Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = top-down nanofabrication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2704 KiB  
Review
Nanofabrication Techniques for Enhancing Plant–Microbe Interactions in Sustainable Agriculture
by Wajid Zaman, Atif Ali Khan Khalil, Adnan Amin and Sajid Ali
Nanomaterials 2025, 15(14), 1086; https://doi.org/10.3390/nano15141086 - 14 Jul 2025
Viewed by 504
Abstract
Nanomaterials have emerged as a transformative technology in agricultural science, offering innovative solutions to improve plant–microbe interactions and crop productivity. The unique properties, such as high surface area, tunability, and reactivity, of nanomaterials, including nanoparticles, carbon-based materials, and electrospun fibers, render them ideal [...] Read more.
Nanomaterials have emerged as a transformative technology in agricultural science, offering innovative solutions to improve plant–microbe interactions and crop productivity. The unique properties, such as high surface area, tunability, and reactivity, of nanomaterials, including nanoparticles, carbon-based materials, and electrospun fibers, render them ideal for applications such as nutrient delivery systems, microbial inoculants, and environmental monitoring. This review explores various types of nanomaterials employed in agriculture, focusing on their role in enhancing microbial colonization and soil health and optimizing plant growth. Key nanofabrication techniques, including top-down and bottom-up manufacturing, electrospinning, and nanoparticle synthesis, are discussed in relation to controlled release systems and microbial inoculants. Additionally, the influence of surface properties such as charge, porosity, and hydrophobicity on microbial adhesion and colonization is examined. Moreover, the potential of nanocoatings and electrospun fibers to enhance seed protection and promote beneficial microbial interactions is investigated. Furthermore, the integration of nanosensors for detecting pH, reactive oxygen species, and metabolites offers real-time insights into the biochemical dynamics of plant–microbe systems, applicable to precision farming. Finally, the environmental and safety considerations regarding the use of nanomaterials, including biodegradability, nanotoxicity, and regulatory concerns, are addressed. This review emphasizes the potential of nanomaterials to revolutionize sustainable agricultural practices by improving crop health, nutrient efficiency, and environmental resilience. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

21 pages, 6806 KiB  
Article
Periodic Arrays of Plasmonic Ag-Coated Multiscale 3D-Structures with SERS Activity: Fabrication, Modelling and Characterisation
by Marta Lafuente, Lucas J. Kooijman, Sergio G. Rodrigo, Erwin Berenschot, Reyes Mallada, María P. Pina, Niels R. Tas and Roald M. Tiggelaar
Micromachines 2024, 15(9), 1129; https://doi.org/10.3390/mi15091129 - 4 Sep 2024
Viewed by 1782
Abstract
Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present [...] Read more.
Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present SERS specimens based on periodic arrays of 3D-structures coated with silver, fabricated by silicon top-down micro and nanofabrication (10 mm × 10 mm footprint). Each 3D-structure is essentially an octahedron on top of a pyramid. The width of the top part—the octahedron—was varied from 0.7 µm to 5 µm. The smallest structures reached an analytical enhancement factor (AEF) of 3.9 × 107 with a relative standard deviation (RSD) below 20%. According to finite-difference time-domain (FDTD) simulations, the origin of this signal amplification lies in the strong localization of electromagnetic fields at the edges and surfaces of the octahedrons. Finally, the sensitivity of these SERS specimens was evaluated under close-to-reality conditions using a portable Raman spectrophotometer and monitoring of the three vibrational bands of 4-nitrobenzenethiol (4-NBT). Thus, this contribution deals with fabrication, characterization and simulation of multiscale 3D-structures with SERS activity. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

