Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = top-hat laser beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1950 KiB  
Article
PIC Simulation of Enhanced Electron Acceleration in a Double Nozzle Gas Target Using Spatial–Temporal Coupling with Axiparabola Optics
by Valdas Girdauskas, Vidmantas Tomkus, Mehdi Abedi-Varaki and Gediminas Račiukaitis
Appl. Sci. 2024, 14(22), 10611; https://doi.org/10.3390/app142210611 - 18 Nov 2024
Cited by 1 | Viewed by 923
Abstract
In this paper, the results of a Particle-in-Cell (PIC) simulation of electrons accelerated using a 10 fs Top-hat (TH) beam with a limited pulse energy of 85 mJ, focused on a double nozzle gas target using an off-axis parabola (OAP), an axiparabola (AXP), [...] Read more.
In this paper, the results of a Particle-in-Cell (PIC) simulation of electrons accelerated using a 10 fs Top-hat (TH) beam with a limited pulse energy of 85 mJ, focused on a double nozzle gas target using an off-axis parabola (OAP), an axiparabola (AXP), and an axiparabola with additional spatial–temporal coupling (AXP+STC), are discussed. The energy of accelerated electrons was predominantly determined through self-focusing and the ionisation injection effects of the laser beam propagating in plasma. The maximal energy of electrons accelerated using an AXP+STC could be higher by 12% compared to the energy of electrons accelerated by the regular OAP. Full article
(This article belongs to the Special Issue Advances of Laser Technologies and Their Applications)
Show Figures

Figure 1

17 pages, 8561 KiB  
Article
Effects of Beam Mode on Hole Properties in Laser Processing
by Tingzhong Zhang, Hui Li, Chengguang Zhang and Aili Zhang
Coatings 2024, 14(5), 594; https://doi.org/10.3390/coatings14050594 - 9 May 2024
Cited by 4 | Viewed by 1951
Abstract
The laser beam mode affects the power density distribution on the irradiated target, directly influencing the product quality in laser processing, especially the hole quality in laser drilling. The Gaussian beam shape, Mexican-Hat beam shape, Double-Hump beam shape, and Top-Hat beam shape are [...] Read more.
The laser beam mode affects the power density distribution on the irradiated target, directly influencing the product quality in laser processing, especially the hole quality in laser drilling. The Gaussian beam shape, Mexican-Hat beam shape, Double-Hump beam shape, and Top-Hat beam shape are four typical laser beam modes used as a laser heat source and introduced into our proficient laser-drilling model, which involves complex physical phenomena such as heat and mass transfer, solid/liquid/gas phase changes, and two-phase flow. Simulations were conducted on an aluminum target, and the accuracy was verified using experimental data. The results of the simulations for the fundamental understanding of this laser–material interaction are presented in this paper; in particular, the hole shape, including the depth–diameter ratio and the angle of the cone, as well as spatter phenomena and, thus, the formed recast layer, are compared and analyzed in detail in this paper. This study can provide a reference for the optimization of the laser-drilling process, especially the selection of laser beam mode. Full article
(This article belongs to the Special Issue Recent Development in Post-processing for Additive Manufacturing)
Show Figures

Figure 1

12 pages, 4367 KiB  
Article
Improvement of Laser-Induced Damage on High-Efficiency Solar Cells via Top-Hat Beam Ablation
by Feng Qian, Honglie Shen, Guoping Huang, Biao Liu and Juan Hong
Energies 2024, 17(4), 858; https://doi.org/10.3390/en17040858 - 12 Feb 2024
Cited by 1 | Viewed by 1620
Abstract
An important challenge in industrial laser ablation is laser-induced damage. In this study, reduced damage was achieved through the transition of the laser distribution from a Gaussian beam to a top-hat beam using diffractive optical elements (DOE), which overcome inhomogeneous irradiation. The higher [...] Read more.
An important challenge in industrial laser ablation is laser-induced damage. In this study, reduced damage was achieved through the transition of the laser distribution from a Gaussian beam to a top-hat beam using diffractive optical elements (DOE), which overcome inhomogeneous irradiation. The higher peak fluence of a Gaussian beam far exceeded the ablation threshold and led to severely melted silicon at a higher depth covering the polished texture. The top-hat beam, with uniform irradiation, had a superior ablation characteristic and created a uniform square opening with the shallow melted silicon in the lift-off process. Thus, its effective minor carrier lifetime was 15.35% less at an ablated area fraction of 2% after re-passivation because of the decreased damage. After optimizing the ablation pattern with a top-hat beam, the local contacts improved the average open-circuit voltage (Voc) and short-circuit current (Isc) values of the cells due to the decreased damage and the uniform openings, but the damage induced by a Gaussian beam was too deep and can be partly restored under back surface field (BSF) formation. The overall increment in Isc and Voc enhanced the average efficiency by 0.05% of the absolute value for the PERC cells and 0.03% of the absolute value for bi-facial PERC cells. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

