages, 5058 KB  
Article
Southern Carpathian Periglaciation in Transition: The Role of Ground Thermal Regimes in a Warming Climate
by Florina Ardelean, Oana Berzescu, Patrick Chiroiu, Adrian Ardelean, Romolus Mălăieștean and Alexandru Onaca
Land 2025, 14(9), 1756; https://doi.org/10.3390/land14091756 - 29 Aug 2025
Viewed by 600
Abstract
This study examines ground surface and air temperatures and their implications for periglacial activity in the Țarcu Massif, Southern Carpathians, where data on current dynamics and climate responses remain scarce despite widespread periglacial landforms. To address this, we deployed seven temperature loggers between [...] Read more.
This study examines ground surface and air temperatures and their implications for periglacial activity in the Țarcu Massif, Southern Carpathians, where data on current dynamics and climate responses remain scarce despite widespread periglacial landforms. To address this, we deployed seven temperature loggers between 2018 and 2024 across a range of periglacial landforms, including non-sorted patterned ground, a periglacial hummock, protalus rampart, block stream, periglacial tor, ploughing boulder, and nival niche. We analyzed key thermal indicators such as freeze–thaw cycles, freezing and thawing degree days, frost weathering intervals, frost days, and winter equilibrium temperatures—in relation to long-term air temperature records (1961–2023), snow cover dynamics, and local topographic and substrate conditions. Results reveal a marked warming trend at the Țarcu meteorological station, particularly after 1995, along with a shift in net thermal balance beginning in the late 1990s. Since then, climatic conditions at this site have no longer been favorable for the persistence of sporadic permafrost. Ground thermal conditions varied spatially, with coarse debris sites and rock wall maintaining the lowest MAGST values—typically with 1 to 2.5 °C cooler than fine-grained sediments—and the highest potential for frost-related weathering. Despite low and variable freeze–thaw cycle frequency, the high number of frost days (around 200 per year) and sustained frost weathering potential—exceeding 50 days annually at key sites—indicate that periglacial conditions remain active for nearly half the year around 2000 m in the Southern Carpathians. Snow cover dynamics proved to be a major control on ground thermal behavior, with earlier melting and delayed onset shortening its duration but amplifying early winter cooling. These findings indicate that the Țarcu Massif is a transitional periglacial environment, where active and relict features coexist under growing climatic pressure. The ongoing decline in frost-driven processes highlights the vulnerability of mid-latitude mountain periglacial systems to climate warming and underscores the need for continued monitoring to better understand future landscape evolution in the Southern Carpathians. Full article
(This article belongs to the Special Issue Integrating Climate, Land, and Water Systems)
Show Figures

Figure 1

16 pages, 12855 KB  
Article
The Influence of Seafloor Gradient on Turbidity Current Flow Dynamics and Depositional Response: A Case Study from the Lower Gas-Bearing Interval of Huangliu Formation II, Yinggehai Basin
by Yong Xu, Lei Li, Guohua Zhang, Wei Zhou, Zhongpo Zhang, Jiaying Wei and Xing Zhao
J. Mar. Sci. Eng. 2025, 13(9), 1616; https://doi.org/10.3390/jmse13091616 - 24 Aug 2025
Viewed by 575
Abstract
The Huangliu Formation, Section I, Gas Group II, at the eastern X gas field of the Yinggehai Basin, hosts thick, irregularly deposited sandstone bodies. The genesis of these sedimentary sand bodies has remained unclear. Utilizing drilling logs, core samples, and 3D seismic data [...] Read more.
The Huangliu Formation, Section I, Gas Group II, at the eastern X gas field of the Yinggehai Basin, hosts thick, irregularly deposited sandstone bodies. The genesis of these sedimentary sand bodies has remained unclear. Utilizing drilling logs, core samples, and 3D seismic data from this field, this study integrates seismic geomorphology analysis, paleo-hydrodynamic reconstruction, and sedimentary numerical simulation to investigate the spatiotemporal evolution of the depositional system under micro-paleotopographic conditions during Gas Zone II sedimentation. Key conclusions include the development of seven morphologically diverse isolated sand bodies in the Lower II Gas Zone, covering areas of 1.4–13.4 km2 with thicknesses ranging from 8.0 to 42.0 m. These sand bodies consist predominantly of massive fine-grained sandstone, characterized by box-shaped gamma-ray (GR) log responses and U- or V-shaped seismic reflection configurations. Reconstruction of paleo-turbidity current hydrodynamics for the Lower II depositional period was achieved through analysis of topographic slope gradients and the dimensional constraints (width/depth) of confined channels. Critically, slope gradients within the intraslope basin prompted a transition from supercritical to subcritical flow states within turbidity currents. This hydraulic transformation drove alternating erosion and deposition along the seafloor topography, ultimately generating the observed irregular, isolated turbidite sand bodies. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