7 pages, 1856 KiB  
Communication
Machinability of MoS2 after Oxygen Plasma Treatment under Mechanical Scanning Probe Lithography
by Yang He, Xing Su and Kuo Hai
Crystals 2024, 14(3), 280; https://doi.org/10.3390/cryst14030280 - 15 Mar 2024
Cited by 3 | Viewed by 1665
Abstract
The surface of molybdenum disulfide (MoS2) underwent oxygen plasma treatment to enhance its machinability and mitigate the tearing effects commonly associated with mechanical forces on 2D materials. This treatment led to the oxidation of the atoms on the top 1–3 layers [...] Read more.
The surface of molybdenum disulfide (MoS2) underwent oxygen plasma treatment to enhance its machinability and mitigate the tearing effects commonly associated with mechanical forces on 2D materials. This treatment led to the oxidation of the atoms on the top 1–3 layers of MoS2, resulting in the formation of MoO3 on the surface. During mechanical scanning probe lithography (m-SPL), only the surface oxide layer was uniformly removed, with material accumulation occurring predominantly on one side of the machined area. The resolution of the machining process was significantly enhanced via dynamic lithography while maintaining atomic-level smoothness in the machined area. Importantly, these techniques only removed the surface oxide layer, preserving the integrity of the underlying MoS2 surface, which was pivotal in avoiding damage to the original material structure. This study provided valuable insights and practical guidance for the nanofabrication of transition metal dichalcogenides (TMDCs) nanodevices, demonstrating a method to finely tune the machining of these materials. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 4109 KiB  
Communication
Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption
by Rong Xia, Yang Li, Song You, Chunhua Lu, Wenbin Xu and Yaru Ni
Materials 2023, 16(17), 5988; https://doi.org/10.3390/ma16175988 - 31 Aug 2023
Cited by 1 | Viewed by 1361
Abstract
Plasmonic absorbers with broadband angle-insensitive antireflection have attracted intense interests because of its wide applications in optical devices. Hybrid surfaces with multiple different sub-wavelength array units can provide broadened antireflection, while many of these antireflective surfaces only work for specific angles and require [...] Read more.
Plasmonic absorbers with broadband angle-insensitive antireflection have attracted intense interests because of its wide applications in optical devices. Hybrid surfaces with multiple different sub-wavelength array units can provide broadened antireflection, while many of these antireflective surfaces only work for specific angles and require high complexity of nanofabrication. Here, a plasmonic asymmetric nanostructure composed of the moth-eye dielectric nanoarray partially modified with the top Ag nanoshell providing a side opening for broadband incident-angle-insensitive antireflection and absorption, is rationally designed by nanoimprinting lithography and oblique angle deposition. This study illustrates that the plasmonic asymmetric nanostructure not only excites strong plasmonic resonance, but also induces more light entry into the dielectric nanocavity and then enhances the internal scattering, leading to optimized light localization. Hence, the asymmetric nanostructure can effectively enhance light confinement at different incident angles and exhibit better antireflection and the corresponding absorption performance than that of symmetric nanostructure over the visible wavelengths, especially suppressing at least 16.4% lower reflectance in the range of 645–800 nm at normal incidence.Moreover, the reflectance variance of asymmetric nanostructure with the incident angle changing from 5° to 60° is much smaller than that of symmetric nanostructure, making our approach relevant for various applications in photocatalysis, photothermal conversion, and so on. Full article
(This article belongs to the Topic Electronic and Optical Properties of Nanostructures)
Show Figures