13 pages, 2566 KiB  
Article
Unveiling the Role of the Beam Shape in Photothermal Beam Deflection Measurements: A 1D and 2D Complex Geometrical Optics Model Approach
by Mohanachandran Nair Sindhu Swapna, Dorota Korte and Sankaranarayana Iyer Sankararaman
Photonics 2022, 9(12), 991; https://doi.org/10.3390/photonics9120991 - 16 Dec 2022
Cited by 4 | Viewed by 2085
Abstract
The preponderance of laser beam shapes cannot be ruled out during the implementation of an optical experiment nor during the formulation of its theoretical background. The present work elucidates the role of Gaussian and top-hat beam shapes in generating and analysing the photothermal [...] Read more.
The preponderance of laser beam shapes cannot be ruled out during the implementation of an optical experiment nor during the formulation of its theoretical background. The present work elucidates the role of Gaussian and top-hat beam shapes in generating and analysing the photothermal beam deflection (PBD) signals. The complex geometrical optics models encompassing the perturbations in the phase and amplitude of the probe beam with one-dimensional (1D) and two-dimensional (2D) approaches is employed to curve fit the PBD signal and are compared. From the fitted curve, the thermal diffusivity and conductivity of the sample are calculated with the 1D and 2D models. A uniform intensity distribution over the sample, like a top-hat beam, is achieved using an optical lens system and verified using a beam profiler. When the phase and amplitude of the PBD signal are fitted at different positions of the lens, i.e., in focussed and defocussed conditions, it is observed that difference in the measured thermal characteristics is about 30% for the Gaussian pump beam profile, whereas it is only <4% for top-hat beam. Even though the fitting accuracy and sum of residues estimated for the 2D model are better than 1D, the ease of computation with the 1D model employing top-hat excitation suggests the application of the top-hat profile in photothermal experiments. Full article
(This article belongs to the Special Issue Adaptive Optics and Its Applications)
Show Figures

Figure 1

20 pages, 5510 KiB  
Article
More than Ninety Percent of the Light Energy Emitted by Near-Infrared Laser Therapy Devices Used to Treat Musculoskeletal Disorders Is Absorbed within the First Ten Millimeters of Biological Tissue
by Leon Kaub and Christoph Schmitz
Biomedicines 2022, 10(12), 3204; https://doi.org/10.3390/biomedicines10123204 - 9 Dec 2022
Cited by 13 | Viewed by 3929
Abstract
There is increasing interest in the application of near-infrared (NIR) laser light for the treatment of various musculoskeletal disorders. The present study thoroughly examined the physical characteristics of laser beams from two different laser therapy devices that are commercially available for the treatment [...] Read more.
There is increasing interest in the application of near-infrared (NIR) laser light for the treatment of various musculoskeletal disorders. The present study thoroughly examined the physical characteristics of laser beams from two different laser therapy devices that are commercially available for the treatment of musculoskeletal disorders. Then, these laser beams were used to measure the penetration depth in various biological tissues from different animal species. The key result of the present study was the finding that for all investigated tissues, most of the initial light energy was lost in the first one to two millimeters, more than 90% of the light energy was absorbed within the first ten millimeters, and there was hardly any light energy left after 15–20 mm of tissue. Furthermore, the investigated laser therapy devices fundamentally differed in several laser beam parameters that can have an influence on how light is transmitted through tissue. Overall, the present study showed that a laser therapy device that is supposed to reach deep layers of tissue for treatments of musculoskeletal disorders should operate with a wavelength between 800 nm and 905 nm, a top-hat beam profile, and it should emit very short pulses with a large peak power. Full article
(This article belongs to the Special Issue Pathogenesis and Novel Therapeutics in Musculoskeletal Conditions)
Show Figures