25 pages, 3282 KB  
Review
Linear-Mode Gain HgCdTe Avalanche Photodiodes for Weak-Target Spaceborne Photonic System
by Hui Yu, Zhichao Zhang, Ming Liu, Weirong Xing, Qing Wu, Yi Zhang, Weiting Zhang, Jialin Xu and Qiguang Tan
Photonics 2025, 12(8), 829; https://doi.org/10.3390/photonics12080829 - 20 Aug 2025
Viewed by 1880
Abstract
Spectroscopic observations of Earth-like exoplanets and ultra-faint galaxies–top scientific priorities for the coming decades–involve measuring broadband signals at rates of only a few photons per square meter per hour. This imposes exceptional requirements on the detector performance, necessitating dark currents below 1 e [...] Read more.
Spectroscopic observations of Earth-like exoplanets and ultra-faint galaxies–top scientific priorities for the coming decades–involve measuring broadband signals at rates of only a few photons per square meter per hour. This imposes exceptional requirements on the detector performance, necessitating dark currents below 1 e/pixel/kilo second, read noise under 1 e/pixel/frame, and the ability to handle large-format arrays–capabilities that are not yet met by most existing infrared detectors. In addition, spaceborne LiDAR systems require photodetectors with exceptional sensitivity, compact size, low power consumption, and multi-channel capability to facilitate long-range range finding, topographic mapping, and active spectroscopy without increasing the instrument burden. MCT Avalanche photodiodes arrays offer high internal gain, pixelation, and photon-counting performance across SW to MW wavelengths needed for multi-beam and multi-wavelength measurements, marking them as a critical enabling technology for next-generation planetary and Earth science LiDAR missions. This work reports the latest progress in developing Hg1−xCdxTe linear-mode e-APDs at premier industrial research institutions, including relevant experimental data, simulations and major project planning. Related studies are summarized to demonstrate the practical and iterative approach for device fabrication, which have a transformative impact on the evolution of this discipline. Full article
(This article belongs to the Special Issue Emerging Trends in Photodetector Technologies)
Show Figures

Figure 1

24 pages, 14790 KB  
Article
Morphodynamics, Genesis, and Anthropogenically Modulated Evolution of the Elfeija Continental Dune Field, Arid Southeastern Morocco
by Rachid Amiha, Belkacem Kabbachi, Mohamed Ait Haddou, Adolfo Quesada-Román, Youssef Bouchriti and Mohamed Abioui
Earth 2025, 6(3), 100; https://doi.org/10.3390/earth6030100 - 19 Aug 2025
Cited by 1 | Viewed by 595
Abstract
The Elfeija Dune Field (EDF) is a continental aeolian system in an arid region of southeastern Morocco. Studying this system is critical for understanding the effects of mounting climatic and anthropogenic pressures. This study provides a comprehensive characterization of the EDF’s morphology, sedimentology, [...] Read more.
The Elfeija Dune Field (EDF) is a continental aeolian system in an arid region of southeastern Morocco. Studying this system is critical for understanding the effects of mounting climatic and anthropogenic pressures. This study provides a comprehensive characterization of the EDF’s morphology, sedimentology, aeolian dynamics, genesis, and recent evolution. A multi-scale, multidisciplinary approach was adopted, integrating field observations, sedimentological analyses, MERRA-2 reanalysis wind data, cartographic analysis, digital terrain modeling, and morphometric measurements. The results reveal an active 30 km2 dune field, elongated WSW-ENE, which is divisible into three morphodynamic zones with a high dune density (80–90 dunes/km2). The wind regime is predominantly from the W to WSW, driving a net ENE sand transport and creating conditions conducive to barchan formation (RDP/DP > 0.78). Sediments are quartz dominated, with significant calcite and various clay minerals (illite, kaolinite, and smectite). Dune sands are primarily fine- to medium-grained and well sorted, in contrast to the more poorly sorted interdune deposits. The landscape is dominated by barchans (mean height H = 2.5 m; mean length L = 50 m) and their coalescent forms, indicating sustained aeolian activity. The potential sand flux was estimated at 1.7 kg/m/s, with a dune collision probability of 32%. The field’s genesis is hypothesized to be controlled by a topographically induced Venturi effect, with an initiation approximately 1000 years ago, potentially linked to the Medieval Climatic Optimum. Significant anthropogenic impacts from expanding irrigated agriculture are observed at the dune field margins. By providing a detailed characterization of the EDF and its sensitivity to natural and anthropogenic forcings, this study establishes a critical baseline for the sustainable management of arid environments. Full article
Show Figures

Figure 1

Back to TopTop