Figure 1

14 pages, 4854 KiB  
Article
Plasmonic Metamaterial Ag Nanostructures on a Mirror for Colorimetric Sensing
by Sayako Maeda, Noboru Osaka, Rei Niguma, Tetsuya Matsuyama, Kenji Wada and Koichi Okamoto
Nanomaterials 2023, 13(10), 1650; https://doi.org/10.3390/nano13101650 - 16 May 2023
Cited by 8 | Viewed by 2240
Abstract
In this study, we demonstrate the localized surface plasmon resonance (LSPR) in the visible range by using nanostructures on mirrors. The nanohemisphere-on-mirror (NHoM) structure is based on random nanoparticles that were obtained by heat-treating silver thin films and does not require any top-down [...] Read more.
In this study, we demonstrate the localized surface plasmon resonance (LSPR) in the visible range by using nanostructures on mirrors. The nanohemisphere-on-mirror (NHoM) structure is based on random nanoparticles that were obtained by heat-treating silver thin films and does not require any top-down nanofabrication processes. We were able to successfully tune over a wide wavelength range and obtain full colors using the NHoM structures, which realized full coverage of the Commission Internationale de l’Eclairage (CIE) standard RGB (sRGB) color space. Additionally, we fabricated the periodic nanodisk-on-glass (NDoG) structure using electron beam lithography and compared it with the NHoM structure. Our analysis of dark-field microscopic images observed by a hyperspectral camera showed that the NHoM structure had less variation in the resonant wavelength by observation points compared with the periodic NDoG structure. In other words, the NHoM structure achieved a high color quality that is comparable to the periodic structure. Finally, we proposed colorimetric sensing as an application of the NHoM structure. We confirmed the significant improvement in performance of colorimetric sensing using the NHoM structure and succeeded in colorimetric sensing using protein drops. The ability to fabricate large areas in full color easily and inexpensively with our proposed structures makes them suitable for industrial applications, such as displays, holograms, biosensing, and security applications. Full article
Show Figures

Figure 1

13 pages, 10690 KiB  
Article
Can One Series of Self-Organized Nanoripples Guide Another Series of Self-Organized Nanoripples during Ion Bombardment: From the Perspective of Power Spectral Density Entropy?
by Hengbo Li, Jinyu Li, Gaoyuan Yang, Ying Liu, Frank Frost and Yilin Hong
Entropy 2023, 25(1), 170; https://doi.org/10.3390/e25010170 - 14 Jan 2023
Cited by 2 | Viewed by 2183
Abstract
Ion bombardment (IB) is a promising nanofabrication tool for self-organized nanostructures. When ions bombard a nominally flat solid surface, self-organized nanoripples can be induced on the irradiated target surface, which are called intrinsic nanoripples of the target material. The degree of ordering of [...] Read more.
Ion bombardment (IB) is a promising nanofabrication tool for self-organized nanostructures. When ions bombard a nominally flat solid surface, self-organized nanoripples can be induced on the irradiated target surface, which are called intrinsic nanoripples of the target material. The degree of ordering of nanoripples is an outstanding issue to be overcome, similar to other self-organization methods. In this study, the IB-induced nanoripples on bilayer systems with enhanced quality are revisited from the perspective of guided self-organization. First, power spectral density (PSD) entropy is introduced to evaluate the degree of ordering of the irradiated nanoripples, which is calculated based on the PSD curve of an atomic force microscopy image (i.e., the Fourier transform of the surface height. The PSD entropy can characterize the degree of ordering of nanoripples). The lower the PSD entropy of the nanoripples is, the higher the degree of ordering of the nanoripples. Second, to deepen the understanding of the enhanced quality of nanoripples on bilayer systems, the temporal evolution of the nanoripples on the photoresist (PR)/antireflection coating (ARC) and Au/ARC bilayer systems are compared with those of single PR and ARC layers. Finally, we demonstrate that a series of intrinsic IB-induced nanoripples on the top layer may act as a kind of self-organized template to guide the development of another series of latent IB-induced nanoripples on the underlying layer, aiming at improving the ripple ordering. The template with a self-organized nanostructure may alleviate the critical requirement for periodic templates with a small period of ~100 nm. The work may also provide inspiration for guided self-organization in other fields. Full article
(This article belongs to the Special Issue Recent Advances in Guided Self-Organization)
Show Figures