Figure 1

9 pages, 5469 KiB  
Article
AlSi10Mg in Powder Bed Fusion with Laser Beam: An Old and Boring Material?
by Michael Rasch, Dominic Bartels, Shoujin Sun and Michael Schmidt
Materials 2022, 15(16), 5651; https://doi.org/10.3390/ma15165651 - 17 Aug 2022
Cited by 6 | Viewed by 2351
Abstract
Powder bed fusion with laser beam of metals (PBF-LB/M) is a widely used technology to produce parts with a high freedom in design paired with excellent mechanical properties. The casting alloy AlSi10Mg features a wide process window and a microstructure with excellent mechanical [...] Read more.
Powder bed fusion with laser beam of metals (PBF-LB/M) is a widely used technology to produce parts with a high freedom in design paired with excellent mechanical properties. The casting alloy AlSi10Mg features a wide process window and a microstructure with excellent mechanical properties which are not obtainable through conventional manufacturing. One possibility for achieving this is by influencing the solidification which then directly affects the local part properties. In this study, the effect of different laser beam profiles with gaussian and top-hat intensity distributions, as well as the influence of varying parameter sets on the microstructure and microhardness within the same specimen, was examined. A test specimen consisting of many small cubes was built with different parameters. It was found that the local properties can be varied in a wide range. Build-height-dependent in-situ aging effects can thereby be exploited for tailoring the local material properties. Thus, an extra degree of freedom is added to the design of additively manufactured parts. Full article
Show Figures

Figure 1

17 pages, 9563 KiB  
Article
High-Power Diode Laser Surface Transformation Hardening of Ferrous Alloys
by Artur Czupryński, Damian Janicki, Jacek Górka, Andrzej Grabowski, Bernard Wyględacz, Krzysztof Matus and Wojciech Karski
Materials 2022, 15(5), 1915; https://doi.org/10.3390/ma15051915 - 4 Mar 2022
Cited by 3 | Viewed by 2208
Abstract
A high-power direct diode laser (HPDDL) having a rectangular beam with a top-hat intensity distribution was used to produce surface-hardened layers on a ferrous alloy. The thermal conditions in the hardened zone were estimated by using numerical simulations and infrared (IR) thermography and [...] Read more.
A high-power direct diode laser (HPDDL) having a rectangular beam with a top-hat intensity distribution was used to produce surface-hardened layers on a ferrous alloy. The thermal conditions in the hardened zone were estimated by using numerical simulations and infrared (IR) thermography and then referred to the thickness and microstructure of the hardened layers. The microstructural characteristics of the hardened layers were investigated using optical, scanning electron and transmission electron microscopy together with X-ray diffraction. It was found that the major factor that controls the thickness of the hardened layer is laser power density, which determines the optimal range of the traverse speed, and in consequence the temperature distribution in the hardened zone. The increase in the cooling rate led to the suppression of the martensitic transformation and a decrease in the hardened layer hardness. The precipitation of the nanometric plate-like and spherical cementite was observed throughout the hardened layer. Full article
Show Figures

Figure 1

13 pages, 3852 KiB  
Article
Utilizing a Diffractive Focus Beam Shaper to Enhance Pattern Uniformity and Process Throughput during Direct Laser Interference Patterning
by Mikhael El-Khoury, Bogdan Voisiat, Tim Kunze and Andrés Fabián Lasagni
Materials 2022, 15(2), 591; https://doi.org/10.3390/ma15020591 - 13 Jan 2022
Cited by 12 | Viewed by 3641
Abstract
Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in [...] Read more.
Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in a four-beam DLIP optical setup to generate a square-shaped top-hat intensity distribution in the interference volume. The interference patterns produced by a standard configuration and the developed setup are measured and compared. In particular, the impact of both laser intensity distributions on process throughput as well as fill-factor is investigated by measuring the resulting microstructure height with height error over the structured surface. It is demonstrated that by utilizing top-hat-shaped interference patterns, it is possible to produce on average 44.8% deeper structures with up to 60% higher homogeneity at the same throughput. Moreover, the presented approach allows the production of microstructures with comparable height and homogeneity compared to the Gaussian intensity distribution with increased throughput of 53%. Full article
Show Figures