Figure 1

44 pages, 4797 KiB  
Review
A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications
by Paras, Kushal Yadav, Prashant Kumar, Dharmasanam Ravi Teja, Sudipto Chakraborty, Monojit Chakraborty, Soumya Sanjeeb Mohapatra, Abanti Sahoo, Mitch M. C. Chou, Chi-Te Liang and Da-Ren Hang
Nanomaterials 2023, 13(1), 160; https://doi.org/10.3390/nano13010160 - 29 Dec 2022
Cited by 91 | Viewed by 16702
Abstract
The development of modern cutting-edge technology relies heavily on the huge success and advancement of nanotechnology, in which nanomaterials and nanostructures provide the indispensable material cornerstone. Owing to their nanoscale dimensions with possible quantum limit, nanomaterials and nanostructures possess a high surface-to-volume ratio, [...] Read more.
The development of modern cutting-edge technology relies heavily on the huge success and advancement of nanotechnology, in which nanomaterials and nanostructures provide the indispensable material cornerstone. Owing to their nanoscale dimensions with possible quantum limit, nanomaterials and nanostructures possess a high surface-to-volume ratio, rich surface/interface effects, and distinct physical and chemical properties compared with their bulk counterparts, leading to the remarkably expanded horizons of their applications. Depending on their degree of spatial quantization, low-dimensional nanomaterials are generally categorized into nanoparticles (0D); nanorods, nanowires, and nanobelts (1D); and atomically thin layered materials (2D). This review article provides a comprehensive guide to low-dimensional nanomaterials and nanostructures. It begins with the classification of nanomaterials, followed by an inclusive account of nanofabrication and characterization. Both top-down and bottom-up fabrication approaches are discussed in detail. Next, various significant applications of low-dimensional nanomaterials are discussed, such as photonics, sensors, catalysis, energy storage, diverse coatings, and various bioapplications. This article would serve as a quick and facile guide for scientists and engineers working in the field of nanotechnology and nanomaterials. Full article
(This article belongs to the Special Issue Low-Dimensional Nanomaterials and Their Applications)
Show Figures

Figure 1

12 pages, 1935 KiB  
Article
A Novel Way to Fill Green Gap of GaN-Based LEDs by Pinning Defects in Nanorod Array
by Jinglin Zhan, Zhizhong Chen, Chuhan Deng, Fei Jiao, Xin Xi, Yiyong Chen, Jingxin Nie, Zuojian Pan, Haodong Zhang, Boyan Dong, Xiangning Kang, Qi Wang, Yuzhen Tong, Guoyi Zhang and Bo Shen
Nanomaterials 2022, 12(21), 3880; https://doi.org/10.3390/nano12213880 - 3 Nov 2022
Cited by 3 | Viewed by 2385
Abstract
Nanorod array and planar green-emission InGaN/GaN multi-quantum well (MQW) LEDs were fabricated by lithography, nano-imprinting, and top–down etching technology. The defect-pinning effect of the nanostructure was found for the first time. The ratio of the bright regions to the global area in the [...] Read more.
Nanorod array and planar green-emission InGaN/GaN multi-quantum well (MQW) LEDs were fabricated by lithography, nano-imprinting, and top–down etching technology. The defect-pinning effect of the nanostructure was found for the first time. The ratio of the bright regions to the global area in the panchromatic CL images of green MQW samples increased from 30% to about 90% after nano-fabrication. The overall luminous performance significantly improved. Throughout temperature-dependent photoluminescence (TDPL) and time-resolved PL (TRPL) measurements, the migration and recombination of carriers in the MQWs of green LEDs were analyzed. It was proved that nanostructures can effectively prevent carriers from being captured by surrounding nonradiative recombination centers. The overall PL integral intensity can be enhanced to above 18 times. A much lower carrier lifetime (decreasing from 91.4 to 40.2 ns) and a higher internal quantum efficiency (IQE) (increasing from 16.9% to 40.7%) were achieved. Some disputes on the defect influence were also discussed and clarified. Full article
(This article belongs to the Topic Optoelectronic Materials)
Show Figures