Figure 1

12 pages, 3741 KiB  
Article
Hat-Top Beams for Generating Tunable THz Radiations Using a Medium of Conducting Nanocylinders
by Hitendra K. Malik, Tamanna Punia and Dimple Sharma
Electronics 2021, 10(24), 3134; https://doi.org/10.3390/electronics10243134 - 16 Dec 2021
Cited by 14 | Viewed by 2754
Abstract
There are a large number of studies for terahertz (THz) radiation generation, but tunable THz sources are still a challenge since it is difficult to tune frequency, focus and intensity of the radiation simultaneously. The present work proposes the THz generation by the [...] Read more.
There are a large number of studies for terahertz (THz) radiation generation, but tunable THz sources are still a challenge since it is difficult to tune frequency, focus and intensity of the radiation simultaneously. The present work proposes the THz generation by the interaction of two hat-top laser beams with a host medium of argon gas containing graphite nanocylinders, as these beams result in highly nonlinear interaction because of a smooth dip in their peak intensity and a fast rise and fall in the overall intensity pattern. Such an interaction produces nonlinear current (6.7 × 108 A/m2) because of the electron cloud of the nanocylinders, which can be modulated by the laser and medium properties for realizing tunable THz radiation. The orientation of basal planes of nanocylinders is shown to be important for this mechanism, though it may be challenging for the experimentalists. The resonant excitation takes place when the plasmon frequency matches the beating frequency of the laser beams, and in the proposed mechanism one can have longitudinal surface plasmon resonance (~12 THz) and transverse surface plasmon resonance (~40 THz), leading to frequency-tunable THz radiation. The role of height and inter particle distance between the adjacent nanocylinders on the THz field amplitude and the efficiency of the mechanism is uncovered by controlling the aspect ratio in the nanocylinders. For example, reducing the inter particle distance from 180 nm to 60 nm leads to the enhancement of THz field from 1 × 108 V/m to 5.48 × 108 V/m. The profile of the emitted THz radiation is investigated in detail under the effect of various parameters in order to prove the practicality of the proposal. The proposed design and mechanism would be attractive for electromagnetic and communication societies which are dealing with millimeter-waves and THz components in addition to its medical application. Full article
(This article belongs to the Special Issue Physics and Applications of Terahertz Metasurfaces)
Show Figures

Figure 1

18 pages, 9708 KiB  
Article
Doughnut-Shaped and Top Hat Solar Laser Beams Numerical Analysis
by Miguel Catela, Dawei Liang, Cláudia R. Vistas, Dário Garcia, Bruno D. Tibúrcio, Hugo Costa and Joana Almeida
Energies 2021, 14(21), 7102; https://doi.org/10.3390/en14217102 - 31 Oct 2021
Cited by 8 | Viewed by 3382
Abstract
Aside from the industry-standard Gaussian intensity profile, top hat and non-conventional laser beam shapes, such as doughnut-shaped profile, are ever more required. The top hat laser beam profile is well-known for uniformly irradiating the target material, significantly reducing the heat-affected zones, typical of [...] Read more.
Aside from the industry-standard Gaussian intensity profile, top hat and non-conventional laser beam shapes, such as doughnut-shaped profile, are ever more required. The top hat laser beam profile is well-known for uniformly irradiating the target material, significantly reducing the heat-affected zones, typical of Gaussian laser irradiation, whereas the doughnut-shaped laser beam has attracted much interest for its use in trapping particles at the nanoscale and improving mechanical performance during laser-based 3D metal printing. Solar-pumped lasers can be a cost-effective and more sustainable alternative to accomplish these useful laser beam distributions. The sunlight was collected and concentrated by six primary Fresnel lenses, six folding mirror collectors, further compressed with six secondary fused silica concentrators, and symmetrically distributed by six twisted light guides around a 5.5 mm diameter, 35 mm length Nd:YAG rod inside a cylindrical cavity. A top hat laser beam profile (Mx2 = 1.25, My2 = 1.00) was computed through both ZEMAX® and LASCAD® analysis, with 9.4 W/m2 TEM00 mode laser power collection and 0.99% solar-to-TEM00 mode power conversion efficiencies. By using a 5.8 mm laser rod diameter, a doughnut-shaped solar laser beam profile (Mx2 = 1.90, My2 = 1.00) was observed. The 9.8 W/m2 TEM00 mode laser power collection and 1.03% solar-to-TEM00 mode power conversion efficiencies were also attained, corresponding to an increase of 2.2 and 1.9 times, respectively, compared to the state-of-the-art experimental records. As far as we know, the first numerical simulation of doughnut-shaped and top hat solar laser beam profiles is reported here, significantly contributing to the understanding of the formation of such beam profiles. Full article
(This article belongs to the Special Issue Challenge and Research Trends of Solar Concentrators)
Show Figures