Figure 1

2 pages, 154 KiB  
Editorial
Editorial for the Topic on Microdevices for Biomedical Analysis
by Kosuke Ino
Micromachines 2022, 13(4), 570; https://doi.org/10.3390/mi13040570 - 3 Apr 2022
Viewed by 1560
Abstract
Recently, biomedical tools have been rapidly miniaturized due to the progress of micro-/nanofabrication technology based on bottom-up and top-down approaches [...] Full article
14 pages, 2516 KiB  
Article
Effect of the Substrate Crystallinity on Morphological and Magnetic Properties of Fe70Pd30 Nanoparticles Obtained by the Solid-State Dewetting
by Gabriele Barrera, Federica Celegato, Matteo Cialone, Marco Coïsson, Paola Rizzi and Paola Tiberto
Sensors 2021, 21(21), 7420; https://doi.org/10.3390/s21217420 - 8 Nov 2021
Cited by 7 | Viewed by 2762
Abstract
Advances in nanofabrication techniques are undoubtedly needed to obtain nanostructured magnetic materials with physical and chemical properties matching the pressing and relentless technological demands of sensors. Solid-state dewetting is known to be a low-cost and “top-down” nanofabrication technique able to induce a controlled [...] Read more.
Advances in nanofabrication techniques are undoubtedly needed to obtain nanostructured magnetic materials with physical and chemical properties matching the pressing and relentless technological demands of sensors. Solid-state dewetting is known to be a low-cost and “top-down” nanofabrication technique able to induce a controlled morphological transformation of a continuous thin film into an ordered nanoparticle array. Here, magnetic Fe70Pd30 thin film with 30 nm thickness is deposited by the co-sputtering technique on a monocrystalline (MgO) or amorphous (Si3N4) substrate and, subsequently, annealed to promote the dewetting process. The different substrate properties are able to tune the activation thermal energy of the dewetting process, which can be tuned by depositing on substrates with different microstructures. In this way, it is possible to tailor the final morphology of FePd nanoparticles as observed by advanced microscopy techniques (SEM and AFM). The average size and height of the nanoparticles are in the ranges 150–300 nm and 150–200 nm, respectively. Moreover, the induced spatial confinement of magnetic materials in almost-spherical nanoparticles strongly affects the magnetic properties as observed by in-plane and out-of-plane hysteresis loops. Magnetization reversal in dewetted FePd nanoparticles is mainly characterized by a rotational mechanism leading to a slower approach to saturation and smaller value of the magnetic susceptibility than the as-deposited thin film. Full article
(This article belongs to the Special Issue Sensors and Biosensors Related to Magnetic Nanoparticles)
Show Figures

Graphical abstract

10 pages, 5018 KiB  
Article
Confinement Effect of Plasmon for the Fabrication of Interconnected AuNPs through the Reduction of Diazonium Salts
by Luong-Lam Nguyen, Quang-Hai Le, Van-Nhat Pham, Mathieu Bastide, Sarra Gam-Derouich, Van-Quynh Nguyen and Jean-Christophe Lacroix
Nanomaterials 2021, 11(8), 1957; https://doi.org/10.3390/nano11081957 - 29 Jul 2021
Cited by 5 | Viewed by 2897
Abstract
This paper describes a rapid bottom-up approach to selectively functionalize gold nanoparticles (AuNPs) on an indium tin oxide (ITO) substrate using the plasmon confinement effect. The plasmonic substrates based on a AuNP-free surfactant were fabricated by electrochemical deposition. Using this bottom-up technique, many [...] Read more.
This paper describes a rapid bottom-up approach to selectively functionalize gold nanoparticles (AuNPs) on an indium tin oxide (ITO) substrate using the plasmon confinement effect. The plasmonic substrates based on a AuNP-free surfactant were fabricated by electrochemical deposition. Using this bottom-up technique, many sub-30 nm spatial gaps between the deposited AuNPs were randomly generated on the ITO substrate, which is difficult to obtain with a top-down approach (i.e., E-beam lithography) due to its fabrication limits. The 4-Aminodiphenyl (ADP) molecules were grafted directly onto the AuNPs through a plasmon-induced reduction of the 4-Aminodiphenyl diazonium salts (ADPD). The ADP organic layer preferentially grew in the narrow gaps between the many adjacent AuNPs to create interconnected AuNPs. This novel strategy opens up an efficient technique for the localized surface modification at the nanoscale over a macroscopic area, which is anticipated to be an advanced nanofabrication technique. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

23 pages, 5263 KiB  
Review
Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays
by Marcel Tintelott, Vivek Pachauri, Sven Ingebrandt and Xuan Thang Vu
Sensors 2021, 21(15), 5153; https://doi.org/10.3390/s21155153 - 29 Jul 2021
Cited by 31 | Viewed by 6159
Abstract
Silicon nanowire field-effect transistors (SiNW-FET) have been studied as ultra-high sensitive sensors for the detection of biomolecules, metal ions, gas molecules and as an interface for biological systems due to their remarkable electronic properties. “Bottom-up” or “top-down” approaches that are used for the [...] Read more.
Silicon nanowire field-effect transistors (SiNW-FET) have been studied as ultra-high sensitive sensors for the detection of biomolecules, metal ions, gas molecules and as an interface for biological systems due to their remarkable electronic properties. “Bottom-up” or “top-down” approaches that are used for the fabrication of SiNW-FET sensors have their respective limitations in terms of technology development. The “bottom-up” approach allows the synthesis of silicon nanowires (SiNW) in the range from a few nm to hundreds of nm in diameter. However, it is technologically challenging to realize reproducible bottom-up devices on a large scale for clinical biosensing applications. The top-down approach involves state-of-the-art lithography and nanofabrication techniques to cast SiNW down to a few 10s of nanometers in diameter out of high-quality Silicon-on-Insulator (SOI) wafers in a controlled environment, enabling the large-scale fabrication of sensors for a myriad of applications. The possibility of their wafer-scale integration in standard semiconductor processes makes SiNW-FETs one of the most promising candidates for the next generation of biosensor platforms for applications in healthcare and medicine. Although advanced fabrication techniques are employed for fabricating SiNW, the sensor-to-sensor variation in the fabrication processes is one of the limiting factors for a large-scale production towards commercial applications. To provide a detailed overview of the technical aspects responsible for this sensor-to-sensor variation, we critically review and discuss the fundamental aspects that could lead to such a sensor-to-sensor variation, focusing on fabrication parameters and processes described in the state-of-the-art literature. Furthermore, we discuss the impact of functionalization aspects, surface modification, and system integration of the SiNW-FET biosensors on post-fabrication-induced sensor-to-sensor variations for biosensing experiments. Full article
(This article belongs to the Special Issue Field-Effect Sensors: From pH Sensing to Biosensing)
Show Figures

Figure 1

12 pages, 7060 KiB  
Article
Fabrication of Nanoscale Oxide Textured Surfaces on Polymers
by Barun K. Barick, Neta Shomrat, Uri Green, Zohar Katzman and Tamar Segal-Peretz
Polymers 2021, 13(13), 2209; https://doi.org/10.3390/polym13132209 - 3 Jul 2021
Cited by 2 | Viewed by 2984
Abstract
Nanoscale textured surfaces play an important role in creating antibacterial surfaces, broadband anti-reflective properties, and super-hydrophobicity in many technological systems. Creating nanoscale oxide textures on polymer substrates for applications such as ophthalmic lenses and flexible electronics imposes additional challenges over conventional nanofabrication processes [...] Read more.
Nanoscale textured surfaces play an important role in creating antibacterial surfaces, broadband anti-reflective properties, and super-hydrophobicity in many technological systems. Creating nanoscale oxide textures on polymer substrates for applications such as ophthalmic lenses and flexible electronics imposes additional challenges over conventional nanofabrication processes since polymer substrates are typically temperature-sensitive and chemically reactive. In this study, we investigated and developed nanofabrication methodologies to create highly ordered oxide nanostructures on top of polymer substrates without any lithography process. We developed suitable block copolymer self-assembly, sequential infiltration synthesis (SIS), and reactive ion etching (RIE) for processes on polymer substrates. Importantly, to prevent damage to the temperature-sensitive polymer and polymer/oxide interface, we developed the process to be entirely performed at low temperatures, that is, below 80 °C, using a combination of UV crosslinking, solvent annealing, and modified SIS and RIE processes. In addition, we developed a substrate passivation process to overcome reactivity between the polymer substrate and the SIS precursors as well as a high precision RIE process to enable deep etching into the thermally insulated substrate. These methodologies widen the possibilities of nanofabrication on polymers. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