Graphical abstract

24 pages, 19759 KiB  
Article
Laser Micro Polishing of Tool Steel 1.2379 (AISI D2): Influence of Intensity Distribution, Laser Beam Size, and Fluence on Surface Roughness and Area Rate
by André Temmler, Magdalena Cortina, Ingo Ross, Moritz E. Küpper and Silja-Katharina Rittinghaus
Metals 2021, 11(9), 1445; https://doi.org/10.3390/met11091445 - 13 Sep 2021
Cited by 11 | Viewed by 3738
Abstract
Within the scope of this study, basic research was carried out on laser micro polishing of the tool steel 1.2379 (AISI D2) using a square, top-hat shaped intensity distribution. The influence of three different quadratic laser beam sizes (100 µm, 200 µm, 400 [...] Read more.
Within the scope of this study, basic research was carried out on laser micro polishing of the tool steel 1.2379 (AISI D2) using a square, top-hat shaped intensity distribution. The influence of three different quadratic laser beam sizes (100 µm, 200 µm, 400 µm side length) and fluences up to 12 J/cm2 on the resulting surface topography and roughness were investigated. Surface topography was analyzed by microscopy, white light interferometry, spectral roughness analysis, and 1D fast Fourier transformation. Scanning electron microscopy and electrical discharge analyses indicate that chromium carbides are the source of undesired surface features such as craters and dimples, which were generated inherently to the remelting process. Particularly for high laser fluences, a noticeable stripe structure was observed, which is typically a characteristic of a continuous remelting process. Although the micro-roughness was significantly reduced, often, the macro-roughness was increased. The results show that smaller laser polishing fluences are required for larger laser beam dimensions. Additionally, the same or even a lower surface roughness and less undesired surface features were created for larger laser beam dimensions. This shows a potential path for industrial applications of laser micro polishing, where area rates of up to several m2/min might be achievable with commercially available laser beam sources. Full article
(This article belongs to the Special Issue Advances in Laser Materials Processing)
Show Figures

Figure 1

12 pages, 32014 KiB  
Article
Squared Focal Intensity Distributions for Applications in Laser Material Processing
by Henrike Schlutow, Ulrike Fuchs, Frank A. Müller and Stephan Gräf
Materials 2021, 14(17), 4981; https://doi.org/10.3390/ma14174981 - 31 Aug 2021
Cited by 10 | Viewed by 3427
Abstract
Tailored intensity profiles within the focal spot of the laser beam offer great potential for a well-defined control of the interaction process between laser radiation and material, and thus for improving the processing results. The present paper discusses a novel refractive beam-shaping element [...] Read more.
Tailored intensity profiles within the focal spot of the laser beam offer great potential for a well-defined control of the interaction process between laser radiation and material, and thus for improving the processing results. The present paper discusses a novel refractive beam-shaping element that provides different squared intensity distributions converted from the Gaussian output beam of the utilized femtosecond (fs) laser. Using the examples of surface structuring of stainless-steel on the micro- and nano-scale, the suitability of the beam-shaping element for fs-laser material processing with a conventional f-Theta lens is demonstrated. In this context, it was shown that the experimental structuring results are in good agreement with beam profile measurements and numerical simulations of the beam-shaping unit. In addition, the experimental results reveal the improvement of laser processing in terms of a significantly reduced processing time during surface nano-structuring and the possibility to control the ablation geometry during the fabrication of micro-channels. Full article
(This article belongs to the Special Issue Advanced Pulse Laser Machining Technology)
Show Figures