40 pages, 4639 KiB  
Review
Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective
by Eleanor Mullen and Michael A. Morris
Nanomaterials 2021, 11(5), 1085; https://doi.org/10.3390/nano11051085 - 22 Apr 2021
Cited by 57 | Viewed by 13183
Abstract
The turn of the 21st century heralded in the semiconductor age alongside the Anthropocene epoch, characterised by the ever-increasing human impact on the environment. The ecological consequences of semiconductor chip manufacturing are the most predominant within the electronics industry. This is due to [...] Read more.
The turn of the 21st century heralded in the semiconductor age alongside the Anthropocene epoch, characterised by the ever-increasing human impact on the environment. The ecological consequences of semiconductor chip manufacturing are the most predominant within the electronics industry. This is due to current reliance upon large amounts of solvents, acids and gases that have numerous toxicological impacts. Management and assessment of hazardous chemicals is complicated by trade secrets and continual rapid change in the electronic manufacturing process. Of the many subprocesses involved in chip manufacturing, lithographic processes are of particular concern. Current developments in bottom-up lithography, such as directed self-assembly (DSA) of block copolymers (BCPs), are being considered as a next-generation technology for semiconductor chip production. These nanofabrication techniques present a novel opportunity for improving the sustainability of lithography by reducing the number of processing steps, energy and chemical waste products involved. At present, to the extent of our knowledge, there is no published life cycle assessment (LCA) evaluating the environmental impact of new bottom-up lithography versus conventional lithographic techniques. Quantification of this impact is central to verifying whether these new nanofabrication routes can replace conventional deposition techniques in industry as a more environmentally friendly option. Full article
(This article belongs to the Special Issue Block Copolymer Nano-Objects)
Show Figures

Figure 1

11 pages, 2767 KiB  
Article
Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device
by Kyojiro Morikawa, Yutaka Kazoe, Yuto Takagi, Yoshiyuki Tsuyama, Yuriy Pihosh, Takehiko Tsukahara and Takehiko Kitamori
Micromachines 2020, 11(11), 995; https://doi.org/10.3390/mi11110995 - 9 Nov 2020
Cited by 43 | Viewed by 4157
Abstract
Nanofluidics have recently attracted significant attention with regard to the development of new functionalities and applications, and producing new functional devices utilizing nanofluidics will require the fabrication of nanochannels. Fused silica nanofluidic devices fabricated by top-down methods are a promising approach to realizing [...] Read more.
Nanofluidics have recently attracted significant attention with regard to the development of new functionalities and applications, and producing new functional devices utilizing nanofluidics will require the fabrication of nanochannels. Fused silica nanofluidic devices fabricated by top-down methods are a promising approach to realizing this goal. Our group previously demonstrated the analysis of a living single cell using such a device, incorporating nanochannels having different sizes (102–103 nm) and with branched and confluent structures and surface patterning. However, fabrication of geometrically-controlled nanochannels on the 101 nm size scale by top-down methods on a fused silica substrate, and the fabrication of micro-nano interfaces on a single substrate, remain challenging. In the present study, the smallest-ever square nanochannels (with a size of 50 nm) were fabricated on fused silica substrates by optimizing the electron beam exposure time, and the absence of channel breaks was confirmed by streaming current measurements. In addition, micro-nano interfaces between 103 nm nanochannels and 101 μm microchannels were fabricated on a single substrate by controlling the hydrophobicity of the nanochannel surfaces. A micro-nano interface for a single cell analysis device, in which a nanochannel was connected to a 101 μm single cell chamber, was also fabricated. These new fabrication procedures are expected to advance the basic technologies employed in the field of nanofluidics. Full article
(This article belongs to the Special Issue Advances in Nanofluidics)
Show Figures

Figure 1

Back to TopTop