Figure 1

9 pages, 7763 KiB  
Article
Compact Beam Homogenizer Module with Laser-Fabricated Lens-Arrays
by Simon Schwarz, Babette Götzendorfer, Stefan Rung, Cemal Esen and Ralf Hellmann
Appl. Sci. 2021, 11(3), 1018; https://doi.org/10.3390/app11031018 - 23 Jan 2021
Cited by 8 | Viewed by 6390
Abstract
We report on manufacturing of a compact beam homogenizer module including two lens arrays and an aperture. Lens arrays are fabricated by an all laser-based technology employing a precise femtosecond pulsed laser ablation and a CO2 laser polishing step. Each lens array [...] Read more.
We report on manufacturing of a compact beam homogenizer module including two lens arrays and an aperture. Lens arrays are fabricated by an all laser-based technology employing a precise femtosecond pulsed laser ablation and a CO2 laser polishing step. Each lens array is processed revealing a high contour accuracy and a roughness of 25 nm. The 8x8 lens arrays are designed to have a square footprint to generate a quadratic Top-Hat beam profile and focal length of 10 mm to realize compact packaging. Firstly, the lens arrays are tested in an experimental setup using commercial lens holders with their functionality being demonstrated by shaping a uniform 4.5 mm squared Top-Hat beam profile, as being calculated. Afterwards, a 3D printer is used to additively manufacture the housing for the beam homogenizer module having a length of only 16 mm. After assembling the laser-fabricated lens arrays and a laser-cutted aperture into the housing, the functionality of the miniaturized module is proven. Full article
(This article belongs to the Special Issue Advanced Laser Beam Shaping for Micro Material Processing)
Show Figures

Figure 1

20 pages, 7647 KiB  
Article
Experimental and Numerical Analysis of Gas/Powder Flow for Different LMD Nozzles
by Elise Ferreira, Morgan Dal, Christophe Colin, Guillaume Marion, Cyril Gorny, Damien Courapied, Jason Guy and Patrice Peyre
Metals 2020, 10(5), 667; https://doi.org/10.3390/met10050667 - 20 May 2020
Cited by 39 | Viewed by 5875
Abstract
The Laser Metal Deposition (LMD) process is an additive manufacturing method, which generates 3D structures through the interaction of a laser beam and a gas/powder stream. The stream diameter, surface density and focal plan position affect the size, efficiency and regularity of the [...] Read more.
The Laser Metal Deposition (LMD) process is an additive manufacturing method, which generates 3D structures through the interaction of a laser beam and a gas/powder stream. The stream diameter, surface density and focal plan position affect the size, efficiency and regularity of the deposit tracks. Therefore, a precise knowledge of the gas/powder streams characteristics is essential to control the process and improve its reliability and reproducibly for industrial applications. This paper proposes multiple experimental techniques, such as gas pressure measurement, optical and weighting methods, to analyze the gas and particle velocity, the powder stream diameter, its focal plan position and density. This was carried out for three nozzle designs and multiple gas and powder flow rates conditions. The results reveal that (1) the particle stream follows a Gaussian distribution while the gas velocity field is closer to a top hat one; (2) axial, carrier and shaping gas flow significantly impact the powder stream’s focal plan position; (3) only shaping gas, powder flow rates and nozzle design impact the powder stream diameter. 2D axisymmetric models of the gas and powder streams with RANS turbulent model are then performed on each of the three nozzles and highlight good agreements with experimental results but an over-estimation of the gas velocity by pressure measurements. Full article
(This article belongs to the Special Issue Additive Manufacturing of Metals with Lasers)
Show Figures

Figure 1

14 pages, 5870 KiB  
Article
Shaping Beam Profiles Using Plastic Optical Fiber Tapers with Application to Ice Sensors
by Kostas Amoiropoulos, Georgia Kioselaki, Nikolaos Kourkoumelis and Aris Ikiades
Sensors 2020, 20(9), 2503; https://doi.org/10.3390/s20092503 - 28 Apr 2020
Cited by 16 | Viewed by 3835
Abstract
Using either bulk or fiber optics the profile of laser beams can be altered from Gaussian to top-hat or hollow beams allowing enhanced performance in applications like laser cooling, optical trapping, and fiber sensing. Here, we report a method based on multimode Plastic [...] Read more.
Using either bulk or fiber optics the profile of laser beams can be altered from Gaussian to top-hat or hollow beams allowing enhanced performance in applications like laser cooling, optical trapping, and fiber sensing. Here, we report a method based on multimode Plastic Optical Fibers (POF) long-tapers, to tweak the beam profile from near Gaussian to a hollow beam, by generating surface irregularities on the conical sections of the taper with a heat-and-pull technique. Furthermore, a cutback technique applied on long tapers expanded the output beam profile by more than twice the numerical aperture (NA) of the fiber. The enhanced sensitivity and detection efficiency of the extended profile was tested on a fiber optical ice sensor related to aviation safety. Full article
(This article belongs to the Special Issue Recent Development and Applications of Plastic Optical Fiber Sensors)
Show Figures

Figure 1

Back to TopTop